aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/Utils/SimplifyIndVar.cpp
blob: 41c207c3d5cb9c428fd93269ac995b647b3a2998 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
//===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements induction variable simplification. It does
// not define any actual pass or policy, but provides a single function to
// simplify a loop's induction variables based on ScalarEvolution.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "indvars"

#include "llvm/Transforms/Utils/SimplifyIndVar.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/IVUsers.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Instructions.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
STATISTIC(NumElimOperand,  "Number of IV operands folded into a use");
STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");

namespace {
  /// SimplifyIndvar - This is a utility for simplifying induction variables
  /// based on ScalarEvolution. It is the primary instrument of the
  /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
  /// other loop passes that preserve SCEV.
  class SimplifyIndvar {
    Loop             *L;
    LoopInfo         *LI;
    ScalarEvolution  *SE;
    const DataLayout *TD; // May be NULL

    SmallVectorImpl<WeakVH> &DeadInsts;

    bool Changed;

  public:
    SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, LPPassManager *LPM,
                   SmallVectorImpl<WeakVH> &Dead, IVUsers *IVU = NULL) :
      L(Loop),
      LI(LPM->getAnalysisIfAvailable<LoopInfo>()),
      SE(SE),
      TD(LPM->getAnalysisIfAvailable<DataLayout>()),
      DeadInsts(Dead),
      Changed(false) {
      assert(LI && "IV simplification requires LoopInfo");
    }

    bool hasChanged() const { return Changed; }

    /// Iteratively perform simplification on a worklist of users of the
    /// specified induction variable. This is the top-level driver that applies
    /// all simplicitions to users of an IV.
    void simplifyUsers(PHINode *CurrIV, IVVisitor *V = NULL);

    Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);

    bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
    void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
    void eliminateIVRemainder(BinaryOperator *Rem, Value *IVOperand,
                              bool IsSigned);
  };
}

/// foldIVUser - Fold an IV operand into its use.  This removes increments of an
/// aligned IV when used by a instruction that ignores the low bits.
///
/// IVOperand is guaranteed SCEVable, but UseInst may not be.
///
/// Return the operand of IVOperand for this induction variable if IVOperand can
/// be folded (in case more folding opportunities have been exposed).
/// Otherwise return null.
Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
  Value *IVSrc = 0;
  unsigned OperIdx = 0;
  const SCEV *FoldedExpr = 0;
  switch (UseInst->getOpcode()) {
  default:
    return 0;
  case Instruction::UDiv:
  case Instruction::LShr:
    // We're only interested in the case where we know something about
    // the numerator and have a constant denominator.
    if (IVOperand != UseInst->getOperand(OperIdx) ||
        !isa<ConstantInt>(UseInst->getOperand(1)))
      return 0;

    // Attempt to fold a binary operator with constant operand.
    // e.g. ((I + 1) >> 2) => I >> 2
    if (!isa<BinaryOperator>(IVOperand)
        || !isa<ConstantInt>(IVOperand->getOperand(1)))
      return 0;

    IVSrc = IVOperand->getOperand(0);
    // IVSrc must be the (SCEVable) IV, since the other operand is const.
    assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");

    ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
    if (UseInst->getOpcode() == Instruction::LShr) {
      // Get a constant for the divisor. See createSCEV.
      uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
      if (D->getValue().uge(BitWidth))
        return 0;

      D = ConstantInt::get(UseInst->getContext(),
                           APInt(BitWidth, 1).shl(D->getZExtValue()));
    }
    FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D));
  }
  // We have something that might fold it's operand. Compare SCEVs.
  if (!SE->isSCEVable(UseInst->getType()))
    return 0;

  // Bypass the operand if SCEV can prove it has no effect.
  if (SE->getSCEV(UseInst) != FoldedExpr)
    return 0;

  DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
        << " -> " << *UseInst << '\n');

  UseInst->setOperand(OperIdx, IVSrc);
  assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");

