aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/Utils/LCSSA.cpp
blob: aa52235bc5c2d4e2194ed7fda1ddb7a64cacc33f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by Owen Anderson and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass transforms loops by placing phi nodes at the end of the loops for
// all values that are live across the loop boundary.  For example, it turns
// the left into the right code:
// 
// for (...)                for (...)
//   if (c)                   if(c)
//     X1 = ...                 X1 = ...
//   else                     else
//     X2 = ...                 X2 = ...
//   X3 = phi(X1, X2)         X3 = phi(X1, X2)
// ... = X3 + 4              X4 = phi(X3)
//                           ... = X4 + 4
//
// This is still valid LLVM; the extra phi nodes are purely redundant, and will
// be trivially eliminated by InstCombine.  The major benefit of this 
// transformation is that it makes many other loop optimizations, such as 
// LoopUnswitching, simpler.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar.h"
#include "llvm/Pass.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Support/CFG.h"
#include <algorithm>
#include <cassert>
#include <map>
#include <vector>

using namespace llvm;

namespace {
  static Statistic<> NumLCSSA("lcssa",
                              "Number of live out of a loop variables");
  
  class LCSSA : public FunctionPass {
  public:
    
  
    LoopInfo *LI;  // Loop information
    DominatorTree *DT;       // Dominator Tree for the current Loop...
    DominanceFrontier *DF;   // Current Dominance Frontier
    
    virtual bool runOnFunction(Function &F);
    bool visitSubloop(Loop* L);
    void processInstruction(Instruction* Instr,
                            const std::vector<BasicBlock*>& LoopBlocks,
                            const std::vector<BasicBlock*>& exitBlocks);
    
    /// This transformation requires natural loop information & requires that
    /// loop preheaders be inserted into the CFG.  It maintains both of these,
    /// as well as the CFG.  It also requires dominator information.
    ///
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesCFG();
      AU.addRequiredID(LoopSimplifyID);
      AU.addPreservedID(LoopSimplifyID);
      AU.addRequired<LoopInfo>();
      AU.addPreserved<LoopInfo>();
      AU.addRequired<DominatorTree>();
      AU.addRequired<DominanceFrontier>();
    }
  private:
    std::set<Instruction*> getLoopValuesUsedOutsideLoop(Loop *L,
                                    const std::vector<BasicBlock*>& LoopBlocks);
    Instruction *getValueDominatingBlock(BasicBlock *BB,
                                   std::map<BasicBlock*, Instruction*> PotDoms);
  };
  
  RegisterOpt<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass");
}

FunctionPass *llvm::createLCSSAPass() { return new LCSSA(); }

bool LCSSA::runOnFunction(Function &F) {
  bool changed = false;
  LI = &getAnalysis<LoopInfo>();
  DF = &getAnalysis<DominanceFrontier>();
  DT = &getAnalysis<DominatorTree>();
    
  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) {
    changed |= visitSubloop(*I);
  }
      
  return changed;
}

bool LCSSA::visitSubloop(Loop* L) {
  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
    visitSubloop(*I);
  
  // Speed up queries by creating a sorted list of blocks
  std::vector<BasicBlock*> LoopBlocks(L->block_begin(), L->block_end());
  std::sort(LoopBlocks.begin(), LoopBlocks.end());
  
  std::set<Instruction*> AffectedValues = getLoopValuesUsedOutsideLoop(L,
                                           LoopBlocks);
  
  // If no values are affected, we can save a lot of work, since we know that
  // nothing will be changed.
  if (AffectedValues.empty())
    return false;
  
  std::vector<BasicBlock*> exitBlocks;
  L->getExitBlocks(exitBlocks);
  
  
  // Iterate over all affected values for this loop and insert Phi nodes
  // for them in the appropriate exit blocks
  
  for (std::set<Instruction*>::iterator I = AffectedValues.begin(),
       E = AffectedValues.end(); I != E; ++I) {
    processInstruction(*I, LoopBlocks, exitBlocks);
  }
  
  return true; // FIXME: Should be more intelligent in our return value.
}

/// processInstruction - 
void LCSSA::processInstruction(Instruction* Instr,
                               const std::vector<BasicBlock*>& LoopBlocks,
                               const std::vector<BasicBlock*>& exitBlocks)
{
  ++NumLCSSA; // We are applying the transformation
  
  std::map<BasicBlock*, Instruction*> Phis;
  Phis[Instr->getParent()] = Instr;
  
