1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
|
//===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements all of the non-inline methods for the LLVM instruction
// classes.
//
//===----------------------------------------------------------------------===//
#include "llvm/BasicBlock.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Support/CallSite.h"
using namespace llvm;
unsigned CallSite::getCallingConv() const {
if (CallInst *CI = dyn_cast<CallInst>(I))
return CI->getCallingConv();
else
return cast<InvokeInst>(I)->getCallingConv();
}
void CallSite::setCallingConv(unsigned CC) {
if (CallInst *CI = dyn_cast<CallInst>(I))
CI->setCallingConv(CC);
else
cast<InvokeInst>(I)->setCallingConv(CC);
}
//===----------------------------------------------------------------------===//
// TerminatorInst Class
//===----------------------------------------------------------------------===//
TerminatorInst::TerminatorInst(Instruction::TermOps iType,
Use *Ops, unsigned NumOps, Instruction *IB)
: Instruction(Type::VoidTy, iType, Ops, NumOps, "", IB) {
}
TerminatorInst::TerminatorInst(Instruction::TermOps iType,
Use *Ops, unsigned NumOps, BasicBlock *IAE)
: Instruction(Type::VoidTy, iType, Ops, NumOps, "", IAE) {
}
//===----------------------------------------------------------------------===//
// PHINode Class
//===----------------------------------------------------------------------===//
PHINode::PHINode(const PHINode &PN)
: Instruction(PN.getType(), Instruction::PHI,
new Use[PN.getNumOperands()], PN.getNumOperands()),
ReservedSpace(PN.getNumOperands()) {
Use *OL = OperandList;
for (unsigned i = 0, e = PN.getNumOperands(); i != e; i+=2) {
OL[i].init(PN.getOperand(i), this);
OL[i+1].init(PN.getOperand(i+1), this);
}
}
PHINode::~PHINode() {
delete [] OperandList;
}
// removeIncomingValue - Remove an incoming value. This is useful if a
// predecessor basic block is deleted.
Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
unsigned NumOps = getNumOperands();
Use *OL = OperandList;
assert(Idx*2 < NumOps && "BB not in PHI node!");
Value *Removed = OL[Idx*2];
// Move everything after this operand down.
//
// FIXME: we could just swap with the end of the list, then erase. However,
// client might not expect this to happen. The code as it is thrashes the
// use/def lists, which is kinda lame.
for (unsigned i = (Idx+1)*2; i != NumOps; i += 2) {
OL[i-2] = OL[i];
OL[i-2+1] = OL[i+1];
}
// Nuke the last value.
OL[NumOps-2].set(0);
OL[NumOps-2+1].set(0);
NumOperands = NumOps-2;
// If the PHI node is dead, because it has zero entries, nuke it now.
if (NumOps == 2 && DeletePHIIfEmpty) {
// If anyone is using this PHI, make them use a dummy value instead...
replaceAllUsesWith(UndefValue::get(getType()));
eraseFromParent();
}
return Removed;
}
/// resizeOperands - resize operands - This adjusts the length of the operands
/// list according to the following behavior:
/// 1. If NumOps == 0, grow the operand list in response to a push_back style
/// of operation. This grows the number of ops by 1.5 times.
/// 2. If NumOps > NumOperands, reserve space for NumOps operands.
/// 3. If NumOps == NumOperands, trim the reserved space.
///
void PHINode::resizeOperands(unsigned NumOps) {
if (NumOps == 0) {
NumOps = (getNumOperands())*3/2;
if (NumOps < 4) NumOps = 4; // 4 op PHI nodes are VERY common.
} else if (NumOps*2 > NumOperands) {
// No resize needed.
if (ReservedSpace >= NumOps) return;
} else if (NumOps == NumOperands) {
if (ReservedSpace == NumOps) return;
} else {
return;
}
ReservedSpace = NumOps;
Use *NewOps = new Use[NumOps];
Use *OldOps = OperandList;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
NewOps[i].init(OldOps[i], this);
OldOps[i].set(0);
}
delete [] OldOps;
OperandList = NewOps;
}
/// hasConstantValue - If the specified PHI node always merges together the same
/// value, return the value, otherwise return null.
///
Value *PHINode::hasConstantValue(bool AllowNonDominatingInstruction) const {
// If the PHI node only has one incoming value, eliminate the PHI node...
if (getNumIncomingValues() == 1)
if (getIncomingValue(0) != this) // not X = phi X
return getIncomingValue(0);
else
return UndefValue::get(getType()); // Self cycle is dead.
// Otherwise if all of the incoming values are the same for the PHI, replace
// the PHI node with the incoming value.
//
Value *InVal = 0;
bool HasUndefInput = false;
for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i)
if (isa<UndefValue>(getIncomingValue(i)))
HasUndefInput = true;
else if (getIncomingValue(i) != this) // Not the PHI node itself...
if (InVal && getIncomingValue(i) != InVal)
return 0; // Not the same, bail out.
else
InVal = getIncomingValue(i);
// The only case that could cause InVal to be null is if we have a PHI node
// that only has entries for itself. In this case, there is no entry into the
// loop, so kill the PHI.
