1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
|
//===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is a utility pass used for testing the InstructionSimplify analysis.
// The analysis is applied to every instruction, and if it simplifies then the
// instruction is replaced by the simplification. If you are looking for a pass
// that performs serious instruction folding, use the instcombine pass instead.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
using namespace llvm;
/// This class is the abstract base class for the set of optimizations that
/// corresponds to one library call.
namespace {
class LibCallOptimization {
protected:
Function *Caller;
const DataLayout *TD;
const TargetLibraryInfo *TLI;
const LibCallSimplifier *LCS;
LLVMContext* Context;
public:
LibCallOptimization() { }
virtual ~LibCallOptimization() {}
/// callOptimizer - This pure virtual method is implemented by base classes to
/// do various optimizations. If this returns null then no transformation was
/// performed. If it returns CI, then it transformed the call and CI is to be
/// deleted. If it returns something else, replace CI with the new value and
/// delete CI.
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B)
=0;
Value *optimizeCall(CallInst *CI, const DataLayout *TD,
const TargetLibraryInfo *TLI,
const LibCallSimplifier *LCS, IRBuilder<> &B) {
Caller = CI->getParent()->getParent();
this->TD = TD;
this->TLI = TLI;
this->LCS = LCS;
if (CI->getCalledFunction())
Context = &CI->getCalledFunction()->getContext();
// We never change the calling convention.
if (CI->getCallingConv() != llvm::CallingConv::C)
return NULL;
return callOptimizer(CI->getCalledFunction(), CI, B);
}
};
//===----------------------------------------------------------------------===//
// Helper Functions
//===----------------------------------------------------------------------===//
/// isOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
/// value is equal or not-equal to zero.
static bool isOnlyUsedInZeroEqualityComparison(Value *V) {
for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
UI != E; ++UI) {
if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
if (IC->isEquality())
if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
if (C->isNullValue())
continue;
// Unknown instruction.
return false;
}
return true;
}
/// isOnlyUsedInEqualityComparison - Return true if it is only used in equality
/// comparisons with With.
static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
UI != E; ++UI) {
if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
if (IC->isEquality() && IC->getOperand(1) == With)
continue;
// Unknown instruction.
return false;
}
return true;
}
static bool callHasFloatingPointArgument(const CallInst *CI) {
for (CallInst::const_op_iterator it = CI->op_begin(), e = CI->op_end();
it != e; ++it) {
if ((*it)->getType()->isFloatingPointTy())
return true;
}
return false;
}
//===----------------------------------------------------------------------===//
// Fortified Library Call Optimizations
//===----------------------------------------------------------------------===//
struct FortifiedLibCallOptimization : public LibCallOptimization {
protected:
virtual bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp,
bool isString) const = 0;
};
struct InstFortifiedLibCallOptimization : public FortifiedLibCallOptimization {
CallInst *CI;
bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, bool isString) const {
if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp))
return true;
if (ConstantInt *SizeCI =
dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) {
if (SizeCI->isAllOnesValue())
return true;
if (isString) {
uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp));
// If the length is 0 we don't know how long it is and so we can't
// remove the check.
if (Len == 0) return false;
return SizeCI->getZExtValue() >= Len;
}
if (ConstantInt *Arg = dyn_cast<ConstantInt>(
CI->getArgOperand(SizeArgOp)))
return SizeCI->getZExtValue() >= Arg->getZExtValue();
}
return false;
}
};
struct MemCpyChkOpt : public InstFortifiedLibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
this->CI = CI;
FunctionType *FT = Callee->getFunctionType();
LLVMContext &Context = CI->getParent()->getContext();
// Check if this has the right signature.
if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy() ||
FT->getParamType(2) != TD->getIntPtrType(Context) ||
FT->getParamType(3) != TD->getIntPtrType(Context))
return 0;
if (isFoldable(3, 2, false)) {
B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
CI->getArgOperand(2), 1);
return CI->getArgOperand(0);
}
return 0;
}
};
struct MemMoveChkOpt : public InstFortifiedLibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
this->CI = CI;
FunctionType *FT = Callee->getFunctionType();
LLVMContext &Context = CI->getParent()->getContext();
// Check if this has the right signature.
if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy() ||
FT->getParamType(2) != TD->getIntPtrType(Context) ||
FT->getParamType(3) != TD->getIntPtrType(Context))
return 0;
if (isFoldable(3, 2, false)) {
B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
CI->getArgOperand(2), 1);
return CI->getArgOperand(0);
}
return 0;
}
};
struct MemSetChkOpt : public InstFortifiedLibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
this->CI = CI;
FunctionType *FT = Callee->getFunctionType();
LLVMContext &Context = CI->getParent()->getContext();
// Check if this has the right signature.
if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isIntegerTy() ||
FT->getParamType(2) != TD->getIntPtrType(Context) ||
FT->getParamType(3) != TD->getIntPtrType(Context))
return 0;
if (isFoldable(3, 2, false)) {
Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(),
false);
B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
return CI->getArgOperand(0);
}
return 0;
}
};
struct StrCpyChkOpt : public InstFortifiedLibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
this->CI = CI;
StringRef Name = Callee->getName();
FunctionType *FT = Callee->getFunctionType();
LLVMContext &Context = CI->getParent()->getContext();
// Check if this has the right signature.
if (FT->getNumParams() != 3 ||
FT->getReturnType() != FT->getParamType(0) ||
FT->getParamType(0) != FT->getParamType(1) ||
FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
FT->getParamType(2) != TD->getIntPtrType(Context))
return 0;
Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
if (Dst == Src) // __strcpy_chk(x,x) -> x
return Src;
// If a) we don't have any length information, or b) we know this will
// fit then just lower to a plain strcpy. Otherwise we'll keep our
// strcpy_chk call which may fail at runtime if the size is too long.
// TODO: It might be nice to get a maximum length out of the possible
// string lengths for varying.
if (isFoldable(2, 1, true)) {
Value *Ret = EmitStrCpy(Dst, Src, B, TD, TLI, Name.substr(2, 6));
return Ret;
} else {
// Maybe we can stil fold __strcpy_chk to __memcpy_chk.
uint64_t Len = GetStringLength(Src);
if (Len == 0) return 0;
// This optimization require DataLayout.
if (!TD) return 0;
Value *Ret =
EmitMemCpyChk(Dst, Src,
ConstantInt::get(TD->getIntPtrType(Context), Len),
CI->getArgOperand(2), B, TD, TLI);
return Ret;
}
return 0;
}
};
struct StpCpyChkOpt : public InstFortifiedLibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
this->CI = CI;
StringRef Name = Callee->getName();
FunctionType *FT = Callee->getFunctionType();
LLVMContext &Context = CI->getParent()->getContext();
// Check if this has the right signature.
if (FT->getNumParams() != 3 ||
FT->getReturnType() != FT->getParamType(0) ||
FT->getParamType(0) != FT->getParamType(1) ||
FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
FT->getParamType(2) != TD->getIntPtrType(FT->getParamType(0)))
return 0;
Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
Value *StrLen = EmitStrLen(Src, B, TD, TLI);
return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : 0;
}
// If a) we don't have any length information, or b) we know this will
// fit then just lower to a plain stpcpy. Otherwise we'll keep our
// stpcpy_chk call which may fail at runtime if the size is too long.
