1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
|
//===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This family of functions perform manipulations on basic blocks, and
// instructions contained within basic blocks.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Constant.h"
#include "llvm/DataLayout.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Type.h"
#include <algorithm>
using namespace llvm;
/// DeleteDeadBlock - Delete the specified block, which must have no
/// predecessors.
void llvm::DeleteDeadBlock(BasicBlock *BB) {
assert((pred_begin(BB) == pred_end(BB) ||
// Can delete self loop.
BB->getSinglePredecessor() == BB) && "Block is not dead!");
TerminatorInst *BBTerm = BB->getTerminator();
// Loop through all of our successors and make sure they know that one
// of their predecessors is going away.
for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i)
BBTerm->getSuccessor(i)->removePredecessor(BB);
// Zap all the instructions in the block.
while (!BB->empty()) {
Instruction &I = BB->back();
// If this instruction is used, replace uses with an arbitrary value.
// Because control flow can't get here, we don't care what we replace the
// value with. Note that since this block is unreachable, and all values
// contained within it must dominate their uses, that all uses will
// eventually be removed (they are themselves dead).
if (!I.use_empty())
I.replaceAllUsesWith(UndefValue::get(I.getType()));
BB->getInstList().pop_back();
}
// Zap the block!
BB->eraseFromParent();
}
/// FoldSingleEntryPHINodes - We know that BB has one predecessor. If there are
/// any single-entry PHI nodes in it, fold them away. This handles the case
/// when all entries to the PHI nodes in a block are guaranteed equal, such as
/// when the block has exactly one predecessor.
void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, Pass *P) {
if (!isa<PHINode>(BB->begin())) return;
AliasAnalysis *AA = 0;
MemoryDependenceAnalysis *MemDep = 0;
if (P) {
AA = P->getAnalysisIfAvailable<AliasAnalysis>();
MemDep = P->getAnalysisIfAvailable<MemoryDependenceAnalysis>();
}
while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
if (PN->getIncomingValue(0) != PN)
PN->replaceAllUsesWith(PN->getIncomingValue(0));
else
PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
if (MemDep)
MemDep->removeInstruction(PN); // Memdep updates AA itself.
else if (AA && isa<PointerType>(PN->getType()))
AA->deleteValue(PN);
PN->eraseFromParent();
}
}
/// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
/// is dead. Also recursively delete any operands that become dead as
/// a result. This includes tracing the def-use list from the PHI to see if
/// it is ultimately unused or if it reaches an unused cycle.
bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
// Recursively deleting a PHI may cause multiple PHIs to be deleted
// or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
SmallVector<WeakVH, 8> PHIs;
for (BasicBlock::iterator I = BB->begin();
PHINode *PN = dyn_cast<PHINode>(I); ++I)
PHIs.push_back(PN);
bool Changed = false;
for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
return Changed;
}
/// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
/// if possible. The return value indicates success or failure.
bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) {
// Don't merge away blocks who have their address taken.
if (BB->hasAddressTaken()) return false;
// Can't merge if there are multiple predecessors, or no predecessors.
BasicBlock *PredBB = BB->getUniquePredecessor();
if (!PredBB) return false;
// Don't break self-loops.
if (PredBB == BB) return false;
// Don't break invokes.
if (isa<InvokeInst>(PredBB->getTerminator())) return false;
succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
BasicBlock *OnlySucc = BB;
for (; SI != SE; ++SI)
if (*SI != OnlySucc) {
OnlySucc = 0; // There are multiple distinct successors!
break;
}
// Can't merge if there are multiple successors.
if (!OnlySucc) return false;
// Can't merge if there is PHI loop.
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
if (PHINode *PN = dyn_cast<PHINode>(BI)) {
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (PN->getIncomingValue(i) == PN)
return false;
} else
break;
}
// Begin by getting rid of unneeded PHIs.
if (isa<PHINode>(BB->front()))
FoldSingleEntryPHINodes(BB, P);
// Delete the unconditional branch from the predecessor...
PredBB->getInstList().pop_back();
// Make all PHI nodes that referred to BB now refer to Pred as their
// source...
BB->replaceAllUsesWith(PredBB);
// Move all definitions in the successor to the predecessor...
PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
// Inherit predecessors name if it exists.
if (!PredBB->hasName())
PredBB->takeName(BB);
// Finally, erase the old block and update dominator info.
if (P) {
if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) {
if (DomTreeNode *DTN = DT->getNode(BB)) {
DomTreeNode *PredDTN = DT->getNode(PredBB);
SmallVector<DomTreeNode*, 8> Children(DTN->begin(), DTN->end());
for (SmallVector<DomTreeNode*, 8>::iterator DI = Children.begin(),
DE = Children.end(); DI != DE; ++DI)
DT->changeImmediateDominator(*DI, PredDTN);
DT->eraseNode(BB);
}
if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>())
LI->removeBlock(BB);
if (MemoryDependenceAnalysis *MD =
P->getAnalysisIfAvailable<MemoryDependenceAnalysis>())
MD->invalidateCachedPredecessors();
}
}
BB->eraseFromParent();
return true;
}
/// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
/// with a value, then remove and delete the original instruction.
///
void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
BasicBlock::iterator &BI, Value *V) {
Instruction &I = *BI;
// Replaces all of the uses of the instruction with uses of the value
I.replaceAllUsesWith(V);
// Make sure to propagate a name if there is one already.
if (I.hasName() && !V->hasName())
V->takeName(&I);
// Delete the unnecessary instruction now...
BI = BIL.erase(BI);
}
/// ReplaceInstWithInst - Replace the instruction specified by BI with the
/// instruction specified by I. The original instruction is deleted and BI is
/// updated to point to the new instruction.
///
void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
BasicBlock::iterator &BI, Instruction *I) {
assert(I->getParent() == 0 &&
"ReplaceInstWithInst: Instruction already inserted into basic block!");
// Insert the new instruction into the basic block...
BasicBlock::iterator New = BIL.insert(BI, I);
// Replace all uses of the old instruction, and delete it.
ReplaceInstWithValue(BIL, BI, I);
// Move BI back to point to the newly inserted instruction
BI = New;
}
/// ReplaceInstWithInst - Replace the instruction specified by From with the
/// instruction specified by To.
///
void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
BasicBlock::iterator BI(From);
ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
}
/// GetSuccessorNumber - Search for the specified successor of basic block BB
/// and return its position in the terminator instruction's list of
/// successors. It is an error to call this with a block that is not a
/// successor.
unsigned llvm::GetSuccessorNumber(BasicBlock *BB, BasicBlock *Succ) {
TerminatorInst *Term = BB->getTerminator();
#ifndef NDEBUG
unsigned e = Term->getNumSuccessors();
#endif
for (unsigned i = 0; ; ++i) {
assert(i != e && "Didn't find edge?");
if (Term->getSuccessor(i) == Succ)
return i;
}
}
/// SplitEdge - Split the edge connecting specified block. Pass P must
/// not be NULL.
BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
unsigned SuccNum = GetSuccessorNumber(BB, Succ);
// If this is a critical edge, let SplitCriticalEdge do it.
TerminatorInst *LatchTerm = BB->getTerminator();
if (SplitCriticalEdge(LatchTerm, SuccNum, P))
return LatchTerm->getSuccessor(SuccNum);
// If the edge isn't critical, then BB has a single successor or Succ has a
// single pred. Split the block.
BasicBlock::iterator SplitPoint;
if (BasicBlock *SP = Succ->getSinglePredecessor()) {
// If the successor only has a single pred, split the top of the successor
// block.
assert(SP == BB && "CFG broken");
SP = NULL;
return SplitBlock(Succ, Succ->begin(), P);
}
// Otherwise, if BB has a single successor, split it at the bottom of the
// block.
assert(BB->getTerminator()->getNumSuccessors() == 1 &&
"Should have a single succ!");
return SplitBlock(BB, BB->getTerminator(), P);
}
/// SplitBlock - Split the specified block at the specified instruction - every
/// thing before SplitPt stays in Old and everything starting with SplitPt moves
/// to a new block. The two blocks are joined by an unconditional branch and
/// the loop info is updated.
///
BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
BasicBlock::iterator SplitIt = SplitPt;
while (isa<PHINode>(SplitIt) || isa<LandingPadInst>(SplitIt))
++SplitIt;
BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
// The new block lives in whichever loop the old one did. This preserves
// LCSSA as well, because we force the split point to be after any PHI nodes.
if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>())
if (Loop *L = LI->getLoopFor(Old))
L->addBasicBlockToLoop(New, LI->getBase());
if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) {
// Old dominates New. New node dominates all other nodes dominated by Old.
if (DomTreeNode *OldNode = DT->getNode(Old)) {
std::vector<DomTreeNode *> Children;
for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
I != E; ++I)
Children.push_back(*I);
DomTreeNode *NewNode = DT->addNewBlock(New,Old);
for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
E = Children.end(); I != E; ++I)
DT->changeImmediateDominator(*I, NewNode);
}
}
return New;
}
/// UpdateAnalysisInformation - Update DominatorTree, LoopInfo, and LCCSA
/// analysis information.