//
if (InVal == 0) InVal = UndefValue::get(getType());
// If we have a PHI node like phi(X, undef, X), where X is defined by some
// instruction, we cannot always return X as the result of the PHI node. Only
// do this if X is not an instruction (thus it must dominate the PHI block),
// or if the client is prepared to deal with this possibility.
if (HasUndefInput && !AllowNonDominatingInstruction)
if (Instruction *IV = dyn_cast<Instruction>(InVal))
// If it's in the entry block, it dominates everything.
if (IV->getParent() != &IV->getParent()->getParent()->front() ||
isa<InvokeInst>(IV))
return 0; // Cannot guarantee that InVal dominates this PHINode.
// All of the incoming values are the same, return the value now.
return InVal;
}
//===----------------------------------------------------------------------===//
// CallInst Implementation
//===----------------------------------------------------------------------===//
CallInst::~CallInst() {
delete [] OperandList;
}
void CallInst::init(Value *Func, const std::vector<Value*> &Params) {
NumOperands = Params.size()+1;
Use *OL = OperandList = new Use[Params.size()+1];
OL[0].init(Func, this);
const FunctionType *FTy =
cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
assert((Params.size() == FTy->getNumParams() ||
(FTy->isVarArg() && Params.size() > FTy->getNumParams())) &&
"Calling a function with bad signature");
for (unsigned i = 0, e = Params.size(); i != e; ++i)
OL[i+1].init(Params[i], this);
}
void CallInst::init(Value *Func, Value *Actual1, Value *Actual2) {
NumOperands = 3;
Use *OL = OperandList = new Use[3];
OL[0].init(Func, this);
OL[1].init(Actual1, this);
OL[2].init(Actual2, this);
const FunctionType *FTy =
cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
assert((FTy->getNumParams() == 2 ||
(FTy->isVarArg() && FTy->getNumParams() == 0)) &&
"Calling a function with bad signature");
}
void CallInst::init(Value *Func, Value *Actual) {
NumOperands = 2;
Use *OL = OperandList = new Use[2];
OL[0].init(Func, this);
OL[1].init(Actual, this);
const FunctionType *FTy =
cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
assert((FTy->getNumParams() == 1 ||
(FTy->isVarArg() && FTy->getNumParams() == 0)) &&
"Calling a function with bad signature");
}
void CallInst::init(Value *Func) {
NumOperands = 1;
Use *OL = OperandList = new Use[1];
OL[0].init(Func, this);
const FunctionType *MTy =
cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
assert(MTy->getNumParams() == 0 && "Calling a function with bad signature");
}
CallInst::CallInst(Value *Func, const std::vector<Value*> &Params,
const std::string &Name, Instruction *InsertBefore)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
Instruction::Call, 0, 0, Name, InsertBefore) {
init(Func, Params);
}
CallInst::CallInst(Value *Func, const std::vector<Value*> &Params,
const std::string &Name, BasicBlock *InsertAtEnd)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
Instruction::Call, 0, 0, Name, InsertAtEnd) {
init(Func, Params);
}
CallInst::CallInst(Value *Func, Value *Actual1, Value *Actual2,
const std::string &Name, Instruction *InsertBefore)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
Instruction::Call, 0, 0, Name, InsertBefore) {
init(Func, Actual1, Actual2);
}
CallInst::CallInst(Value *Func, Value *Actual1, Value *Actual2,
const std::string &Name, BasicBlock *InsertAtEnd)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
Instruction::Call, 0, 0, Name, InsertAtEnd) {
init(Func, Actual1, Actual2);
}
CallInst::CallInst(Value *Func, Value* Actual, const std::string &Name,
Instruction *InsertBefore)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
Instruction::Call, 0, 0, Name, InsertBefore) {
init(Func, Actual);
}
CallInst::CallInst(Value *Func, Value* Actual, const std::string &Name,
BasicBlock *InsertAtEnd)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
Instruction::Call, 0, 0, Name, InsertAtEnd) {
init(Func, Actual);
}
CallInst::CallInst(Value *Func, const std::string &Name,
Instruction *InsertBefore)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
Instruction::Call, 0, 0, Name, InsertBefore) {
init(Func);
}
CallInst::CallInst(Value *Func, const std::string &Name,
BasicBlock *InsertAtEnd)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
Instruction::Call, 0, 0, Name, InsertAtEnd) {
init(Func);
}
CallInst::CallInst(const CallInst &CI)
: Instruction(CI.getType(), Instruction::Call, new Use[CI.getNumOperands()],
CI.getNumOperands()) {
SubclassData = CI.SubclassData;
Use *OL = OperandList;
Use *InOL = CI.OperandList;
for (unsigned i = 0, e = CI.getNumOperands(); i != e; ++i)
OL[i].init(InOL[i], this);
}
//===----------------------------------------------------------------------===//
// InvokeInst Implementation
//===----------------------------------------------------------------------===//
