aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/TransformInternals.cpp
blob: c12fe6930faa1eb05d6eb9e3577e29fe9fb9c197 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
//===-- TransformInternals.cpp - Implement shared functions for transforms --=//
//
//  This file defines shared functions used by the different components of the
//  Transforms library.
//
//===----------------------------------------------------------------------===//

#include "TransformInternals.h"
#include "llvm/Method.h"
#include "llvm/Type.h"
#include "llvm/ConstantVals.h"
#include "llvm/Analysis/Expressions.h"
#include "llvm/iOther.h"

// TargetData Hack: Eventually we will have annotations given to us by the
// backend so that we know stuff about type size and alignments.  For now
// though, just use this, because it happens to match the model that GCC uses.
//
const TargetData TD("LevelRaise: Should be GCC though!");

// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
// with a value, then remove and delete the original instruction.
//
void ReplaceInstWithValue(BasicBlock::InstListType &BIL,
                          BasicBlock::iterator &BI, Value *V) {
  Instruction *I = *BI;
  // Replaces all of the uses of the instruction with uses of the value
  I->replaceAllUsesWith(V);

  // Remove the unneccesary instruction now...
  BIL.remove(BI);

  // Make sure to propogate a name if there is one already...
  if (I->hasName() && !V->hasName())
    V->setName(I->getName(), BIL.getParent()->getSymbolTable());

  // Remove the dead instruction now...
  delete I;
}


// ReplaceInstWithInst - Replace the instruction specified by BI with the
// instruction specified by I.  The original instruction is deleted and BI is
// updated to point to the new instruction.
//
void ReplaceInstWithInst(BasicBlock::InstListType &BIL,
                         BasicBlock::iterator &BI, Instruction *I) {
  assert(I->getParent() == 0 &&
         "ReplaceInstWithInst: Instruction already inserted into basic block!");

  // Insert the new instruction into the basic block...
  BI = BIL.insert(BI, I)+1;

  // Replace all uses of the old instruction, and delete it.
  ReplaceInstWithValue(BIL, BI, I);

  // Reexamine the instruction just inserted next time around the cleanup pass
  // loop.
  --BI;
}


// getStructOffsetType - Return a vector of offsets that are to be used to index
// into the specified struct type to get as close as possible to index as we
// can.  Note that it is possible that we cannot get exactly to Offset, in which
// case we update offset to be the offset we actually obtained.  The resultant
// leaf type is returned.
//
// If StopEarly is set to true (the default), the first object with the
// specified type is returned, even if it is a struct type itself.  In this
// case, this routine will not drill down to the leaf type.  Set StopEarly to
// false if you want a leaf
//
const Type *getStructOffsetType(const Type *Ty, unsigned &Offset,
                                vector<Value*> &Offsets,
                                bool StopEarly = true) {
  if (!isa<CompositeType>(Ty) ||
      (Offset == 0 && StopEarly && !Offsets.empty())) {
    Offset = 0;   // Return the offset that we were able to acheive
    return Ty;    // Return the leaf type
  }

  unsigned ThisOffset;
  const Type *NextType;
  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
    assert(Offset < TD.getTypeSize(Ty) && "Offset not in composite!");
    const StructLayout *SL = TD.getStructLayout(STy);

    // This loop terminates always on a 0 <= i < MemberOffsets.size()
    unsigned i;
    for (i = 0; i < SL->MemberOffsets.size()-1; ++i)
      if (Offset >= SL->MemberOffsets[i] && Offset <  SL->MemberOffsets[i+1])
        break;
  
    assert(Offset >= SL->MemberOffsets[i] &&
           (i == SL->MemberOffsets.size()-1 || Offset <SL->MemberOffsets[i+1]));
    
    // Make sure to save the current index...
    Offsets.push_back(ConstantUInt::get(Type::UByteTy, i));
    ThisOffset = SL->MemberOffsets[i];
    NextType = STy->getElementTypes()[i];
  } else {
    const ArrayType *ATy = cast<ArrayType>(Ty);
    assert(ATy->isUnsized() || Offset < TD.getTypeSize(Ty) &&
           "Offset not in composite!");

    NextType = ATy->getElementType();
    unsigned ChildSize = TD.getTypeSize(NextType);
    Offsets.push_back(ConstantUInt::get(Type::UIntTy, Offset/ChildSize));
    ThisOffset = (Offset/ChildSize)*ChildSize;
  }

  unsigned SubOffs = Offset - ThisOffset;
  const Type *LeafTy = getStructOffsetType(NextType, SubOffs, Offsets);
  Offset = ThisOffset + SubOffs;
  return LeafTy;
}