// TODO: It might be nice to get a maximum length out of the possible
// string lengths for varying.
if (isFoldable(2, 1, true)) {
Value *Ret = EmitStrCpy(Dst, Src, B, TD, TLI, Name.substr(2, 6));
return Ret;
} else {
// Maybe we can stil fold __stpcpy_chk to __memcpy_chk.
uint64_t Len = GetStringLength(Src);
if (Len == 0) return 0;
// This optimization require DataLayout.
if (!TD) return 0;
Type *PT = FT->getParamType(0);
Value *LenV = ConstantInt::get(TD->getIntPtrType(PT), Len);
Value *DstEnd = B.CreateGEP(Dst,
ConstantInt::get(TD->getIntPtrType(PT),
Len - 1));
if (!EmitMemCpyChk(Dst, Src, LenV, CI->getArgOperand(2), B, TD, TLI))
return 0;
return DstEnd;
}
return 0;
}
};
struct StrNCpyChkOpt : public InstFortifiedLibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
this->CI = CI;
StringRef Name = Callee->getName();
FunctionType *FT = Callee->getFunctionType();
LLVMContext &Context = CI->getParent()->getContext();
// Check if this has the right signature.
if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
FT->getParamType(0) != FT->getParamType(1) ||
FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
!FT->getParamType(2)->isIntegerTy() ||
FT->getParamType(3) != TD->getIntPtrType(Context))
return 0;
if (isFoldable(3, 2, false)) {
Value *Ret = EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
CI->getArgOperand(2), B, TD, TLI,
Name.substr(2, 7));
return Ret;
}
return 0;
}
};
//===----------------------------------------------------------------------===//
// String and Memory Library Call Optimizations
//===----------------------------------------------------------------------===//
struct StrCatOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strcat" function prototype.
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
FT->getReturnType() != B.getInt8PtrTy() ||
FT->getParamType(0) != FT->getReturnType() ||
FT->getParamType(1) != FT->getReturnType())
return 0;
// Extract some information from the instruction
Value *Dst = CI->getArgOperand(0);
Value *Src = CI->getArgOperand(1);
// See if we can get the length of the input string.
uint64_t Len = GetStringLength(Src);
if (Len == 0) return 0;
--Len; // Unbias length.
// Handle the simple, do-nothing case: strcat(x, "") -> x
if (Len == 0)
return Dst;
// These optimizations require DataLayout.
if (!TD) return 0;
return emitStrLenMemCpy(Src, Dst, Len, B);
}
Value *emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
IRBuilder<> &B) {
// We need to find the end of the destination string. That's where the
// memory is to be moved to. We just generate a call to strlen.
Value *DstLen = EmitStrLen(Dst, B, TD, TLI);
if (!DstLen)
return 0;
// Now that we have the destination's length, we must index into the
// destination's pointer to get the actual memcpy destination (end of
// the string .. we're concatenating).
Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr");
// We have enough information to now generate the memcpy call to do the
// concatenation for us. Make a memcpy to copy the nul byte with align = 1.
B.CreateMemCpy(CpyDst, Src,
ConstantInt::get(TD->getIntPtrType(*Context), Len + 1), 1);
return Dst;
}
};
struct StrNCatOpt : public StrCatOpt {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strncat" function prototype.
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 ||
FT->getReturnType() != B.getInt8PtrTy() ||
FT->getParamType(0) != FT->getReturnType() ||
FT->getParamType(1) != FT->getReturnType() ||
!FT->getParamType(2)->isIntegerTy())
return 0;
// Extract some information from the instruction
Value *Dst = CI->getArgOperand(0);
Value *Src = CI->getArgOperand(1);
uint64_t Len;
// We don't do anything if length is not constant
if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
Len = LengthArg->getZExtValue();
else
return 0;
// See if we can get the length of the input string.
uint64_t SrcLen = GetStringLength(Src);
if (SrcLen == 0) return 0;
--SrcLen; // Unbias length.
// Handle the simple, do-nothing cases:
// strncat(x, "", c) -> x
// strncat(x, c, 0) -> x
if (SrcLen == 0 || Len == 0) return Dst;
// These optimizations require DataLayout.
if (!TD) return 0;
// We don't optimize this case
if (Len < SrcLen) return 0;
// strncat(x, s, c) -> strcat(x, s)
// s is constant so the strcat can be optimized further
return emitStrLenMemCpy(Src, Dst, SrcLen, B);
}
};
struct StrChrOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strchr" function prototype.
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
FT->getReturnType() != B.getInt8PtrTy() ||
FT->getParamType(0) != FT->getReturnType() ||
!FT->getParamType(1)->isIntegerTy(32))
return 0;
Value *SrcStr = CI->getArgOperand(0);
// If the second operand is non-constant, see if we can compute the length
// of the input string and turn this into memchr.
ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
if (CharC == 0) {
// These optimizations require DataLayout.
if (!TD) return 0;
uint64_t Len = GetStringLength(SrcStr);
if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32))// memchr needs i32.
return 0;
return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
ConstantInt::get(TD->getIntPtrType(*Context), Len),
B, TD, TLI);
}
// Otherwise, the character is a constant, see if the first argument is
// a string literal. If so, we can constant fold.
StringRef Str;
if (!getConstantStringInfo(SrcStr, Str))
return 0;
// Compute the offset, make sure to handle the case when we're searching for
// zero (a weird way to spell strlen).
size_t I = CharC->getSExtValue() == 0 ?
Str.size() : Str.find(CharC->getSExtValue());
if (I == StringRef::npos) // Didn't find the char. strchr returns null.
return Constant::getNullValue(CI->getType());
// strchr(s+n,c) -> gep(s+n+i,c)
return B.CreateGEP(SrcStr, B.getInt64(I), "strchr");
}
};
struct StrRChrOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strrchr" function prototype.
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
FT->getReturnType() != B.getInt8PtrTy() ||
FT->getParamType(0) != FT->getReturnType() ||
!FT->getParamType(1)->isIntegerTy(32))
return 0;
Value *SrcStr = CI->getArgOperand(0);
ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
// Cannot fold anything if we're not looking for a constant.
if (!CharC)
return 0;
StringRef Str;
if (!getConstantStringInfo(SrcStr, Str)) {
// strrchr(s, 0) -> strchr(s, 0)
if (TD && CharC->isZero())
return EmitStrChr(SrcStr, '\0', B, TD, TLI);
return 0;
}
// Compute the offset.
size_t I = CharC->getSExtValue() == 0 ?