  ++NumElimOperand;
  Changed = true;
  if (IVOperand->use_empty())
    DeadInsts.push_back(IVOperand);
  return IVSrc;
}

/// eliminateIVComparison - SimplifyIVUsers helper for eliminating useless
/// comparisons against an induction variable.
void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
  unsigned IVOperIdx = 0;
  ICmpInst::Predicate Pred = ICmp->getPredicate();
  if (IVOperand != ICmp->getOperand(0)) {
    // Swapped
    assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
    IVOperIdx = 1;
    Pred = ICmpInst::getSwappedPredicate(Pred);
  }

  // Get the SCEVs for the ICmp operands.
  const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx));
  const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx));

  // Simplify unnecessary loops away.
  const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
  S = SE->getSCEVAtScope(S, ICmpLoop);
  X = SE->getSCEVAtScope(X, ICmpLoop);

  // If the condition is always true or always false, replace it with
  // a constant value.
  if (SE->isKnownPredicate(Pred, S, X))
    ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
  else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X))
    ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
  else
    return;

  DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
  ++NumElimCmp;
  Changed = true;
  DeadInsts.push_back(ICmp);
}

/// eliminateIVRemainder - SimplifyIVUsers helper for eliminating useless
/// remainder operations operating on an induction variable.
void SimplifyIndvar::eliminateIVRemainder(BinaryOperator *Rem,
                                      Value *IVOperand,
                                      bool IsSigned) {
  // We're only interested in the case where we know something about
  // the numerator.
  if (IVOperand != Rem->getOperand(0))
    return;

  // Get the SCEVs for the ICmp operands.
  const SCEV *S = SE->getSCEV(Rem->getOperand(0));
  const SCEV *X = SE->getSCEV(Rem->getOperand(1));

  // Simplify unnecessary loops away.
  const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
  S = SE->getSCEVAtScope(S, ICmpLoop);
  X = SE->getSCEVAtScope(X, ICmpLoop);

  // i % n  -->  i  if i is in [0,n).
  if ((!IsSigned || SE->isKnownNonNegative(S)) &&
      SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
                           S, X))
    Rem->replaceAllUsesWith(Rem->getOperand(0));
  else {
    // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
    const SCEV *LessOne =
      SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1));
    if (IsSigned && !SE->isKnownNonNegative(LessOne))
      return;

    if (!SE->isKnownPredicate(IsSigned ?
                              ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
                              LessOne, X))
      return;

    ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ,
                                  Rem->getOperand(0), Rem->getOperand(1));
    SelectInst *Sel =
      SelectInst::Create(ICmp,
                         ConstantInt::get(Rem->getType(), 0),
                         Rem->getOperand(0), "tmp", Rem);
    Rem->replaceAllUsesWith(Sel);
  }

  DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
  ++NumElimRem;
  Changed = true;
  DeadInsts.push_back(Rem);
}

/// eliminateIVUser - Eliminate an operation that consumes a simple IV and has
/// no observable side-effect given the range of IV values.
/// IVOperand is guaranteed SCEVable, but UseInst may not be.
bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
                                     Instruction *IVOperand) {
  if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
    eliminateIVComparison(ICmp, IVOperand);
    return true;
  }
  if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
    bool IsSigned = Rem->getOpcode() == Instruction::SRem;
    if (IsSigned || Rem->getOpcode() == Instruction::URem) {
      eliminateIVRemainder(Rem, IVOperand, IsSigned);
      return true;
    }
  }

  // Eliminate any operation that SCEV can prove is an identity function.
  if (!SE->isSCEVable(UseInst->getType()) ||
      (UseInst->getType() != IVOperand->getType()) ||
      (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
    return false;

  DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');

  UseInst->replaceAllUsesWith(IVOperand);
  ++NumElimIdentity;
  Changed = true;
  DeadInsts.push_back(UseInst);
  return true;
}