static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
ArrayRef<BasicBlock *> Preds,
Pass *P, bool &HasLoopExit) {
if (!P) return;
LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>();
Loop *L = LI ? LI->getLoopFor(OldBB) : 0;
// If we need to preserve loop analyses, collect some information about how
// this split will affect loops.
bool IsLoopEntry = !!L;
bool SplitMakesNewLoopHeader = false;
if (LI) {
bool PreserveLCSSA = P->mustPreserveAnalysisID(LCSSAID);
for (ArrayRef<BasicBlock*>::iterator
i = Preds.begin(), e = Preds.end(); i != e; ++i) {
BasicBlock *Pred = *i;
// If we need to preserve LCSSA, determine if any of the preds is a loop
// exit.
if (PreserveLCSSA)
if (Loop *PL = LI->getLoopFor(Pred))
if (!PL->contains(OldBB))
HasLoopExit = true;
// If we need to preserve LoopInfo, note whether any of the preds crosses
// an interesting loop boundary.
if (!L) continue;
if (L->contains(Pred))
IsLoopEntry = false;
else
SplitMakesNewLoopHeader = true;
}
}
// Update dominator tree if available.
DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
if (DT)
DT->splitBlock(NewBB);
if (!L) return;
if (IsLoopEntry) {
// Add the new block to the nearest enclosing loop (and not an adjacent
// loop). To find this, examine each of the predecessors and determine which
// loops enclose them, and select the most-nested loop which contains the
// loop containing the block being split.
Loop *InnermostPredLoop = 0;
for (ArrayRef<BasicBlock*>::iterator
i = Preds.begin(), e = Preds.end(); i != e; ++i) {
BasicBlock *Pred = *i;
if (Loop *PredLoop = LI->getLoopFor(Pred)) {
// Seek a loop which actually contains the block being split (to avoid
// adjacent loops).
while (PredLoop && !PredLoop->contains(OldBB))
PredLoop = PredLoop->getParentLoop();
// Select the most-nested of these loops which contains the block.
if (PredLoop && PredLoop->contains(OldBB) &&
(!InnermostPredLoop ||
InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
InnermostPredLoop = PredLoop;
}
}
if (InnermostPredLoop)
InnermostPredLoop->addBasicBlockToLoop(NewBB, LI->getBase());
} else {
L->addBasicBlockToLoop(NewBB, LI->getBase());
if (SplitMakesNewLoopHeader)
L->moveToHeader(NewBB);
}
}
/// UpdatePHINodes - Update the PHI nodes in OrigBB to include the values coming
/// from NewBB. This also updates AliasAnalysis, if available.
static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
ArrayRef<BasicBlock*> Preds, BranchInst *BI,
Pass *P, bool HasLoopExit) {
// Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0;
for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
PHINode *PN = cast<PHINode>(I++);
// Check to see if all of the values coming in are the same. If so, we
// don't need to create a new PHI node, unless it's needed for LCSSA.
Value *InVal = 0;
if (!HasLoopExit) {
InVal = PN->getIncomingValueForBlock(Preds[0]);
for (unsigned i = 1, e = Preds.size(); i != e; ++i)
if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
InVal = 0;
break;
}
}
if (InVal) {
// If all incoming values for the new PHI would be the same, just don't
// make a new PHI. Instead, just remove the incoming values from the old
// PHI.
for (unsigned i = 0, e = Preds.size(); i != e; ++i)
PN->removeIncomingValue(Preds[i], false);
} else {
// If the values coming into the block are not the same, we need a PHI.
// Create the new PHI node, insert it into NewBB at the end of the block
PHINode *NewPHI =
PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
if (AA) AA->copyValue(PN, NewPHI);
// Move all of the PHI values for 'Preds' to the new PHI.
for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
Value *V = PN->removeIncomingValue(Preds[i], false);
NewPHI->addIncoming(V, Preds[i]);
}
InVal = NewPHI;
}
// Add an incoming value to the PHI node in the loop for the preheader
// edge.
PN->addIncoming(InVal, NewBB);
}
}
/// SplitBlockPredecessors - This method transforms BB by introducing a new
/// basic block into the function, and moving some of the predecessors of BB to
/// be predecessors of the new block. The new predecessors are indicated by the
/// Preds array, which has NumPreds elements in it. The new block is given a
/// suffix of 'Suffix'.
///
/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
/// LoopInfo, and LCCSA but no other analyses. In particular, it does not
/// preserve LoopSimplify (because it's complicated to handle the case where one
/// of the edges being split is an exit of a loop with other exits).