Str.size() : Str.rfind(CharC->getSExtValue());
if (I == StringRef::npos) // Didn't find the char. Return null.
return Constant::getNullValue(CI->getType());
// strrchr(s+n,c) -> gep(s+n+i,c)
return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr");
}
};
struct StrCmpOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strcmp" function prototype.
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
!FT->getReturnType()->isIntegerTy(32) ||
FT->getParamType(0) != FT->getParamType(1) ||
FT->getParamType(0) != B.getInt8PtrTy())
return 0;
Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
if (Str1P == Str2P) // strcmp(x,x) -> 0
return ConstantInt::get(CI->getType(), 0);
StringRef Str1, Str2;
bool HasStr1 = getConstantStringInfo(Str1P, Str1);
bool HasStr2 = getConstantStringInfo(Str2P, Str2);
// strcmp(x, y) -> cnst (if both x and y are constant strings)
if (HasStr1 && HasStr2)
return ConstantInt::get(CI->getType(), Str1.compare(Str2));
if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"),
CI->getType()));
if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
// strcmp(P, "x") -> memcmp(P, "x", 2)
uint64_t Len1 = GetStringLength(Str1P);
uint64_t Len2 = GetStringLength(Str2P);
if (Len1 && Len2) {
// These optimizations require DataLayout.
if (!TD) return 0;
return EmitMemCmp(Str1P, Str2P,
ConstantInt::get(TD->getIntPtrType(*Context),
std::min(Len1, Len2)), B, TD, TLI);
}
return 0;
}
};
struct StrNCmpOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strncmp" function prototype.
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 ||
!FT->getReturnType()->isIntegerTy(32) ||
FT->getParamType(0) != FT->getParamType(1) ||
FT->getParamType(0) != B.getInt8PtrTy() ||
!FT->getParamType(2)->isIntegerTy())
return 0;
Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
if (Str1P == Str2P) // strncmp(x,x,n) -> 0
return ConstantInt::get(CI->getType(), 0);
// Get the length argument if it is constant.
uint64_t Length;
if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
Length = LengthArg->getZExtValue();
else
return 0;
if (Length == 0) // strncmp(x,y,0) -> 0
return ConstantInt::get(CI->getType(), 0);
if (TD && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, TD, TLI);
StringRef Str1, Str2;
bool HasStr1 = getConstantStringInfo(Str1P, Str1);
bool HasStr2 = getConstantStringInfo(Str2P, Str2);
// strncmp(x, y) -> cnst (if both x and y are constant strings)
if (HasStr1 && HasStr2) {
StringRef SubStr1 = Str1.substr(0, Length);
StringRef SubStr2 = Str2.substr(0, Length);
return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
}
if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"),
CI->getType()));
if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
return 0;
}
};
struct StrCpyOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "strcpy" function prototype.
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
FT->getReturnType() != FT->getParamType(0) ||
FT->getParamType(0) != FT->getParamType(1) ||
FT->getParamType(0) != B.getInt8PtrTy())
return 0;
Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
if (Dst == Src) // strcpy(x,x) -> x
return Src;
// These optimizations require DataLayout.
if (!TD) return 0;
// See if we can get the length of the input string.
uint64_t Len = GetStringLength(Src);
if (Len == 0) return 0;
// We have enough information to now generate the memcpy call to do the
// copy for us. Make a memcpy to copy the nul byte with align = 1.
B.CreateMemCpy(Dst, Src,
ConstantInt::get(TD->getIntPtrType(*Context), Len), 1);
return Dst;
}
};
struct StpCpyOpt: public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Verify the "stpcpy" function prototype.
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
FT->getReturnType() != FT->getParamType(0) ||
FT->getParamType(0) != FT->getParamType(1) ||
FT->getParamType(0) != B.getInt8PtrTy())
return 0;
// These optimizations require DataLayout.
if (!TD) return 0;
Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
Value *StrLen = EmitStrLen(Src, B, TD, TLI);
return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : 0;
}
// See if we can get the length of the input string.
uint64_t Len = GetStringLength(Src);
if (Len == 0) return 0;
Type *PT = FT->getParamType(0);
Value *LenV = ConstantInt::get(TD->getIntPtrType(PT), Len);
Value *DstEnd = B.CreateGEP(Dst,
ConstantInt::get(TD->getIntPtrType(PT),
Len - 1));
// We have enough information to now generate the memcpy call to do the
// copy for us. Make a memcpy to copy the nul byte with align = 1.
B.CreateMemCpy(Dst, Src, LenV, 1);
return DstEnd;
}
};
struct StrNCpyOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
FT->getParamType(0) != FT->getParamType(1) ||
FT->getParamType(0) != B.getInt8PtrTy() ||
!FT->getParamType(2)->isIntegerTy())
return 0;
Value *Dst = CI->getArgOperand(0);
Value *Src = CI->getArgOperand(1);
Value *LenOp = CI->getArgOperand(2);
// See if we can get the length of the input string.
uint64_t SrcLen = GetStringLength(Src);
if (SrcLen == 0) return 0;
--SrcLen;
if (SrcLen == 0) {
// strncpy(x, "", y) -> memset(x, '\0', y, 1)
B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
return Dst;
}
uint64_t Len;
if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
Len = LengthArg->getZExtValue();
else
return 0;
if (Len == 0) return Dst; // strncpy(x, y, 0) -> x
// These optimizations require DataLayout.
if (!TD) return 0;
// Let strncpy handle the zero padding
if (Len > SrcLen+1) return 0;
Type *PT = FT->getParamType(0);
// strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
B.CreateMemCpy(Dst, Src,
ConstantInt::get(TD->getIntPtrType(PT), Len), 1);
return Dst;
}
};
struct StrLenOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 1 ||
FT->getParamType(0) != B.getInt8PtrTy() ||
!FT->getReturnType()->isIntegerTy())
return 0;
Value *Src = CI->getArgOperand(0);
// Constant folding: strlen("xyz") -> 3
if (uint64_t Len = GetStringLength(Src))
return ConstantInt::get(CI->getType(), Len-1);
// strlen(x) != 0 --> *x != 0
// strlen(x) == 0 --> *x == 0
if (isOnlyUsedInZeroEqualityComparison(CI))
return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
return 0;
}
};
struct StrPBrkOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
FT->getParamType(0) != B.getInt8PtrTy() ||
FT->getParamType(1) != FT->getParamType(0) ||
FT->getReturnType() != FT->getParamType(0))
return 0;
StringRef S1, S2;
bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
// strpbrk(s, "") -> NULL
// strpbrk("", s) -> NULL
if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
return Constant::getNullValue(CI->getType());
// Constant folding.
if (HasS1 && HasS2) {
size_t I = S1.find_first_of(S2);
if (I == std::string::npos) // No match.
return Constant::getNullValue(CI->getType());
return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I), "strpbrk");
}
// strpbrk(s, "a") -> strchr(s, 'a')
if (TD && HasS2 && S2.size() == 1)
return EmitStrChr(CI->getArgOperand(0), S2[0], B, TD, TLI);
return 0;
}
};
struct StrToOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
FunctionType *FT = Callee->getFunctionType();
if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
!FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy())
return 0;
Value *EndPtr = CI->getArgOperand(1);
if (isa<ConstantPointerNull>(EndPtr)) {
// With a null EndPtr, this function won't capture the main argument.
