1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
|
//===- Mem2Reg.cpp - The -mem2reg pass, a wrapper around the Utils lib ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass is a simple pass wrapper around the PromoteMemToReg function call
// exposed by the Utils library.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "mem2reg"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Instructions.h"
#include "llvm/Function.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
using namespace llvm;
STATISTIC(NumPromoted, "Number of alloca's promoted");
namespace {
struct VISIBILITY_HIDDEN PromotePass : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
PromotePass() : FunctionPass(&ID) {}
// runOnFunction - To run this pass, first we calculate the alloca
// instructions that are safe for promotion, then we promote each one.
//
virtual bool runOnFunction(Function &F);
// getAnalysisUsage - We need dominance frontiers
//
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<DominatorTree>();
AU.addRequired<DominanceFrontier>();
AU.setPreservesCFG();
// This is a cluster of orthogonal Transforms
AU.addPreserved<UnifyFunctionExitNodes>();
AU.addPreservedID(LowerSwitchID);
AU.addPreservedID(LowerInvokePassID);
AU.addPreservedID(LowerAllocationsID);
}
};
} // end of anonymous namespace
char PromotePass::ID = 0;
static RegisterPass<PromotePass> X("mem2reg", "Promote Memory to Register");
/// Remove the invalid or redundant debug information.
static void CleanDbgInfo(Function& F) {
std::vector<Instruction*> DeadDbgs;
for (Function::iterator BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) {
if (BBI->size() <= 1)
continue;
for (BasicBlock::iterator I = BBI->begin(), E = BBI->getTerminator();
I != E; ++I) {
BasicBlock::iterator NextI = I;
++NextI;
if (isa<DbgStopPointInst>(I) && isa<DbgStopPointInst>(NextI))
DeadDbgs.push_back(I);
else if (isa<DbgStopPointInst>(I) && isa<BranchInst>(NextI))
DeadDbgs.push_back(I);
}
}
while (!DeadDbgs.empty()) {
Instruction *Inst = DeadDbgs.back();
DeadDbgs.pop_back();
Inst->eraseFromParent();
}
}
bool PromotePass::runOnFunction(Function &F) {
std::vector<AllocaInst*> Allocas;
BasicBlock &BB = F.getEntryBlock(); // Get the entry node for the function
bool Changed = false;
DominatorTree &DT = getAnalysis<DominatorTree>();
DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
while (1) {
Allocas.clear();
// Find allocas that are safe to promote, by looking at all instructions in
// the entry node
for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) // Is it an alloca?
if (isAllocaPromotable(AI))
Allocas.push_back(AI);
if (Allocas.empty()) break;
PromoteMemToReg(Allocas, DT, DF);
CleanDbgInfo(F);
NumPromoted += Allocas.size();
Changed = true;
}
return Changed;
}
// Publically exposed interface to pass...
const PassInfo *const llvm::PromoteMemoryToRegisterID = &X;
// createPromoteMemoryToRegister - Provide an entry point to create this pass.
//
FunctionPass *llvm::createPromoteMemoryToRegisterPass() {
return new PromotePass();
}
|