InvokeInst::~InvokeInst() {
delete [] OperandList;
}
void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
const std::vector<Value*> &Params) {
NumOperands = 3+Params.size();
Use *OL = OperandList = new Use[3+Params.size()];
OL[0].init(Fn, this);
OL[1].init(IfNormal, this);
OL[2].init(IfException, this);
const FunctionType *FTy =
cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
assert((Params.size() == FTy->getNumParams()) ||
(FTy->isVarArg() && Params.size() > FTy->getNumParams()) &&
"Calling a function with bad signature");
for (unsigned i = 0, e = Params.size(); i != e; i++)
OL[i+3].init(Params[i], this);
}
InvokeInst::InvokeInst(Value *Fn, BasicBlock *IfNormal,
BasicBlock *IfException,
const std::vector<Value*> &Params,
const std::string &Name, Instruction *InsertBefore)
: TerminatorInst(cast<FunctionType>(cast<PointerType>(Fn->getType())
->getElementType())->getReturnType(),
Instruction::Invoke, 0, 0, Name, InsertBefore) {
init(Fn, IfNormal, IfException, Params);
}
InvokeInst::InvokeInst(Value *Fn, BasicBlock *IfNormal,
BasicBlock *IfException,
const std::vector<Value*> &Params,
const std::string &Name, BasicBlock *InsertAtEnd)
: TerminatorInst(cast<FunctionType>(cast<PointerType>(Fn->getType())
->getElementType())->getReturnType(),
Instruction::Invoke, 0, 0, Name, InsertAtEnd) {
init(Fn, IfNormal, IfException, Params);
}
InvokeInst::InvokeInst(const InvokeInst &II)
: TerminatorInst(II.getType(), Instruction::Invoke,
new Use[II.getNumOperands()], II.getNumOperands()) {
SubclassData = II.SubclassData;
Use *OL = OperandList, *InOL = II.OperandList;
for (unsigned i = 0, e = II.getNumOperands(); i != e; ++i)
OL[i].init(InOL[i], this);
}
BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
return getSuccessor(idx);
}
unsigned InvokeInst::getNumSuccessorsV() const {
return getNumSuccessors();
}
void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
return setSuccessor(idx, B);
}
//===----------------------------------------------------------------------===//
// ReturnInst Implementation
//===----------------------------------------------------------------------===//
void ReturnInst::init(Value *retVal) {
if (retVal && retVal->getType() != Type::VoidTy) {
assert(!isa<BasicBlock>(retVal) &&
"Cannot return basic block. Probably using the incorrect ctor");
NumOperands = 1;
RetVal.init(retVal, this);
}
}
unsigned ReturnInst::getNumSuccessorsV() const {
return getNumSuccessors();
}
// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
// emit the vtable for the class in this translation unit.
void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
assert(0 && "ReturnInst has no successors!");
}
BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
assert(0 && "ReturnInst has no successors!");
abort();
return 0;
}
//===----------------------------------------------------------------------===//
// UnwindInst Implementation
//===----------------------------------------------------------------------===//
unsigned UnwindInst::getNumSuccessorsV() const {
return getNumSuccessors();
}
void UnwindInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
assert(0 && "UnwindInst has no successors!");
}
BasicBlock *UnwindInst::getSuccessorV(unsigned idx) const {
assert(0 && "UnwindInst has no successors!");
abort();
return 0;
}
//===----------------------------------------------------------------------===//
// UnreachableInst Implementation
//===----------------------------------------------------------------------===//
unsigned UnreachableInst::getNumSuccessorsV() const {
return getNumSuccessors();
}
void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
assert(0 && "UnwindInst has no successors!");
}
BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
assert(0 && "UnwindInst has no successors!");
abort();
return 0;
}
//===----------------------------------------------------------------------===//
// BranchInst Implementation
//===----------------------------------------------------------------------===//
void BranchInst::AssertOK() {
if (isConditional())
assert(getCondition()->getType() == Type::BoolTy &&
"May only branch on boolean predicates!");
}
BranchInst::BranchInst(const BranchInst &BI) :
TerminatorInst(Instruction::Br, Ops, BI.getNumOperands()) {
OperandList[0].init(BI.getOperand(0), this);
if (BI.getNumOperands() != 1) {
assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
OperandList[1].init(BI.getOperand(1), this);
OperandList[2].init(BI.getOperand(2), this);
}
}
BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
return getSuccessor(idx);
}
unsigned BranchInst::getNumSuccessorsV() const {
return getNumSuccessors();
}
void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
setSuccessor(idx, B);
}
//===----------------------------------------------------------------------===//
// AllocationInst Implementation