// It would be readonly too, except that it still may write to errno.
CI->addAttribute(1, Attribute::get(Callee->getContext(),
Attribute::NoCapture));
}
return 0;
}
};
struct StrSpnOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
FT->getParamType(0) != B.getInt8PtrTy() ||
FT->getParamType(1) != FT->getParamType(0) ||
!FT->getReturnType()->isIntegerTy())
return 0;
StringRef S1, S2;
bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
// strspn(s, "") -> 0
// strspn("", s) -> 0
if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
return Constant::getNullValue(CI->getType());
// Constant folding.
if (HasS1 && HasS2) {
size_t Pos = S1.find_first_not_of(S2);
if (Pos == StringRef::npos) Pos = S1.size();
return ConstantInt::get(CI->getType(), Pos);
}
return 0;
}
};
struct StrCSpnOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
FT->getParamType(0) != B.getInt8PtrTy() ||
FT->getParamType(1) != FT->getParamType(0) ||
!FT->getReturnType()->isIntegerTy())
return 0;
StringRef S1, S2;
bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
// strcspn("", s) -> 0
if (HasS1 && S1.empty())
return Constant::getNullValue(CI->getType());
// Constant folding.
if (HasS1 && HasS2) {
size_t Pos = S1.find_first_of(S2);
if (Pos == StringRef::npos) Pos = S1.size();
return ConstantInt::get(CI->getType(), Pos);
}
// strcspn(s, "") -> strlen(s)
if (TD && HasS2 && S2.empty())
return EmitStrLen(CI->getArgOperand(0), B, TD, TLI);
return 0;
}
};
struct StrStrOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 ||
!FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy() ||
!FT->getReturnType()->isPointerTy())
return 0;
// fold strstr(x, x) -> x.
if (CI->getArgOperand(0) == CI->getArgOperand(1))
return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
// fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
if (TD && isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, TD, TLI);
if (!StrLen)
return 0;
Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
StrLen, B, TD, TLI);
if (!StrNCmp)
return 0;
for (Value::use_iterator UI = CI->use_begin(), UE = CI->use_end();
UI != UE; ) {
ICmpInst *Old = cast<ICmpInst>(*UI++);
Value *Cmp = B.CreateICmp(Old->getPredicate(), StrNCmp,
ConstantInt::getNullValue(StrNCmp->getType()),
"cmp");
LCS->replaceAllUsesWith(Old, Cmp);
}
return CI;
}
// See if either input string is a constant string.
StringRef SearchStr, ToFindStr;
bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
// fold strstr(x, "") -> x.
if (HasStr2 && ToFindStr.empty())
return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
// If both strings are known, constant fold it.
if (HasStr1 && HasStr2) {
std::string::size_type Offset = SearchStr.find(ToFindStr);
if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
return Constant::getNullValue(CI->getType());
// strstr("abcd", "bc") -> gep((char*)"abcd", 1)
Value *Result = CastToCStr(CI->getArgOperand(0), B);
Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
return B.CreateBitCast(Result, CI->getType());
}
// fold strstr(x, "y") -> strchr(x, 'y').
if (HasStr2 && ToFindStr.size() == 1) {
Value *StrChr= EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TD, TLI);
return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : 0;
}
return 0;
}
};
struct MemCmpOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy() ||
!FT->getReturnType()->isIntegerTy(32))
return 0;
Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
if (LHS == RHS) // memcmp(s,s,x) -> 0
return Constant::getNullValue(CI->getType());
// Make sure we have a constant length.
ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
if (!LenC) return 0;
uint64_t Len = LenC->getZExtValue();
if (Len == 0) // memcmp(s1,s2,0) -> 0
return Constant::getNullValue(CI->getType());
// memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
if (Len == 1) {
Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"),
CI->getType(), "lhsv");
Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"),
CI->getType(), "rhsv");
return B.CreateSub(LHSV, RHSV, "chardiff");
}
// Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
StringRef LHSStr, RHSStr;
if (getConstantStringInfo(LHS, LHSStr) &&
getConstantStringInfo(RHS, RHSStr)) {
// Make sure we're not reading out-of-bounds memory.
if (Len > LHSStr.size() || Len > RHSStr.size())
return 0;
// Fold the memcmp and normalize the result. This way we get consistent
// results across multiple platforms.
uint64_t Ret = 0;
int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
if (Cmp < 0)
Ret = -1;
else if (Cmp > 0)
Ret = 1;
return ConstantInt::get(CI->getType(), Ret);
}
return 0;
}
};
struct MemCpyOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// These optimizations require DataLayout.
if (!TD) return 0;
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy() ||
FT->getParamType(2) != TD->getIntPtrType(*Context))
return 0;
// memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
CI->getArgOperand(2), 1);
return CI->getArgOperand(0);
}
};
struct MemMoveOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// These optimizations require DataLayout.
if (!TD) return 0;
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy() ||
FT->getParamType(2) != TD->getIntPtrType(*Context))
return 0;
// memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
CI->getArgOperand(2), 1);
return CI->getArgOperand(0);
}
};
struct MemSetOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// These optimizations require DataLayout.
if (!TD) return 0;
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isIntegerTy() ||
FT->getParamType(2) != TD->getIntPtrType(*Context))
return 0;
// memset(p, v, n) -> llvm.memset(p, v, n, 1)
Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
return CI->getArgOperand(0);
}
};
//===----------------------------------------------------------------------===//
// Math Library Optimizations
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
struct UnaryDoubleFPOpt : public LibCallOptimization {
bool CheckRetType;
UnaryDoubleFPOpt(bool CheckReturnType): CheckRetType(CheckReturnType) {}
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
!FT->getParamType(0)->isDoubleTy())
return 0;
if (CheckRetType) {
// Check if all the uses for function like 'sin' are converted to float.
for (Value::use_iterator UseI = CI->use_begin(); UseI != CI->use_end();
++UseI) {
FPTruncInst *Cast = dyn_cast<FPTruncInst>(*UseI);
if (Cast == 0 || !Cast->getType()->isFloatTy())
return 0;
}
}
// If this is something like 'floor((double)floatval)', convert to floorf.
FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0));
if (Cast == 0 || !Cast->getOperand(0)->getType()->isFloatTy())
return 0;
// floor((double)floatval) -> (double)floorf(floatval)
Value *V = Cast->getOperand(0);
V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
return B.CreateFPExt(V, B.getDoubleTy());
}
};
struct UnsafeFPLibCallOptimization : public LibCallOptimization {
bool UnsafeFPShrink;
UnsafeFPLibCallOptimization(bool UnsafeFPShrink) {
this->UnsafeFPShrink = UnsafeFPShrink;
}
};
struct CosOpt : public UnsafeFPLibCallOptimization {
CosOpt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Value *Ret = NULL;
if (UnsafeFPShrink && Callee->getName() == "cos" &&
TLI->has(LibFunc::cosf)) {
UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
}
FunctionType *FT = Callee->getFunctionType();
// Just make sure this has 1 argument of FP type, which matches the
// result type.
if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isFloatingPointTy())
return Ret;
// cos(-x) -> cos(x)
Value *Op1 = CI->getArgOperand(0);
if (BinaryOperator::isFNeg(Op1)) {
BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
}
return Ret;
}
};
struct PowOpt : public UnsafeFPLibCallOptimization {
PowOpt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Value *Ret = NULL;
if (UnsafeFPShrink && Callee->getName() == "pow" &&
TLI->has(LibFunc::powf)) {
UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
}
FunctionType *FT = Callee->getFunctionType();
// Just make sure this has 2 arguments of the same FP type, which match the
// result type.
if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
FT->getParamType(0) != FT->getParamType(1) ||
!FT->getParamType(0)->isFloatingPointTy())
return Ret;
Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
if (Op1C->isExactlyValue(1.0)) // pow(1.0, x) -> 1.0
return Op1C;
if (Op1C->isExactlyValue(2.0)) // pow(2.0, x) -> exp2(x)
return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes());
}
ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
if (Op2C == 0) return Ret;
if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
return ConstantFP::get(CI->getType(), 1.0);
if (Op2C->isExactlyValue(0.5)) {
// Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
// This is faster than calling pow, and still handles negative zero
// and negative infinity correctly.
// TODO: In fast-math mode, this could be just sqrt(x).
// TODO: In finite-only mode, this could be just fabs(sqrt(x)).
Value *Inf = ConstantFP::getInfinity(CI->getType());
Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B,
Callee->getAttributes());
Value *FAbs = EmitUnaryFloatFnCall(Sqrt, "fabs", B,
Callee->getAttributes());
Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
return Sel;
}
if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
return Op1;
if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
return B.CreateFMul(Op1, Op1, "pow2");
if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0),
Op1, "powrecip");
return 0;
}
};
struct Exp2Opt : public UnsafeFPLibCallOptimization {
Exp2Opt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Value *Ret = NULL;
if (UnsafeFPShrink && Callee->getName() == "exp2" &&
TLI->has(LibFunc::exp2)) {
UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
}
FunctionType *FT = Callee->getFunctionType();
// Just make sure this has 1 argument of FP type, which matches the
// result type.
if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isFloatingPointTy())
return Ret;
Value *Op = CI->getArgOperand(0);
// Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
// Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
Value *LdExpArg = 0;
if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
} else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
}
if (LdExpArg) {
const char *Name;
if (Op->getType()->isFloatTy())
Name = "ldexpf";
else if (Op->getType()->isDoubleTy())
Name = "ldexp";
else
Name = "ldexpl";
Constant *One = ConstantFP::get(*Context, APFloat(1.0f));
if (!Op->getType()->isFloatTy())
One = ConstantExpr::getFPExtend(One, Op->getType());
Module *M = Caller->getParent();
Value *Callee = M->getOrInsertFunction(Name, Op->getType(),
Op->getType(),
B.getInt32Ty(), NULL);
CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
CI->setCallingConv(F->getCallingConv());
return CI;
}
return Ret;
}
};
//===----------------------------------------------------------------------===//
// Integer Library Call Optimizations
//===----------------------------------------------------------------------===//
struct FFSOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
FunctionType *FT = Callee->getFunctionType();
// Just make sure this has 2 arguments of the same FP type, which match the
// result type.
if (FT->getNumParams() != 1 ||
!FT->getReturnType()->isIntegerTy(32) ||
!FT->getParamType(0)->isIntegerTy())
return 0;
Value *Op = CI->getArgOperand(0);
// Constant fold.
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
if (CI->isZero()) // ffs(0) -> 0.
return B.getInt32(0);
// ffs(c) -> cttz(c)+1
return B.getInt32(CI->getValue().countTrailingZeros() + 1);
}
// ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
Type *ArgType = Op->getType();
Value *F = Intrinsic::getDeclaration(Callee->getParent(),
Intrinsic::cttz, ArgType);
Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz");
V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
V = B.CreateIntCast(V, B.getInt32Ty(), false);
Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
return B.CreateSelect(Cond, V, B.getInt32(0));
}
};
struct AbsOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
FunctionType *FT = Callee->getFunctionType();
// We require integer(integer) where the types agree.
if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
FT->getParamType(0) != FT->getReturnType())
return 0;
// abs(x) -> x >s -1 ? x : -x
Value *Op = CI->getArgOperand(0);
Value *Pos = B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()),
"ispos");
Value *Neg = B.CreateNeg(Op, "neg");
return B.CreateSelect(Pos, Op, Neg);
}
};
struct IsDigitOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
FunctionType *FT = Callee->getFunctionType();
// We require integer(i32)
if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
!FT->getParamType(0)->isIntegerTy(32))
return 0;
// isdigit(c) -> (c-'0') <u 10
Value *Op = CI->getArgOperand(0);
Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
return B.CreateZExt(Op, CI->getType());
}
};
struct IsAsciiOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
FunctionType *FT = Callee->getFunctionType();
// We require integer(i32)
if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
!FT->getParamType(0)->isIntegerTy(32))
return 0;
// isascii(c) -> c <u 128
Value *Op = CI->getArgOperand(0);
Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
return B.CreateZExt(Op, CI->getType());
}
};
struct ToAsciiOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
FunctionType *FT = Callee->getFunctionType();
// We require i32(i32)
if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isIntegerTy(32))
return 0;
// toascii(c) -> c & 0x7f
return B.CreateAnd(CI->getArgOperand(0),
ConstantInt::get(CI->getType(),0x7F));
}
};
//===----------------------------------------------------------------------===//
// Formatting and IO Library Call Optimizations
//===----------------------------------------------------------------------===//
struct PrintFOpt : public LibCallOptimization {
Value *optimizeFixedFormatString(Function *Callee, CallInst *CI,
IRBuilder<> &B) {
// Check for a fixed format string.