/// pushIVUsers - Add all uses of Def to the current IV's worklist.
///
static void pushIVUsers(
  Instruction *Def,
  SmallPtrSet<Instruction*,16> &Simplified,
  SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {

  for (Value::use_iterator UI = Def->use_begin(), E = Def->use_end();
       UI != E; ++UI) {
    Instruction *User = cast<Instruction>(*UI);

    // Avoid infinite or exponential worklist processing.
    // Also ensure unique worklist users.
    // If Def is a LoopPhi, it may not be in the Simplified set, so check for
    // self edges first.
    if (User != Def && Simplified.insert(User))
      SimpleIVUsers.push_back(std::make_pair(User, Def));
  }
}

/// isSimpleIVUser - Return true if this instruction generates a simple SCEV
/// expression in terms of that IV.
///
/// This is similar to IVUsers' isInteresting() but processes each instruction
/// non-recursively when the operand is already known to be a simpleIVUser.
///
static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
  if (!SE->isSCEVable(I->getType()))
    return false;

  // Get the symbolic expression for this instruction.
  const SCEV *S = SE->getSCEV(I);

  // Only consider affine recurrences.
  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
  if (AR && AR->getLoop() == L)
    return true;

  return false;
}

/// simplifyUsers - Iteratively perform simplification on a worklist of users
/// of the specified induction variable. Each successive simplification may push
/// more users which may themselves be candidates for simplification.
///
/// This algorithm does not require IVUsers analysis. Instead, it simplifies
/// instructions in-place during analysis. Rather than rewriting induction
/// variables bottom-up from their users, it transforms a chain of IVUsers
/// top-down, updating the IR only when it encouters a clear optimization
/// opportunitiy.
///
/// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
///
void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
  if (!SE->isSCEVable(CurrIV->getType()))
    return;

  // Instructions processed by SimplifyIndvar for CurrIV.
  SmallPtrSet<Instruction*,16> Simplified;

  // Use-def pairs if IV users waiting to be processed for CurrIV.
  SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;

  // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
  // called multiple times for the same LoopPhi. This is the proper thing to
  // do for loop header phis that use each other.
  pushIVUsers(CurrIV, Simplified, SimpleIVUsers);

  while (!SimpleIVUsers.empty()) {
    std::pair<Instruction*, Instruction*> UseOper =
      SimpleIVUsers.pop_back_val();
    // Bypass back edges to avoid extra work.
    if (UseOper.first == CurrIV) continue;

    Instruction *IVOperand = UseOper.second;
    for (unsigned N = 0; IVOperand; ++N) {
      assert(N <= Simplified.size() && "runaway iteration");

      Value *NewOper = foldIVUser(UseOper.first, IVOperand);
      if (!NewOper)
        break; // done folding
      IVOperand = dyn_cast<Instruction>(NewOper);
    }
    if (!IVOperand)
      continue;

    if (eliminateIVUser(UseOper.first, IVOperand)) {
      pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
      continue;
    }
    CastInst *Cast = dyn_cast<CastInst>(UseOper.first);
    if (V && Cast) {
      V->visitCast(Cast);
      continue;
    }
    if (isSimpleIVUser(UseOper.first, L, SE)) {
      pushIVUsers(UseOper.first, Simplified, SimpleIVUsers);
    }
  }
}

namespace llvm {

void IVVisitor::anchor() { }

/// simplifyUsersOfIV - Simplify instructions that use this induction variable
/// by using ScalarEvolution to analyze the IV's recurrence.
bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, LPPassManager *LPM,
                       SmallVectorImpl<WeakVH> &Dead, IVVisitor *V)
{
  LoopInfo *LI = &LPM->getAnalysis<LoopInfo>();
  SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, LPM, Dead);
  SIV.simplifyUsers(CurrIV, V);
  return SIV.hasChanged();
}

/// simplifyLoopIVs - Simplify users of induction variables within this
/// loop. This does not actually change or add IVs.
bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, LPPassManager *LPM,
                     SmallVectorImpl<WeakVH> &Dead) {
  bool Changed = false;
  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
    Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, LPM, Dead);
  }
  return Changed;
}

} // namespace llvm