//===----------------------------------------------------------------------===//
static Value *getAISize(Value *Amt) {
if (!Amt)
Amt = ConstantUInt::get(Type::UIntTy, 1);
else
assert(Amt->getType() == Type::UIntTy &&
"Malloc/Allocation array size != UIntTy!");
return Amt;
}
AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy,
unsigned Align, const std::string &Name,
Instruction *InsertBefore)
: UnaryInstruction(PointerType::get(Ty), iTy, getAISize(ArraySize),
Name, InsertBefore), Alignment(Align) {
assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
assert(Ty != Type::VoidTy && "Cannot allocate void!");
}
AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy,
unsigned Align, const std::string &Name,
BasicBlock *InsertAtEnd)
: UnaryInstruction(PointerType::get(Ty), iTy, getAISize(ArraySize),
Name, InsertAtEnd), Alignment(Align) {
assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
assert(Ty != Type::VoidTy && "Cannot allocate void!");
}
bool AllocationInst::isArrayAllocation() const {
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(getOperand(0)))
return CUI->getValue() != 1;
return true;
}
const Type *AllocationInst::getAllocatedType() const {
return getType()->getElementType();
}
AllocaInst::AllocaInst(const AllocaInst &AI)
: AllocationInst(AI.getType()->getElementType(), (Value*)AI.getOperand(0),
Instruction::Alloca, AI.getAlignment()) {
}
MallocInst::MallocInst(const MallocInst &MI)
: AllocationInst(MI.getType()->getElementType(), (Value*)MI.getOperand(0),
Instruction::Malloc, MI.getAlignment()) {
}
//===----------------------------------------------------------------------===//
// FreeInst Implementation
//===----------------------------------------------------------------------===//
void FreeInst::AssertOK() {
assert(isa<PointerType>(getOperand(0)->getType()) &&
"Can not free something of nonpointer type!");
}
FreeInst::FreeInst(Value *Ptr, Instruction *InsertBefore)
: UnaryInstruction(Type::VoidTy, Free, Ptr, "", InsertBefore) {
AssertOK();
}
FreeInst::FreeInst(Value *Ptr, BasicBlock *InsertAtEnd)
: UnaryInstruction(Type::VoidTy, Free, Ptr, "", InsertAtEnd) {
AssertOK();
}
//===----------------------------------------------------------------------===//
// LoadInst Implementation
//===----------------------------------------------------------------------===//
void LoadInst::AssertOK() {
assert(isa<PointerType>(getOperand(0)->getType()) &&
"Ptr must have pointer type.");
}
LoadInst::LoadInst(Value *Ptr, const std::string &Name, Instruction *InsertBef)
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Ptr, Name, InsertBef) {
setVolatile(false);
AssertOK();
}
LoadInst::LoadInst(Value *Ptr, const std::string &Name, BasicBlock *InsertAE)
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Ptr, Name, InsertAE) {
setVolatile(false);
AssertOK();
}
LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
Instruction *InsertBef)
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Ptr, Name, InsertBef) {
setVolatile(isVolatile);
AssertOK();
}
LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
BasicBlock *InsertAE)
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Ptr, Name, InsertAE) {
setVolatile(isVolatile);
AssertOK();
}
//===----------------------------------------------------------------------===//
// StoreInst Implementation
//===----------------------------------------------------------------------===//
void StoreInst::AssertOK() {
assert(isa<PointerType>(getOperand(1)->getType()) &&
"Ptr must have pointer type!");
assert(getOperand(0)->getType() ==
cast<PointerType>(getOperand(1)->getType())->getElementType()
&& "Ptr must be a pointer to Val type!");
}
StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
: Instruction(Type::VoidTy, Store, Ops, 2, "", InsertBefore) {
Ops[0].init(val, this);
Ops[1].init(addr, this);
setVolatile(false);
AssertOK();
}
StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
: Instruction(Type::VoidTy, Store, Ops, 2, "", InsertAtEnd) {
Ops[0].init(val, this);
Ops[1].init(addr, this);
setVolatile(false);
AssertOK();
}
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
Instruction *InsertBefore)
: Instruction(Type::VoidTy, Store, Ops, 2, "", InsertBefore) {
Ops[0].init(val, this);
Ops[1].init(addr, this);
setVolatile(isVolatile);
AssertOK();
}
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
BasicBlock *InsertAtEnd)
: Instruction(Type::VoidTy, Store, Ops, 2, "", InsertAtEnd) {
Ops[0].init(val, this);
Ops[1].init(addr, this);
setVolatile(isVolatile);
AssertOK();
}
//===----------------------------------------------------------------------===//
// GetElementPtrInst Implementation
//===----------------------------------------------------------------------===//
// checkType - Simple wrapper function to give a better assertion failure
// message on bad indexes for a gep instruction.