StringRef FormatStr;
if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
return 0;
// Empty format string -> noop.
if (FormatStr.empty()) // Tolerate printf's declared void.
return CI->use_empty() ? (Value*)CI :
ConstantInt::get(CI->getType(), 0);
// Do not do any of the following transformations if the printf return value
// is used, in general the printf return value is not compatible with either
// putchar() or puts().
if (!CI->use_empty())
return 0;
// printf("x") -> putchar('x'), even for '%'.
if (FormatStr.size() == 1) {
Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, TD, TLI);
if (CI->use_empty() || !Res) return Res;
return B.CreateIntCast(Res, CI->getType(), true);
}
// printf("foo\n") --> puts("foo")
if (FormatStr[FormatStr.size()-1] == '\n' &&
FormatStr.find('%') == std::string::npos) { // no format characters.
// Create a string literal with no \n on it. We expect the constant merge
// pass to be run after this pass, to merge duplicate strings.
FormatStr = FormatStr.drop_back();
Value *GV = B.CreateGlobalString(FormatStr, "str");
Value *NewCI = EmitPutS(GV, B, TD, TLI);
return (CI->use_empty() || !NewCI) ?
NewCI :
ConstantInt::get(CI->getType(), FormatStr.size()+1);
}
// Optimize specific format strings.
// printf("%c", chr) --> putchar(chr)
if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
CI->getArgOperand(1)->getType()->isIntegerTy()) {
Value *Res = EmitPutChar(CI->getArgOperand(1), B, TD, TLI);
if (CI->use_empty() || !Res) return Res;
return B.CreateIntCast(Res, CI->getType(), true);
}
// printf("%s\n", str) --> puts(str)
if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
CI->getArgOperand(1)->getType()->isPointerTy()) {
return EmitPutS(CI->getArgOperand(1), B, TD, TLI);
}
return 0;
}
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Require one fixed pointer argument and an integer/void result.
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
!(FT->getReturnType()->isIntegerTy() ||
FT->getReturnType()->isVoidTy()))
return 0;
if (Value *V = optimizeFixedFormatString(Callee, CI, B)) {
return V;
}
// printf(format, ...) -> iprintf(format, ...) if no floating point
// arguments.
if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) {
Module *M = B.GetInsertBlock()->getParent()->getParent();
Constant *IPrintFFn =
M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
CallInst *New = cast<CallInst>(CI->clone());
New->setCalledFunction(IPrintFFn);
B.Insert(New);
return New;
}
return 0;
}
};
struct SPrintFOpt : public LibCallOptimization {
Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI,
IRBuilder<> &B) {
// Check for a fixed format string.
StringRef FormatStr;
if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
return 0;
// If we just have a format string (nothing else crazy) transform it.
if (CI->getNumArgOperands() == 2) {
// Make sure there's no % in the constant array. We could try to handle
// %% -> % in the future if we cared.
for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
if (FormatStr[i] == '%')
return 0; // we found a format specifier, bail out.
// These optimizations require DataLayout.
if (!TD) return 0;
// sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
ConstantInt::get(TD->getIntPtrType(*Context), // Copy the
FormatStr.size() + 1), 1); // nul byte.
return ConstantInt::get(CI->getType(), FormatStr.size());
}
// The remaining optimizations require the format string to be "%s" or "%c"
// and have an extra operand.
if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
CI->getNumArgOperands() < 3)
return 0;
// Decode the second character of the format string.
if (FormatStr[1] == 'c') {
// sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return 0;
Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
Value *Ptr = CastToCStr(CI->getArgOperand(0), B);
B.CreateStore(V, Ptr);
Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul");
B.CreateStore(B.getInt8(0), Ptr);
return ConstantInt::get(CI->getType(), 1);
}
if (FormatStr[1] == 's') {
// These optimizations require DataLayout.
if (!TD) return 0;
// sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
if (!CI->getArgOperand(2)->getType()->isPointerTy()) return 0;
Value *Len = EmitStrLen(CI->getArgOperand(2), B, TD, TLI);
if (!Len)
return 0;
Value *IncLen = B.CreateAdd(Len,
ConstantInt::get(Len->getType(), 1),
"leninc");
B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
// The sprintf result is the unincremented number of bytes in the string.
return B.CreateIntCast(Len, CI->getType(), false);
}
return 0;
}
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Require two fixed pointer arguments and an integer result.
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy() ||
!FT->getReturnType()->isIntegerTy())
return 0;
if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) {
return V;
}
// sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
// point arguments.
if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) {
Module *M = B.GetInsertBlock()->getParent()->getParent();
Constant *SIPrintFFn =
M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
CallInst *New = cast<CallInst>(CI->clone());
New->setCalledFunction(SIPrintFFn);
B.Insert(New);
return New;
}
return 0;
}
};
struct FPrintFOpt : public LibCallOptimization {
Value *optimizeFixedFormatString(Function *Callee, CallInst *CI,
IRBuilder<> &B) {
// All the optimizations depend on the format string.
StringRef FormatStr;
if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
return 0;
// fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
if (CI->getNumArgOperands() == 2) {
for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
return 0; // We found a format specifier.
// These optimizations require DataLayout.
if (!TD) return 0;
Value *NewCI = EmitFWrite(CI->getArgOperand(1),
ConstantInt::get(TD->getIntPtrType(*Context),
FormatStr.size()),
CI->getArgOperand(0), B, TD, TLI);
return NewCI ? ConstantInt::get(CI->getType(), FormatStr.size()) : 0;
}
// The remaining optimizations require the format string to be "%s" or "%c"
// and have an extra operand.
if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
CI->getNumArgOperands() < 3)
return 0;
// Decode the second character of the format string.
if (FormatStr[1] == 'c') {
// fprintf(F, "%c", chr) --> fputc(chr, F)
if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return 0;
Value *NewCI = EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B,
TD, TLI);
return NewCI ? ConstantInt::get(CI->getType(), 1) : 0;
}
if (FormatStr[1] == 's') {
// fprintf(F, "%s", str) --> fputs(str, F)
if (!CI->getArgOperand(2)->getType()->isPointerTy() || !CI->use_empty())
return 0;
return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TD, TLI);
}
return 0;
}
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Require two fixed paramters as pointers and integer result.
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy() ||
!FT->getReturnType()->isIntegerTy())
return 0;
if (Value *V = optimizeFixedFormatString(Callee, CI, B)) {
return V;
}
// fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
// floating point arguments.
if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) {
Module *M = B.GetInsertBlock()->getParent()->getParent();
Constant *FIPrintFFn =
M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
CallInst *New = cast<CallInst>(CI->clone());
New->setCalledFunction(FIPrintFFn);
B.Insert(New);
return New;
}
return 0;
}
};
struct FWriteOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Require a pointer, an integer, an integer, a pointer, returning integer.