// ConvertableToGEP - This function returns true if the specified value V is
// a valid index into a pointer of type Ty.  If it is valid, Idx is filled in
// with the values that would be appropriate to make this a getelementptr
// instruction.  The type returned is the root type that the GEP would point to
//
const Type *ConvertableToGEP(const Type *Ty, Value *OffsetVal,
                             vector<Value*> &Indices,
                             BasicBlock::iterator *BI = 0) {
  const CompositeType *CompTy = getPointedToComposite(Ty);
  if (CompTy == 0) return 0;

  // See if the cast is of an integer expression that is either a constant,
  // or a value scaled by some amount with a possible offset.
  //
  analysis::ExprType Expr = analysis::ClassifyExpression(OffsetVal);

  // The expression must either be a constant, or a scaled index to be useful
  if (!Expr.Offset && !Expr.Scale)
    return 0;

  // Get the offset and scale now...
  unsigned Offset = 0, Scale = Expr.Var != 0;

  // Get the offset value if it exists...
  if (Expr.Offset) {
    int Val = getConstantValue(Expr.Offset);
    if (Val < 0) return false;  // Don't mess with negative offsets
    Offset = (unsigned)Val;
  }

  // Get the scale value if it exists...
  if (Expr.Scale) {
    int Val = getConstantValue(Expr.Scale);
    if (Val < 0) return false;  // Don't mess with negative scales
    Scale = (unsigned)Val;
  }
  
  // Check to make sure the offset is not negative or really large, outside the
  // scope of this structure...
  //
  if (!isa<ArrayType>(CompTy) || cast<ArrayType>(CompTy)->isSized())
    if (Offset >= TD.getTypeSize(CompTy))
      return 0;

  // Loop over the Scale and Offset values, filling in the Indices vector for
  // our final getelementptr instruction.
  //
  const Type *NextTy = CompTy;
  do {
    if (!isa<CompositeType>(NextTy))
      return 0;  // Type must not be ready for processing...
    CompTy = cast<CompositeType>(NextTy);

    if (const StructType *StructTy = dyn_cast<StructType>(CompTy)) {
      const StructLayout *SL = TD.getStructLayout(StructTy);
      unsigned ActualOffset = Offset;
      NextTy = getStructOffsetType(StructTy, ActualOffset, Indices);
      Offset -= ActualOffset;
    } else {
      const ArrayType *AT = cast<ArrayType>(CompTy);
      const Type *ElTy = AT->getElementType();
      unsigned ElSize = TD.getTypeSize(ElTy);

      // See if the user is indexing into a different cell of this array...
      if (Scale && Scale >= ElSize) {
        // A scale n*ElSize might occur if we are not stepping through
        // array by one.  In this case, we will have to insert math to munge
        // the index.
        //
        unsigned ScaleAmt = Scale/ElSize;
        if (Scale-ScaleAmt*ElSize)
          return 0;  // Didn't scale by a multiple of element size, bail out
        Scale = ElSize;        

        unsigned Index = Offset/ElSize;       // is zero unless Offset > ElSize
        Offset -= Index*ElSize;               // Consume part of the offset

        if (BI) {              // Generate code?
          BasicBlock *BB = (**BI)->getParent();
          if (Expr.Var->getType() != Type::UIntTy) {
            CastInst *IdxCast = new CastInst(Expr.Var, Type::UIntTy);
            if (Expr.Var->hasName())
              IdxCast->setName(Expr.Var->getName()+"-idxcast");
            *BI = BB->getInstList().insert(*BI, IdxCast)+1;
            Expr.Var = IdxCast;
          }

          if (Scale > ElSize) {  // If we have to scale up our index, do so now
            Value *ScaleAmtVal = ConstantUInt::get(Type::UIntTy, ScaleAmt);
            Instruction *Scaler = BinaryOperator::create(Instruction::Mul,
                                                         Expr.Var,ScaleAmtVal);
            if (Expr.Var->hasName())
              Scaler->setName(Expr.Var->getName()+"-scale");

            *BI = BB->getInstList().insert(*BI, Scaler)+1;
            Expr.Var = Scaler;
          }

          if (Index) {  // Add an offset to the index
            Value *IndexAmt = ConstantUInt::get(Type::UIntTy, Index);
            Instruction *Offseter = BinaryOperator::create(Instruction::Add,
                                                           Expr.Var, IndexAmt);
            if (Expr.Var->hasName())
              Offseter->setName(Expr.Var->getName()+"-offset");
            *BI = BB->getInstList().insert(*BI, Offseter)+1;
            Expr.Var = Offseter;
          }
        }

        Indices.push_back(Expr.Var);
        Scale = 0;  // Consume scale factor!
      }