  // Phi nodes that need to be IDF-processed
  std::vector<PHINode*> workList;
  
  for (std::vector<BasicBlock*>::const_iterator BBI = exitBlocks.begin(),
      BBE = exitBlocks.end(); BBI != BBE; ++BBI)
    if (DT->getNode(Instr->getParent())->dominates(DT->getNode(*BBI))) {
      PHINode *phi = new PHINode(Instr->getType(), "lcssa", (*BBI)->begin());
      workList.push_back(phi);
      Phis[*BBI] = phi;
    }
  
  // Calculate the IDF of these LCSSA Phi nodes, inserting new Phi's where
  // necessary.  Keep track of these new Phi's in Phis.
  while (!workList.empty()) {
    PHINode *CurPHI = workList.back();
    workList.pop_back();
    
    // Get the current Phi's DF, and insert Phi nodes.  Add these new
    // nodes to our worklist.
    DominanceFrontier::const_iterator it = DF->find(CurPHI->getParent());
    if (it != DF->end()) {
      const DominanceFrontier::DomSetType &S = it->second;
      for (DominanceFrontier::DomSetType::const_iterator P = S.begin(),
           PE = S.end(); P != PE; ++P) {
        if (Phis[*P] == 0) {
          // Still doesn't have operands...
          PHINode *phi = new PHINode(Instr->getType(), "lcssa", (*P)->begin());
          Phis[*P] = phi;
          
          workList.push_back(phi);
        }
      }
    }
    
    // Get the predecessor blocks of the current Phi, and use them to hook up
    // the operands of the current Phi to any members of DFPhis that dominate
    // it.  This is a nop for the Phis inserted directly in the exit blocks,
    // since they are not dominated by any members of DFPhis.
    for (pred_iterator PI = pred_begin(CurPHI->getParent()),
         E = pred_end(CurPHI->getParent()); PI != E; ++PI)
      CurPHI->addIncoming(getValueDominatingBlock(*PI, Phis),
                          *PI);
  }
  
  // Find all uses of the affected value, and replace them with the
  // appropriate Phi.
  std::vector<Instruction*> Uses;
  for (Instruction::use_iterator UI = Instr->use_begin(), UE = Instr->use_end();
       UI != UE; ++UI) {
    Instruction* use = cast<Instruction>(*UI);
    // Don't need to update uses within the loop body
    if (!std::binary_search(LoopBlocks.begin(), LoopBlocks.end(),
        use->getParent()) &&
        !(std::binary_search(exitBlocks.begin(), exitBlocks.end(),
        use->getParent()) && isa<PHINode>(use)))
      Uses.push_back(use);
  }
  
  // Deliberately remove the initial instruction from Phis set.
  Phis.erase(Instr->getParent());
  
  for (std::vector<Instruction*>::iterator II = Uses.begin(), IE = Uses.end();
       II != IE; ++II) {
    if (PHINode* phi = dyn_cast<PHINode>(*II)) {
      for (unsigned int i = 0; i < phi->getNumIncomingValues(); ++i) {
        // FIXME: Replace a Phi entry if and only if the corresponding 
        // predecessor is dominated.
        Instruction* dominator = 
                        getValueDominatingBlock(phi->getIncomingBlock(i), Phis);
        
        if (phi->getIncomingValue(i) == Instr)
          phi->setIncomingValue(i, dominator);
      }
    } else {
       (*II)->replaceUsesOfWith(Instr,
                                getValueDominatingBlock((*II)->getParent(),
                                Phis));
    }
  }
}

/// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that
/// are used by instructions outside of it.
std::set<Instruction*> LCSSA::getLoopValuesUsedOutsideLoop(Loop *L, 
                                   const std::vector<BasicBlock*>& LoopBlocks) {
  
  // FIXME: For large loops, we may be able to avoid a lot of use-scanning
  // by using dominance information.  In particular, if a block does not
  // dominate any of the loop exits, then none of the values defined in the
  // block could be used outside the loop.
  
  std::set<Instruction*> AffectedValues;  
  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
       BB != E; ++BB) {
    for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I)
      for