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isIntegerTy() ||
!FT->getParamType(2)->isIntegerTy() ||
!FT->getParamType(3)->isPointerTy() ||
!FT->getReturnType()->isIntegerTy())
return 0;
// Get the element size and count.
ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
if (!SizeC || !CountC) return 0;
uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue();
// If this is writing zero records, remove the call (it's a noop).
if (Bytes == 0)
return ConstantInt::get(CI->getType(), 0);
// If this is writing one byte, turn it into fputc.
// This optimisation is only valid, if the return value is unused.
if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char");
Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, TD, TLI);
return NewCI ? ConstantInt::get(CI->getType(), 1) : 0;
}
return 0;
}
};
struct FPutsOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// These optimizations require DataLayout.
if (!TD) return 0;
// Require two pointers. Also, we can't optimize if return value is used.
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
!FT->getParamType(1)->isPointerTy() ||
!CI->use_empty())
return 0;
// fputs(s,F) --> fwrite(s,1,strlen(s),F)
uint64_t Len = GetStringLength(CI->getArgOperand(0));
if (!Len) return 0;
// Known to have no uses (see above).
return EmitFWrite(CI->getArgOperand(0),
ConstantInt::get(TD->getIntPtrType(*Context), Len-1),
CI->getArgOperand(1), B, TD, TLI);
}
};
struct PutsOpt : public LibCallOptimization {
virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
// Require one fixed pointer argument and an integer/void result.
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
!(FT->getReturnType()->isIntegerTy() ||
FT->getReturnType()->isVoidTy()))
return 0;
// Check for a constant string.
StringRef Str;
if (!getConstantStringInfo(CI->getArgOperand(0), Str))
return 0;
if (Str.empty() && CI->use_empty()) {
// puts("") -> putchar('\n')
Value *Res = EmitPutChar(B.getInt32('\n'), B, TD, TLI);
if (CI->use_empty() || !Res) return Res;
return B.CreateIntCast(Res, CI->getType(), true);
}
return 0;
}
};
} // End anonymous namespace.
namespace llvm {
class LibCallSimplifierImpl {
const DataLayout *TD;
const TargetLibraryInfo *TLI;
const LibCallSimplifier *LCS;
bool UnsafeFPShrink;
StringMap<LibCallOptimization*> Optimizations;
// Fortified library call optimizations.
MemCpyChkOpt MemCpyChk;
MemMoveChkOpt MemMoveChk;
MemSetChkOpt MemSetChk;
StrCpyChkOpt StrCpyChk;
StpCpyChkOpt StpCpyChk;
StrNCpyChkOpt StrNCpyChk;
// String library call optimizations.
StrCatOpt StrCat;
StrNCatOpt StrNCat;
StrChrOpt StrChr;
StrRChrOpt StrRChr;
StrCmpOpt StrCmp;
StrNCmpOpt StrNCmp;
StrCpyOpt StrCpy;
StpCpyOpt StpCpy;
StrNCpyOpt StrNCpy;
StrLenOpt StrLen;
StrPBrkOpt StrPBrk;
StrToOpt StrTo;
StrSpnOpt StrSpn;
StrCSpnOpt StrCSpn;
StrStrOpt StrStr;
// Memory library call optimizations.
MemCmpOpt MemCmp;
MemCpyOpt MemCpy;
MemMoveOpt MemMove;
MemSetOpt MemSet;
// Math library call optimizations.
UnaryDoubleFPOpt UnaryDoubleFP, UnsafeUnaryDoubleFP;
CosOpt Cos; PowOpt Pow; Exp2Opt Exp2;
// Integer library call optimizations.
FFSOpt FFS;
AbsOpt Abs;
IsDigitOpt IsDigit;
IsAsciiOpt IsAscii;
ToAsciiOpt ToAscii;
// Formatting and IO library call optimizations.
PrintFOpt PrintF;
SPrintFOpt SPrintF;
FPrintFOpt FPrintF;
FWriteOpt FWrite;
FPutsOpt FPuts;
PutsOpt Puts;
void initOptimizations();
void addOpt(LibFunc::Func F, LibCallOptimization* Opt);
void addOpt(LibFunc::Func F1, LibFunc::Func F2, LibCallOptimization* Opt);
public:
LibCallSimplifierImpl(const DataLayout *TD, const TargetLibraryInfo *TLI,
const LibCallSimplifier *LCS,
bool UnsafeFPShrink = false)
: UnaryDoubleFP(false), UnsafeUnaryDoubleFP(true),
Cos(UnsafeFPShrink), Pow(UnsafeFPShrink), Exp2(UnsafeFPShrink) {
this->TD = TD;
this->TLI = TLI;
this->LCS = LCS;
this->UnsafeFPShrink = UnsafeFPShrink;
}
Value *optimizeCall(CallInst *CI);
};
void LibCallSimplifierImpl::initOptimizations() {
// Fortified library call optimizations.
Optimizations["__memcpy_chk"] = &MemCpyChk;
Optimizations["__memmove_chk"] = &MemMoveChk;
Optimizations["__memset_chk"] = &MemSetChk;
Optimizations["__strcpy_chk"] = &StrCpyChk;
Optimizations["__stpcpy_chk"] = &StpCpyChk;
Optimizations["__strncpy_chk"] = &StrNCpyChk;
Optimizations["__stpncpy_chk"] = &StrNCpyChk;
// String library call optimizations.
addOpt(LibFunc::strcat, &StrCat);
addOpt(LibFunc::strncat, &StrNCat);
addOpt(LibFunc::strchr, &StrChr);
addOpt(LibFunc::strrchr, &StrRChr);
addOpt(LibFunc::strcmp, &StrCmp);
addOpt(LibFunc::strncmp, &StrNCmp);
addOpt(LibFunc::strcpy, &StrCpy);
addOpt(LibFunc::stpcpy, &StpCpy);
addOpt(LibFunc::strncpy, &StrNCpy);
addOpt(LibFunc::strlen, &StrLen);
addOpt(LibFunc::strpbrk, &StrPBrk);
addOpt(LibFunc::strtol, &StrTo);
addOpt(LibFunc::strtod, &StrTo);
addOpt(LibFunc::strtof, &StrTo);
addOpt(LibFunc::strtoul, &StrTo);
addOpt(LibFunc::strtoll, &StrTo);
addOpt(LibFunc::strtold, &StrTo);
addOpt(LibFunc::strtoull, &StrTo);
addOpt(LibFunc::strspn, &StrSpn);
addOpt(LibFunc::strcspn, &StrCSpn);
addOpt(LibFunc::strstr, &StrStr);
// Memory library call optimizations.
