1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
|
//===- PromoteMemoryToRegister.cpp - Convert memory refs to regs ----------===//
//
// This file is used to promote memory references to be register references. A
// simple example of the transformation performed by this function is:
//
// FROM CODE TO CODE
// %X = alloca int, uint 1 ret int 42
// store int 42, int *%X
// %Y = load int* %X
// ret int %Y
//
// The code is transformed by looping over all of the alloca instruction,
// calculating dominator frontiers, then inserting phi-nodes following the usual
// SSA construction algorithm. This code does not modify the CFG of the
// function.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/iMemory.h"
#include "llvm/iPHINode.h"
#include "llvm/iTerminators.h"
#include "llvm/Function.h"
#include "llvm/Constant.h"
#include "llvm/Type.h"
#include "llvm/Support/CFG.h"
#include "Support/StringExtras.h"
/// isAllocaPromotable - Return true if this alloca is legal for promotion.
/// This is true if there are only loads and stores to the alloca...
///
bool isAllocaPromotable(const AllocaInst *AI, const TargetData &TD) {
// FIXME: If the memory unit is of pointer or integer type, we can permit
// assignments to subsections of the memory unit.
// Only allow direct loads and stores...
for (Value::use_const_iterator UI = AI->use_begin(), UE = AI->use_end();
UI != UE; ++UI) // Loop over all of the uses of the alloca
if (!isa<LoadInst>(*UI))
if (const StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
if (SI->getOperand(0) == AI)
return false; // Don't allow a store of the AI, only INTO the AI.
} else {
return false; // Not a load or store?
}
return true;
}
namespace {
struct PromoteMem2Reg {
const std::vector<AllocaInst*> &Allocas; // the alloca instructions..
std::vector<unsigned> VersionNumbers; // Current version counters
DominanceFrontier &DF;
const TargetData &TD;
std::map<Instruction*, unsigned> AllocaLookup; // reverse mapping of above
std::vector<std::vector<BasicBlock*> > PhiNodes;// Idx corresponds 2 Allocas
// NewPhiNodes - The PhiNodes we're adding.
std::map<BasicBlock*, std::vector<PHINode*> > NewPhiNodes;
// Visited - The set of basic blocks the renamer has already visited.
std::set<BasicBlock*> Visited;
public:
PromoteMem2Reg(const std::vector<AllocaInst*> &A, DominanceFrontier &df,
const TargetData &td) : Allocas(A), DF(df), TD(td) {}
void run();
private:
void RenamePass(BasicBlock *BB, BasicBlock *Pred,
std::vector<Value*> &IncVals);
bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx);
};
} // end of anonymous namespace
void PromoteMem2Reg::run() {
Function &F = *DF.getRoot()->getParent();
VersionNumbers.resize(Allocas.size());
for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
assert(isAllocaPromotable(Allocas[i], TD) &&
"Cannot promote non-promotable alloca!");
assert(Allocas[i]->getParent()->getParent() == &F &&
"All allocas should be in the same function, which is same as DF!");
AllocaLookup[Allocas[i]] = i;
}
// Calculate the set of write-locations for each alloca. This is analogous to
// counting the number of 'redefinitions' of each variable.