//
static inline const Type *checkType(const Type *Ty) {
assert(Ty && "Invalid indices for type!");
return Ty;
}
void GetElementPtrInst::init(Value *Ptr, const std::vector<Value*> &Idx) {
NumOperands = 1+Idx.size();
Use *OL = OperandList = new Use[NumOperands];
OL[0].init(Ptr, this);
for (unsigned i = 0, e = Idx.size(); i != e; ++i)
OL[i+1].init(Idx[i], this);
}
void GetElementPtrInst::init(Value *Ptr, Value *Idx0, Value *Idx1) {
NumOperands = 3;
Use *OL = OperandList = new Use[3];
OL[0].init(Ptr, this);
OL[1].init(Idx0, this);
OL[2].init(Idx1, this);
}
void GetElementPtrInst::init(Value *Ptr, Value *Idx) {
NumOperands = 2;
Use *OL = OperandList = new Use[2];
OL[0].init(Ptr, this);
OL[1].init(Idx, this);
}
GetElementPtrInst::GetElementPtrInst(Value *Ptr, const std::vector<Value*> &Idx,
const std::string &Name, Instruction *InBe)
: Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),
Idx, true))),
GetElementPtr, 0, 0, Name, InBe) {
init(Ptr, Idx);
}
GetElementPtrInst::GetElementPtrInst(Value *Ptr, const std::vector<Value*> &Idx,
const std::string &Name, BasicBlock *IAE)
: Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),
Idx, true))),
GetElementPtr, 0, 0, Name, IAE) {
init(Ptr, Idx);
}
GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
const std::string &Name, Instruction *InBe)
: Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),Idx))),
GetElementPtr, 0, 0, Name, InBe) {
init(Ptr, Idx);
}
GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
const std::string &Name, BasicBlock *IAE)
: Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),Idx))),
GetElementPtr, 0, 0, Name, IAE) {
init(Ptr, Idx);
}
GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx0, Value *Idx1,
const std::string &Name, Instruction *InBe)
: Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),
Idx0, Idx1, true))),
GetElementPtr, 0, 0, Name, InBe) {
init(Ptr, Idx0, Idx1);
}
GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx0, Value *Idx1,
const std::string &Name, BasicBlock *IAE)
: Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),
Idx0, Idx1, true))),
GetElementPtr, 0, 0, Name, IAE) {
init(Ptr, Idx0, Idx1);
}
GetElementPtrInst::~GetElementPtrInst() {
delete[] OperandList;
}
// getIndexedType - Returns the type of the element that would be loaded with
// a load instruction with the specified parameters.
//
// A null type is returned if the indices are invalid for the specified
// pointer type.
//
const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
const std::vector<Value*> &Idx,
bool AllowCompositeLeaf) {
if (!isa<PointerType>(Ptr)) return 0; // Type isn't a pointer type!
// Handle the special case of the empty set index set...
if (Idx.empty())
if (AllowCompositeLeaf ||
cast<PointerType>(Ptr)->getElementType()->isFirstClassType())
return cast<PointerType>(Ptr)->getElementType();
else
return 0;
unsigned CurIdx = 0;
while (const CompositeType *CT = dyn_cast<CompositeType>(Ptr)) {
if (Idx.size() == CurIdx) {
if (AllowCompositeLeaf || CT->isFirstClassType()) return Ptr;
return 0; // Can't load a whole structure or array!?!?
}
Value *Index = Idx[CurIdx++];
if (isa<PointerType>(CT) && CurIdx != 1)
return 0; // Can only index into pointer types at the first index!
if (!CT->indexValid(Index)) return 0;
Ptr = CT->getTypeAtIndex(Index);
// If the new type forwards to another type, then it is in the middle
// of being refined to another type (and hence, may have dropped all
// references to what it was using before). So, use the new forwarded
// type.
if (const Type * Ty = Ptr->getForwardedType()) {
Ptr = Ty;
}
}
return CurIdx == Idx.size() ? Ptr : 0;
}
const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
Value *Idx0, Value *Idx1,
bool AllowCompositeLeaf) {
const PointerType *PTy = dyn_cast<PointerType>(Ptr);
if (!PTy) return 0; // Type isn't a pointer type!
// Check the pointer index.
if (!PTy->indexValid(Idx0)) return 0;
const CompositeType *CT = dyn_cast<CompositeType>(PTy->getElementType());
if (!CT || !CT->indexValid(Idx1)) return 0;
const Type *ElTy = CT->getTypeAtIndex(Idx1);
if (AllowCompositeLeaf || ElTy->isFirstClassType())
return ElTy;
return 0;
}
const Type* GetElementPtrInst::getIndexedType(const Type *Ptr, Value *Idx) {
const PointerType *PTy = dyn_cast<PointerType>(Ptr);
if (!PTy) return 0; // Type isn't a pointer type!
// Check the pointer index.