addOpt(LibFunc::memcmp, &MemCmp);
addOpt(LibFunc::memcpy, &MemCpy);
addOpt(LibFunc::memmove, &MemMove);
addOpt(LibFunc::memset, &MemSet);
// Math library call optimizations.
addOpt(LibFunc::ceil, LibFunc::ceilf, &UnaryDoubleFP);
addOpt(LibFunc::fabs, LibFunc::fabsf, &UnaryDoubleFP);
addOpt(LibFunc::floor, LibFunc::floorf, &UnaryDoubleFP);
addOpt(LibFunc::rint, LibFunc::rintf, &UnaryDoubleFP);
addOpt(LibFunc::round, LibFunc::roundf, &UnaryDoubleFP);
addOpt(LibFunc::nearbyint, LibFunc::nearbyintf, &UnaryDoubleFP);
addOpt(LibFunc::trunc, LibFunc::truncf, &UnaryDoubleFP);
if(UnsafeFPShrink) {
addOpt(LibFunc::acos, LibFunc::acosf, &UnsafeUnaryDoubleFP);
addOpt(LibFunc::acosh, LibFunc::acoshf, &UnsafeUnaryDoubleFP);
addOpt(LibFunc::asin, LibFunc::asinf, &UnsafeUnaryDoubleFP);
addOpt(LibFunc::asinh, LibFunc::asinhf, &UnsafeUnaryDoubleFP);
addOpt(LibFunc::atan, LibFunc::atanf, &UnsafeUnaryDoubleFP);
addOpt(LibFunc::atanh, LibFunc::atanhf, &UnsafeUnaryDoubleFP);
addOpt(LibFunc::cbrt, LibFunc::cbrtf, &UnsafeUnaryDoubleFP);
addOpt(LibFunc::cosh, LibFunc::coshf, &UnsafeUnaryDoubleFP);
addOpt(LibFunc::exp, LibFunc::expf, &UnsafeUnaryDoubleFP);
addOpt(LibFunc::exp10, LibFunc::exp10f, &UnsafeUnaryDoubleFP);
addOpt(LibFunc::expm1, LibFunc::expm1f, &UnsafeUnaryDoubleFP);
addOpt(LibFunc::log, LibFunc::logf, &UnsafeUnaryDoubleFP);
addOpt(LibFunc::log10, LibFunc::log10f, &UnsafeUnaryDoubleFP);
addOpt(LibFunc::log1p, LibFunc::log1pf, &UnsafeUnaryDoubleFP);
addOpt(LibFunc::log2, LibFunc::log2f, &UnsafeUnaryDoubleFP);
addOpt(LibFunc::logb, LibFunc::logbf, &UnsafeUnaryDoubleFP);
addOpt(LibFunc::sin, LibFunc::sinf, &UnsafeUnaryDoubleFP);
addOpt(LibFunc::sinh, LibFunc::sinhf, &UnsafeUnaryDoubleFP);
addOpt(LibFunc::sqrt, LibFunc::sqrtf, &UnsafeUnaryDoubleFP);
addOpt(LibFunc::tan, LibFunc::tanf, &UnsafeUnaryDoubleFP);
addOpt(LibFunc::tanh, LibFunc::tanhf, &UnsafeUnaryDoubleFP);
}
addOpt(LibFunc::cosf, &Cos);
addOpt(LibFunc::cos, &Cos);
addOpt(LibFunc::cosl, &Cos);
addOpt(LibFunc::powf, &Pow);
addOpt(LibFunc::pow, &Pow);
addOpt(LibFunc::powl, &Pow);
Optimizations["llvm.pow.f32"] = &Pow;
Optimizations["llvm.pow.f64"] = &Pow;
Optimizations["llvm.pow.f80"] = &Pow;
Optimizations["llvm.pow.f128"] = &Pow;
Optimizations["llvm.pow.ppcf128"] = &Pow;
addOpt(LibFunc::exp2l, &Exp2);
addOpt(LibFunc::exp2, &Exp2);
addOpt(LibFunc::exp2f, &Exp2);
Optimizations["llvm.exp2.ppcf128"] = &Exp2;
Optimizations["llvm.exp2.f128"] = &Exp2;
Optimizations["llvm.exp2.f80"] = &Exp2;
Optimizations["llvm.exp2.f64"] = &Exp2;
Optimizations["llvm.exp2.f32"] = &Exp2;
// Integer library call optimizations.
addOpt(LibFunc::ffs, &FFS);
addOpt(LibFunc::ffsl, &FFS);
addOpt(LibFunc::ffsll, &FFS);
addOpt(LibFunc::abs, &Abs);
addOpt(LibFunc::labs, &Abs);
addOpt(LibFunc::llabs, &Abs);
addOpt(LibFunc::isdigit, &IsDigit);
addOpt(LibFunc::isascii, &IsAscii);
addOpt(LibFunc::toascii, &ToAscii);
// Formatting and IO library call optimizations.
addOpt(LibFunc::printf, &PrintF);
addOpt(LibFunc::sprintf, &SPrintF);
addOpt(LibFunc::fprintf, &FPrintF);
addOpt(LibFunc::fwrite, &FWrite);
addOpt(LibFunc::fputs, &FPuts);
addOpt(LibFunc::puts, &Puts);
}
Value *LibCallSimplifierImpl::optimizeCall(CallInst *CI) {
if (Optimizations.empty())
initOptimizations();
Function *Callee = CI->getCalledFunction();
LibCallOptimization *LCO = Optimizations.lookup(Callee->getName());
if (LCO) {
IRBuilder<> Builder(CI);
return LCO->optimizeCall(CI, TD, TLI, LCS, Builder);
}
return 0;
}
void LibCallSimplifierImpl::addOpt(LibFunc::Func F, LibCallOptimization* Opt) {
if (TLI->has(F))
Optimizations[TLI->getName(F)] = Opt;
}
void LibCallSimplifierImpl::addOpt(LibFunc::Func F1, LibFunc::Func F2,
LibCallOptimization* Opt) {
if (TLI->has(F1) && TLI->has(F2))
Optimizations[TLI->getName(F1)] = Opt;
}
LibCallSimplifier::LibCallSimplifier(const DataLayout *TD,
const TargetLibraryInfo *TLI,
bool UnsafeFPShrink) {
Impl = new LibCallSimplifierImpl(TD, TLI, this, UnsafeFPShrink);
}
LibCallSimplifier::~LibCallSimplifier() {
delete Impl;
}
Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
return Impl->optimizeCall(CI);
}
void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) const {
I->replaceAllUsesWith(With);
I->eraseFromParent();
}
}
|