///
BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
ArrayRef<BasicBlock*> Preds,
const char *Suffix, Pass *P) {
// Create new basic block, insert right before the original block.
BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix,
BB->getParent(), BB);
// The new block unconditionally branches to the old block.
BranchInst *BI = BranchInst::Create(BB, NewBB);
// Move the edges from Preds to point to NewBB instead of BB.
for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
// This is slightly more strict than necessary; the minimum requirement
// is that there be no more than one indirectbr branching to BB. And
// all BlockAddress uses would need to be updated.
assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
"Cannot split an edge from an IndirectBrInst");
Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
}
// Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
// node becomes an incoming value for BB's phi node. However, if the Preds
// list is empty, we need to insert dummy entries into the PHI nodes in BB to
// account for the newly created predecessor.
if (Preds.size() == 0) {
// Insert dummy values as the incoming value.
for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
return NewBB;
}
// Update DominatorTree, LoopInfo, and LCCSA analysis information.
bool HasLoopExit = false;
UpdateAnalysisInformation(BB, NewBB, Preds, P, HasLoopExit);
// Update the PHI nodes in BB with the values coming from NewBB.
UpdatePHINodes(BB, NewBB, Preds, BI, P, HasLoopExit);
return NewBB;
}
/// SplitLandingPadPredecessors - This method transforms the landing pad,
/// OrigBB, by introducing two new basic blocks into the function. One of those
/// new basic blocks gets the predecessors listed in Preds. The other basic
/// block gets the remaining predecessors of OrigBB. The landingpad instruction
/// OrigBB is clone into both of the new basic blocks. The new blocks are given
/// the suffixes 'Suffix1' and 'Suffix2', and are returned in the NewBBs vector.
///
/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
/// DominanceFrontier, LoopInfo, and LCCSA but no other analyses. In particular,
/// it does not preserve LoopSimplify (because it's complicated to handle the
/// case where one of the edges being split is an exit of a loop with other
/// exits).
///
void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
ArrayRef<BasicBlock*> Preds,
const char *Suffix1, const char *Suffix2,
Pass *P,
SmallVectorImpl<BasicBlock*> &NewBBs) {
assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
// Create a new basic block for OrigBB's predecessors listed in Preds. Insert
// it right before the original block.
BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
OrigBB->getName() + Suffix1,
OrigBB->getParent(), OrigBB);
NewBBs.push_back(NewBB1);
// The new block unconditionally branches to the old block.
BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
// Move the edges from Preds to point to NewBB1 instead of OrigBB.
for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
// This is slightly more strict than necessary; the minimum requirement
// is that there be no more than one indirectbr branching to BB. And
// all BlockAddress uses would need to be updated.
assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
"Cannot split an edge from an IndirectBrInst");
Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
}
// Update DominatorTree, LoopInfo, and LCCSA analysis information.
bool HasLoopExit = false;
UpdateAnalysisInformation(OrigBB, NewBB1, Preds, P, HasLoopExit);
// Update the PHI nodes in OrigBB with the values coming from NewBB1.
UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, P, HasLoopExit);
// Move the remaining edges from OrigBB to point to NewBB2.
SmallVector<BasicBlock*, 8> NewBB2Preds;
for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
i != e; ) {
BasicBlock *Pred = *i++;
if (Pred == NewBB1) continue;
assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
"Cannot split an edge from an IndirectBrInst");
NewBB2Preds.push_back(Pred);
e = pred_end(OrigBB);
}
BasicBlock *NewBB2 = 0;
if (!NewBB2Preds.empty()) {
// Create another basic block for the rest of OrigBB's predecessors.
NewBB2 = BasicBlock::Create(OrigBB->getContext(),
OrigBB->getName() + Suffix2,
OrigBB->getParent(), OrigBB);
NewBBs.push_back(NewBB2);
// The new block unconditionally branches to the old block.
BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
// Move the remaining edges from OrigBB to point to NewBB2.
for (SmallVectorImpl<BasicBlock*>::iterator
i = NewBB2Preds.begin(), e = NewBB2Preds.end(); i != e; ++i)
(*i)->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
// Update DominatorTree, LoopInfo, and LCCSA analysis information.
HasLoopExit = false;
UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, P, HasLoopExit);
// Update the PHI nodes in OrigBB with the values coming from NewBB2.
UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, P, HasLoopExit);
}
LandingPadInst *LPad = OrigBB->getLandingPadInst();
Instruction *Clone1 = LPad->clone();
Clone1->setName(Twine("lpad") + Suffix1);
NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
if (NewBB2) {
Instruction *Clone2 = LPad->clone();
Clone2->setName(Twine("lpad") + Suffix2);
NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
// Create a PHI node for the two cloned landingpad instructions.
PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
PN->addIncoming(Clone1, NewBB1);
PN->addIncoming(Clone2, NewBB2);
LPad->replaceAllUsesWith(PN);
LPad->eraseFromParent();
} else {
// There is no second clone. Just replace the landing pad with the first
// clone.
LPad->replaceAllUsesWith(Clone1);
LPad->eraseFromParent();
}
}
/// FindFunctionBackedges - Analyze the specified function to find all of the
/// loop backedges in the function and return them. This is a relatively cheap
/// (compared to computing dominators and loop info) analysis.
///
/// The output is added to Result, as pairs of <from,to> edge info.
void llvm::FindFunctionBackedges(const Function &F,
SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
const BasicBlock *BB = &F.getEntryBlock();
if (succ_begin(BB) == succ_end(BB))
return;
SmallPtrSet<const BasicBlock*, 8> Visited;
SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack;
SmallPtrSet<const BasicBlock*, 8> InStack;
Visited.insert(BB);
VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
InStack.insert(BB);
do {
std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back();
const BasicBlock *ParentBB = Top.first;
succ_const_iterator &I = Top.second;
bool FoundNew = false;
while (I != succ_end(ParentBB)) {
BB = *I++;
if (Visited.insert(BB)) {
FoundNew = true;
break;
}
// Successor is in VisitStack, it's a back edge.
if (InStack.count(BB))
Result.push_back(std::make_pair(ParentBB, BB));
}
if (FoundNew) {
// Go down one level if there is a unvisited successor.
InStack.insert(BB);
VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
} else {
// Go up one level.
InStack.erase(VisitStack.pop_back_val().first);
}
} while (!VisitStack.empty());
}
/// FoldReturnIntoUncondBranch - This method duplicates the specified return
/// instruction into a predecessor which ends in an unconditional branch. If
/// the return instruction returns a value defined by a PHI, propagate the
/// right value into the return. It returns the new return instruction in the
/// predecessor.
ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
BasicBlock *Pred) {
Instruction *UncondBranch = Pred->getTerminator();
// Clone the return and add it to the end of the predecessor.
Instruction *NewRet = RI->clone();
Pred->getInstList().push_back(NewRet);
// If the return instruction returns a value, and if the value was a
// PHI node in "BB", propagate the right value into the return.
for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
i != e; ++i) {
Value *V = *i;
Instruction *NewBC = 0;
if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
// Return value might be bitcasted. Clone and insert it before the
// return instruction.
V = BCI->getOperand(0);
NewBC = BCI->clone();
Pred->getInstList().insert(NewRet, NewBC);
*i = NewBC;
}
if (PHINode *PN = dyn_cast<PHINode>(V)) {
if (PN->getParent() == BB) {
if (NewBC)
NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
else
*i = PN->getIncomingValueForBlock(Pred);
}
}
}
// Update any PHI nodes in the returning block to realize that we no
// longer branch to them.
BB->removePredecessor(Pred);
UncondBranch->eraseFromParent();
return cast<ReturnInst>(NewRet);
}
/// SplitBlockAndInsertIfThen - Split the containing block at the
/// specified instruction - everything before and including Cmp stays
/// in the old basic block, and everything after Cmp is moved to a
/// new block. The two blocks are connected by a conditional branch
/// (with value of Cmp being the condition).
/// Before:
/// Head
/// Cmp
/// Tail
/// After:
/// Head
/// Cmp
/// if (Cmp)
/// ThenBlock
/// Tail
///
/// If Unreachable is true, then ThenBlock ends with
/// UnreachableInst, otherwise it branches to Tail.
/// Returns the NewBasicBlock's terminator.
TerminatorInst *llvm::SplitBlockAndInsertIfThen(Instruction *Cmp,
bool Unreachable, MDNode *BranchWeights) {
Instruction *SplitBefore = Cmp->getNextNode();
BasicBlock *Head = SplitBefore->getParent();
BasicBlock *Tail = Head->splitBasicBlock(SplitBefore);
TerminatorInst *HeadOldTerm = Head->getTerminator();
LLVMContext &C = Head->getContext();
BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
TerminatorInst *CheckTerm;
if (Unreachable)
CheckTerm = new UnreachableInst(C, ThenBlock);
else
CheckTerm = BranchInst::Create(Tail, ThenBlock);
BranchInst *HeadNewTerm =
BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cmp);
HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
return CheckTerm;
}
|