if (!PTy->indexValid(Idx)) return 0;
return PTy->getElementType();
}
//===----------------------------------------------------------------------===//
// ExtractElementInst Implementation
//===----------------------------------------------------------------------===//
ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
const std::string &Name,
Instruction *InsertBef)
: Instruction(cast<PackedType>(Val->getType())->getElementType(),
ExtractElement, Ops, 2, Name, InsertBef) {
Ops[0].init(Val, this);
Ops[1].init(Index, this);
}
ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
const std::string &Name,
BasicBlock *InsertAE)
: Instruction(cast<PackedType>(Val->getType())->getElementType(),
ExtractElement, Ops, 2, Name, InsertAE) {
Ops[0].init(Val, this);
Ops[1].init(Index, this);
}
//===----------------------------------------------------------------------===//
// InsertElementInst Implementation
//===----------------------------------------------------------------------===//
InsertElementInst::InsertElementInst(Value *Val, Value *Elt, Value *Index,
const std::string &Name,
Instruction *InsertBef)
: Instruction(Val->getType(), InsertElement, Ops, 3, Name, InsertBef) {
Ops[0].init(Val, this);
Ops[1].init(Elt, this);
Ops[2].init(Index, this);
}
InsertElementInst::InsertElementInst(Value *Val, Value *Elt, Value *Index,
const std::string &Name,
BasicBlock *InsertAE)
: Instruction(Val->getType(), InsertElement, Ops, 3, Name, InsertAE) {
Ops[0].init(Val, this);
Ops[1].init(Elt, this);
Ops[2].init(Index, this);
}
//===----------------------------------------------------------------------===//
// ShuffleVectorInst Implementation
//===----------------------------------------------------------------------===//
ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
const std::string &Name,
Instruction *InsertBefore)
: Instruction(V1->getType(), ShuffleVector, Ops, 3, Name, InsertBefore) {
assert(isValidOperands(V1, V2, Mask) &&
"Invalid shuffle vector instruction operands!");
Ops[0].init(V1, this);
Ops[1].init(V2, this);
Ops[2].init(Mask, this);
}
ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
const std::string &Name,
BasicBlock *InsertAtEnd)
: Instruction(V1->getType(), ShuffleVector, Ops, 3, Name, InsertAtEnd) {
assert(isValidOperands(V1, V2, Mask) &&
"Invalid shuffle vector instruction operands!");
Ops[0].init(V1, this);
Ops[1].init(V2, this);
Ops[2].init(Mask, this);
}
bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
const Value *Mask) {
if (!isa<PackedType>(V1->getType())) return false;
if (V1->getType() != V2->getType()) return false;
if (!isa<PackedType>(Mask->getType()) ||
cast<PackedType>(Mask->getType())->getElementType() != Type::UIntTy ||
cast<PackedType>(Mask->getType())->getNumElements() !=
cast<PackedType>(V1->getType())->getNumElements())
return false;
return true;
}
//===----------------------------------------------------------------------===//
// BinaryOperator Class
//===----------------------------------------------------------------------===//
void BinaryOperator::init(BinaryOps iType)
{
Value *LHS = getOperand(0), *RHS = getOperand(1);
assert(LHS->getType() == RHS->getType() &&
"Binary operator operand types must match!");
#ifndef NDEBUG
switch (iType) {
case Add: case Sub:
case Mul: case Div:
case Rem:
assert(getType() == LHS->getType() &&
"Arithmetic operation should return same type as operands!");
assert((getType()->isInteger() || getType()->isFloatingPoint() ||
isa<PackedType>(getType())) &&
"Tried to create an arithmetic operation on a non-arithmetic type!");
break;
case And: case Or:
case Xor:
assert(getType() == LHS->getType() &&
"Logical operation should return same type as operands!");
assert((getType()->isIntegral() ||
(isa<PackedType>(getType()) &&
cast<PackedType>(getType())->getElementType()->isIntegral())) &&
"Tried to create a logical operation on a non-integral type!");
break;
case SetLT: case SetGT: case SetLE:
case SetGE: case SetEQ: case SetNE:
assert(getType() == Type::BoolTy && "Setcc must return bool!");
default:
break;
}
#endif
}
BinaryOperator *BinaryOperator::create(BinaryOps Op, Value *S1, Value *S2,
const std::string &Name,
Instruction *InsertBefore) {
assert(S1->getType() == S2->getType() &&
"Cannot create binary operator with two operands of differing type!");
switch (Op) {
// Binary comparison operators...
case SetLT: case SetGT: case SetLE:
case SetGE: case SetEQ: case SetNE:
return new SetCondInst(Op, S1, S2, Name, InsertBefore);
default:
return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
}
}
BinaryOperator *BinaryOperator::create(BinaryOps Op, Value *S1, Value *S2,
const std::string &Name,
BasicBlock *InsertAtEnd) {
BinaryOperator *Res = create(Op, S1, S2, Name);
InsertAtEnd->getInstList().push_back(Res);
return Res;
}
BinaryOperator *BinaryOperator::createNeg(Value *Op, const std::string &Name,
Instruction *InsertBefore) {
if (!Op->getType()->isFloatingPoint())
return new BinaryOperator(Instruction::Sub,
Constant::getNullValue(Op->getType()), Op,
Op->getType(), Name, InsertBefore);
else
return new BinaryOperator(Instruction::Sub,
ConstantFP::get(Op->getType(), -0.0), Op,
Op->getType(), Name, InsertBefore);
}
BinaryOperator *BinaryOperator::createNeg(Value *Op, const std::string &Name,
BasicBlock *InsertAtEnd) {
if (!Op->getType()->isFloatingPoint())
return new BinaryOperator(Instruction::Sub,
Constant::getNullValue(Op->getType()), Op,
Op->getType(), Name, InsertAtEnd);
else
return new BinaryOperator(Instruction::Sub,
ConstantFP::get(Op->getType(), -0.0), Op,
Op->getType(), Name, InsertAtEnd);
}
BinaryOperator *BinaryOperator::createNot(Value *Op, const std::string &Name,
Instruction *InsertBefore) {
Constant *C;
if (const PackedType *PTy = dyn_cast<PackedType>(Op->getType())) {
C = ConstantIntegral::getAllOnesValue(PTy->getElementType());
C = ConstantPacked::get(std::vector<Constant*>(PTy->getNumElements(), C));
} else {
C = ConstantIntegral::getAllOnesValue(Op->getType());
}
return new BinaryOperator(Instruction::Xor, Op, C,
Op->getType(), Name, InsertBefore);
}
BinaryOperator *BinaryOperator::createNot(Value *Op, const std::string &Name,
BasicBlock *InsertAtEnd) {
Constant *AllOnes;
if (const PackedType *PTy = dyn_cast<PackedType>(Op->getType())) {
// Create a vector of all ones values.