std::vector<std::vector<BasicBlock*> > WriteSets;// Idx corresponds to Allocas
WriteSets.resize(Allocas.size());
for (unsigned i = 0; i != Allocas.size(); ++i) {
AllocaInst *AI = Allocas[i];
for (Value::use_iterator U =AI->use_begin(), E = AI->use_end(); U != E; ++U)
if (StoreInst *SI = dyn_cast<StoreInst>(*U))
// jot down the basic-block it came from
WriteSets[i].push_back(SI->getParent());
}
// Compute the locations where PhiNodes need to be inserted. Look at the
// dominance frontier of EACH basic-block we have a write in
//
PhiNodes.resize(Allocas.size());
for (unsigned i = 0; i != Allocas.size(); ++i) {
for (unsigned j = 0; j != WriteSets[i].size(); j++) {
// Look up the DF for this write, add it to PhiNodes
DominanceFrontier::const_iterator it = DF.find(WriteSets[i][j]);
if (it != DF.end()) {
const DominanceFrontier::DomSetType &S = it->second;
for (DominanceFrontier::DomSetType::iterator P = S.begin(),PE = S.end();
P != PE; ++P)
QueuePhiNode(*P, i);
}
}
// Perform iterative step
for (unsigned k = 0; k != PhiNodes[i].size(); k++) {
DominanceFrontier::const_iterator it = DF.find(PhiNodes[i][k]);
if (it != DF.end()) {
const DominanceFrontier::DomSetType &S = it->second;
for (DominanceFrontier::DomSetType::iterator P = S.begin(),PE = S.end();
P != PE; ++P)
QueuePhiNode(*P, i);
}
}
}
// Set the incoming values for the basic block to be null values for all of
// the alloca's. We do this in case there is a load of a value that has not
// been stored yet. In this case, it will get this null value.
//
std::vector<Value *> Values(Allocas.size());
for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
Values[i] = Constant::getNullValue(Allocas[i]->getAllocatedType());
// Walks all basic blocks in the function performing the SSA rename algorithm
// and inserting the phi nodes we marked as necessary
//
RenamePass(F.begin(), 0, Values);
Visited.clear();
// Remove the allocas themselves from the function...
for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
Instruction *A = Allocas[i];
// If there are any uses of the alloca instructions left, they must be in
// sections of dead code that were not processed on the dominance frontier.
// Just delete the users now.
//
if (!A->use_empty())
A->replaceAllUsesWith(Constant::getNullValue(A->getType()));
A->getParent()->getInstList().erase(A);
}
}
// QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
// Alloca returns true if there wasn't already a phi-node for that variable
//
bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo) {
// Look up the basic-block in question
std::vector<PHINode*> &BBPNs = NewPhiNodes[BB];
if (BBPNs.empty()) BBPNs.resize(Allocas.size());
// If the BB already has a phi node added for the i'th alloca then we're done!
if (BBPNs[AllocaNo]) return false;
// Create a PhiNode using the dereferenced type... and add the phi-node to the
// BasicBlock.
PHINode *PN = new PHINode(Allocas[AllocaNo]->getAllocatedType(),
Allocas[AllocaNo]->getName() + "." +
utostr(VersionNumbers[AllocaNo]++),
BB->begin());
// Add null incoming values for all predecessors. This ensures that if one of
// the predecessors is not found in the depth-first traversal of the CFG (ie,
// because it is an unreachable predecessor), that all PHI nodes will have the
// correct number of entries for their predecessors.
Value *NullVal = Constant::getNullValue(PN->getType());
// This is necessary because adding incoming values to the PHI node adds uses
// to the basic blocks being used, which can invalidate the predecessor
// iterator!
std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
for (unsigned i = 0, e = Preds.size(); i != e; ++i)
PN->addIncoming(NullVal, Preds[i]);
BBPNs[AllocaNo] = PN;
PhiNodes[AllocaNo].push_back(BB);
return true;
}
void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
std::vector<Value*> &IncomingVals) {
// If this is a BB needing a phi node, lookup/create the phinode for each
// variable we need phinodes for.
std::vector<PHINode *> &BBPNs = NewPhiNodes[BB];
for (unsigned k = 0; k != BBPNs.size(); ++k)
if (PHINode *PN = BBPNs[k]) {
// The PHI node may have multiple entries for this predecessor. We must
// make sure we update all of them.
for (unsigned i = 0, e = PN->getNumOperands(); i != e; i += 2) {
if (PN->getOperand(i+1) == Pred)
// At this point we can assume that the array has phi nodes.. let's
// update the incoming data.
PN->setOperand(i, IncomingVals[k]);
}
// also note that the active variable IS designated by the phi node
IncomingVals[k] = PN
|