Constant *Elt = ConstantIntegral::getAllOnesValue(PTy->getElementType());
AllOnes =
ConstantPacked::get(std::vector<Constant*>(PTy->getNumElements(), Elt));
} else {
AllOnes = ConstantIntegral::getAllOnesValue(Op->getType());
}
return new BinaryOperator(Instruction::Xor, Op, AllOnes,
Op->getType(), Name, InsertAtEnd);
}
// isConstantAllOnes - Helper function for several functions below
static inline bool isConstantAllOnes(const Value *V) {
return isa<ConstantIntegral>(V) &&cast<ConstantIntegral>(V)->isAllOnesValue();
}
bool BinaryOperator::isNeg(const Value *V) {
if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
if (Bop->getOpcode() == Instruction::Sub)
if (!V->getType()->isFloatingPoint())
return Bop->getOperand(0) == Constant::getNullValue(Bop->getType());
else
return Bop->getOperand(0) == ConstantFP::get(Bop->getType(), -0.0);
return false;
}
bool BinaryOperator::isNot(const Value *V) {
if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
return (Bop->getOpcode() == Instruction::Xor &&
(isConstantAllOnes(Bop->getOperand(1)) ||
isConstantAllOnes(Bop->getOperand(0))));
return false;
}
Value *BinaryOperator::getNegArgument(Value *BinOp) {
assert(isNeg(BinOp) && "getNegArgument from non-'neg' instruction!");
return cast<BinaryOperator>(BinOp)->getOperand(1);
}
const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
return getNegArgument(const_cast<Value*>(BinOp));
}
Value *BinaryOperator::getNotArgument(Value *BinOp) {
assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
BinaryOperator *BO = cast<BinaryOperator>(BinOp);
Value *Op0 = BO->getOperand(0);
Value *Op1 = BO->getOperand(1);
if (isConstantAllOnes(Op0)) return Op1;
assert(isConstantAllOnes(Op1));
return Op0;
}
const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
return getNotArgument(const_cast<Value*>(BinOp));
}
// swapOperands - Exchange the two operands to this instruction. This
// instruction is safe to use on any binary instruction and does not
// modify the semantics of the instruction. If the instruction is
// order dependent (SetLT f.e.) the opcode is changed.
//
bool BinaryOperator::swapOperands() {
if (isCommutative())
; // If the instruction is commutative, it is safe to swap the operands
else if (SetCondInst *SCI = dyn_cast<SetCondInst>(this))
/// FIXME: SetCC instructions shouldn't all have different opcodes.
setOpcode(SCI->getSwappedCondition());
else
return true; // Can't commute operands
std::swap(Ops[0], Ops[1]);
return false;
}
//===----------------------------------------------------------------------===//
// SetCondInst Class
//===----------------------------------------------------------------------===//
SetCondInst::SetCondInst(BinaryOps Opcode, Value *S1, Value *S2,
const std::string &Name, Instruction *InsertBefore)
: BinaryOperator(Opcode, S1, S2, Type::BoolTy, Name, InsertBefore) {
// Make sure it's a valid type... getInverseCondition will assert out if not.
assert(getInverseCondition(Opcode));
}
SetCondInst::SetCondInst(BinaryOps Opcode, Value *S1, Value *S2,
const std::string &Name, BasicBlock *InsertAtEnd)
: BinaryOperator(Opcode, S1, S2, Type::BoolTy, Name, InsertAtEnd) {
// Make sure it's a valid type... getInverseCondition will assert out if not.
assert(getInverseCondition(Opcode));
}
// getInverseCondition - Return the inverse of the current condition opcode.
// For example seteq -> setne, setgt -> setle, setlt -> setge, etc...
//
Instruction::BinaryOps SetCondInst::getInverseCondition(BinaryOps Opcode) {
switch (Opcode) {
default:
assert(0 && "Unknown setcc opcode!");
case SetEQ: return SetNE;
case SetNE: return SetEQ;
case SetGT: return SetLE;
case SetLT: return SetGE;
case SetGE: return SetLT;
case SetLE: return SetGT;
}
}
// getSwappedCondition - Return the condition opcode that would be the result
// of exchanging the two operands of the setcc instruction without changing
// the result produced. Thus, seteq->seteq, setle->setge, setlt->setgt, etc.
//
Instruction::BinaryOps SetCondInst::getSwappedCondition(BinaryOps Opcode) {
switch (Opcode) {
default: assert(0 && "Unknown setcc instruction!");
case SetEQ: case SetNE: return Opcode;
case SetGT: return SetLT;
case SetLT: return SetGT;
case SetGE: return SetLE;
case SetLE: return SetGE;
}
}
//===----------------------------------------------------------------------===//
// SwitchInst Implementation
//===----------------------------------------------------------------------===//
void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumCases) {
assert(Value && Default);
ReservedSpace = 2+NumCases*2;
NumOperands = 2;
OperandList = new Use[ReservedSpace];
OperandList[0].init(Value, this);
OperandList[1].init(Default, this);
}
SwitchInst::SwitchInst(const SwitchInst &SI)
: TerminatorInst(Instruction::Switch, new Use[SI.getNumOperands()],
SI.getNumOperands()) {
Use *OL = OperandList, *InOL = SI.OperandList;
for (unsigned i = 0, E = SI.getNumOperands(); i != E; i+=2) {
OL[i].init(InOL[i], this);
OL[i+1].init(InOL[i+1], this);
}
}
SwitchInst::~SwitchInst() {
delete [] OperandList;
}
/// addCase - Add an entry to the switch instruction...
///
void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
unsigned OpNo = NumOperands;
if (OpNo+2 > ReservedSpace)
resizeOperands(0); // Get more space!
// Initialize some new operands.
assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
NumOperands = OpNo+2;
OperandList[OpNo].init(OnVal, this);
OperandList[OpNo+1].init(Dest, this);
}
/// removeCase - This method removes the specified successor from the switch
/// instruction. Note that this cannot be used to remove the default
/// destination (successor #0).
///
void SwitchInst::removeCase(unsigned idx) {
assert(idx != 0 && "Cannot remove the default case!");
assert(idx*2 < getNumOperands() && "Successor index out of range!!!");
unsigned NumOps = getNumOperands();
Use *OL = OperandList;
// Move everything after this operand down.
//
// FIXME: we could just swap with the end of the list, then erase. However,
// client might not expect this to happen. The code as it is thrashes the
// use/def lists, which is kinda lame.
for (unsigned i = (idx+1)*2; i != NumOps; i += 2) {
OL[i-2] = OL[i];
OL[i-2+1] = OL[i+1];
}
// Nuke the last value.
OL[NumOps-2].set(0);
OL[NumOps-2+1].set(0);
NumOperands = NumOps-2;
}
/// resizeOperands - resize operands - This adjusts the length of the operands
/// list according to the following behavior:
/// 1. If NumOps == 0, grow the operand list in response to a push_back style
/// of operation. This grows the number of ops by 1.5 times.
/// 2. If NumOps > NumOperands, reserve space for NumOps operands.
/// 3. If NumOps == NumOperands, trim the reserved space.
///
void SwitchInst::resizeOperands(unsigned NumOps) {
if (NumOps == 0) {
NumOps = getNumOperands()/2*6;
} else if (NumOps*2 > NumOperands) {
// No resize needed.
if (ReservedSpace >= NumOps) return;
} else if (NumOps == NumOperands) {
if (ReservedSpace == NumOps) return;
} else {
return;
}
ReservedSpace = NumOps;
Use *NewOps = new Use[NumOps];
Use *OldOps = OperandList;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
NewOps[i].init(OldOps[i], this);
OldOps[i].set(0);
}
delete [] OldOps;
OperandList = NewOps;
}
BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
return getSuccessor(idx);
}
unsigned SwitchInst::getNumSuccessorsV() const {
return getNumSuccessors();
}
void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
setSuccessor(idx, B);
}
// Define these methods here so vtables don't get emitted into every translation
// unit that uses these classes.
GetElementPtrInst *GetElementPtrInst::clone() const {
return new GetElementPtrInst(*this);
}
BinaryOperator *BinaryOperator::clone() const {
return create(getOpcode(), Ops[0], Ops[1]);
}
MallocInst *MallocInst::clone() const { return new MallocInst(*this); }
AllocaInst *AllocaInst::clone() const { return new AllocaInst(*this); }
FreeInst *FreeInst::clone() const { return new FreeInst(getOperand(0)); }
LoadInst *LoadInst::clone() const { return new LoadInst(*this); }
StoreInst *StoreInst::clone() const { return new StoreInst(*this); }
CastInst *CastInst::clone() const { return new CastInst(*this); }
CallInst *CallInst::clone() const { return new CallInst(*this); }
ShiftInst *ShiftInst::clone() const { return new ShiftInst(*this); }
SelectInst *SelectInst::clone() const { return new SelectInst(*this); }
VAArgInst *VAArgInst::clone() const { return new VAArgInst(*this); }
ExtractElementInst *ExtractElementInst::clone() const {
return new ExtractElementInst(*this);
}
InsertElementInst *InsertElementInst::clone() const {
return new InsertElementInst(*this);
}
ShuffleVectorInst *ShuffleVectorInst::clone() const {
return new ShuffleVectorInst(*this);
}
PHINode *PHINode::clone() const { return new PHINode(*this); }
ReturnInst *ReturnInst::clone() const { return new ReturnInst(*this); }
BranchInst *BranchInst::clone() const { return new BranchInst(*this); }
SwitchInst *SwitchInst::clone() const { return new SwitchInst(*this); }
InvokeInst *InvokeInst::clone() const { return new InvokeInst(*this); }
UnwindInst *UnwindInst::clone() const { return new UnwindInst(); }
UnreachableInst *UnreachableInst::clone() const { return new UnreachableInst();}
|