aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar/LoopUnswitch.cpp
blob: 7e485b8113dbb97088664e989e09d0a0165b4249 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
//===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass transforms loops that contain branches on loop-invariant conditions
// to have multiple loops.  For example, it turns the left into the right code:
//
//  for (...)                  if (lic)
//    A                          for (...)
//    if (lic)                     A; B; C
//      B                      else
//    C                          for (...)
//                                 A; C
//
// This can increase the size of the code exponentially (doubling it every time
// a loop is unswitched) so we only unswitch if the resultant code will be
// smaller than a threshold.
//
// This pass expects LICM to be run before it to hoist invariant conditions out
// of the loop, to make the unswitching opportunity obvious.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "loop-unswitch"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <map>
#include <set>
using namespace llvm;

STATISTIC(NumBranches, "Number of branches unswitched");
STATISTIC(NumSwitches, "Number of switches unswitched");
STATISTIC(NumSelects , "Number of selects unswitched");
STATISTIC(NumTrivial , "Number of unswitches that are trivial");
STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
STATISTIC(TotalInsts,  "Total number of instructions analyzed");

// The specific value of 100 here was chosen based only on intuition and a
// few specific examples.
static cl::opt<unsigned>
Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
          cl::init(100), cl::Hidden);

namespace {

  class LUAnalysisCache {

    typedef DenseMap<const SwitchInst*, SmallPtrSet<const Value *, 8> >
      UnswitchedValsMap;

    typedef UnswitchedValsMap::iterator UnswitchedValsIt;

    struct LoopProperties {
      unsigned CanBeUnswitchedCount;
      unsigned SizeEstimation;
      UnswitchedValsMap UnswitchedVals;
    };

    // Here we use std::map instead of DenseMap, since we need to keep valid
    // LoopProperties pointer for current loop for better performance.
    typedef std::map<const Loop*, LoopProperties> LoopPropsMap;
    typedef LoopPropsMap::iterator LoopPropsMapIt;

    LoopPropsMap LoopsProperties;
    UnswitchedValsMap* CurLoopInstructions;
    LoopProperties* CurrentLoopProperties;

    // Max size of code we can produce on remained iterations.
    unsigned MaxSize;

    public:

      LUAnalysisCache() :
        CurLoopInstructions(NULL), CurrentLoopProperties(NULL),
        MaxSize(Threshold)
      {}

      // Analyze loop. Check its size, calculate is it possible to unswitch
      // it. Returns true if we can unswitch this loop.
      bool countLoop(const Loop* L);

      // Clean all data related to given loop.
      void forgetLoop(const Loop* L);

      // Mark case value as unswitched.
      // Since SI instruction can be partly unswitched, in order to avoid
      // extra unswitching in cloned loops keep track all unswitched values.
      void setUnswitched(const SwitchInst* SI, const Value* V);

      // Check was this case value unswitched before or not.
      bool isUnswitched(const SwitchInst* SI, const Value* V);

      // Clone all loop-unswitch related loop properties.
      // Redistribute unswitching quotas.
      // Note, that new loop data is stored inside the VMap.
      void cloneData(const Loop* NewLoop, const Loop* OldLoop,
                     const ValueToValueMapTy& VMap);
  };

  class LoopUnswitch : public LoopPass {
    LoopInfo *LI;  // Loop information
    LPPassManager *LPM;

    // LoopProcessWorklist - Used to check if second loop needs processing
    // after RewriteLoopBodyWithConditionConstant rewrites first loop.
    std::vector<Loop*> LoopProcessWorklist;

    LUAnalysisCache BranchesInfo;

    bool OptimizeForSize;
    bool redoLoop;

    Loop *currentLoop;
    DominatorTree *DT;
    BasicBlock *loopHeader;
    BasicBlock *loopPreheader;

    // LoopBlocks contains all of the basic blocks of the loop, including the
    // preheader of the loop, the body of the loop, and the exit blocks of the
    // loop, in that order.
    std::vector<BasicBlock*> LoopBlocks;
    // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
    std::vector<BasicBlock*> NewBlocks;

  public:
    static char ID; // Pass ID, replacement for typeid
    explicit LoopUnswitch(bool Os = false) :
      LoopPass(ID), OptimizeForSize(Os), redoLoop(false),
      currentLoop(NULL), DT(NULL), loopHeader(NULL),
      loopPreheader(NULL) {
        initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
      }

    bool runOnLoop(Loop *L, LPPassManager &LPM);
    bool processCurrentLoop();

    /// This transformation requires natural loop information & requires that
    /// loop preheaders be inserted into the CFG.
    ///
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequiredID(LoopSimplifyID);
      AU.addPreservedID(LoopSimplifyID);
      AU.addRequired<LoopInfo>();
      AU.addPreserved<LoopInfo>();
      AU.addRequiredID(LCSSAID);
      AU.addPreservedID(LCSSAID);
      AU.addPreserved<DominatorTree>();
      AU.addPreserved<ScalarEvolution>();
    }

  private:

    virtual void releaseMemory() {
      BranchesInfo.forgetLoop(currentLoop);
    }

    /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
    /// remove it.
    void RemoveLoopFromWorklist(Loop *L) {
      std::vector<Loop*>::iterator I = std::find(LoopProcessWorklist.begin(),
                                                 LoopProcessWorklist.end(), L);
      if (I != LoopProcessWorklist.end())
        LoopProcessWorklist.erase(I);
    }

    void initLoopData() {
      loopHeader = currentLoop->getHeader();
      loopPreheader = currentLoop->getLoopPreheader();
    }

    /// Split all of the edges from inside the loop to their exit blocks.
    /// Update the appropriate Phi nodes as we do so.
    void SplitExitEdges(Loop *L, const SmallVector<BasicBlock *, 8> &ExitBlocks);

    bool UnswitchIfProfitable(Value *LoopCond, Constant *Val);
    void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
                                  BasicBlock *ExitBlock);
    void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L);

    void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
                                              Constant *Val, bool isEqual);

    void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
                                        BasicBlock *TrueDest,
                                        BasicBlock *FalseDest,
                                        Instruction *InsertPt);

    void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
    void RemoveBlockIfDead(BasicBlock *BB,
                           std::vector<Instruction*> &Worklist, Loop *l);
    void RemoveLoopFromHierarchy(Loop *L);
    bool IsTrivialUnswitchCondition(Value *Cond, Constant **Val = 0,
                                    BasicBlock **LoopExit = 0);

  };
}

// Analyze loop. Check its size, calculate is it possible to unswitch
// it. Returns true if we can unswitch this loop.
bool LUAnalysisCache::countLoop(const Loop* L) {

  std::pair<LoopPropsMapIt, bool> InsertRes =
      LoopsProperties.insert(std::make_pair(L, LoopProperties()));

  LoopProperties& Props = InsertRes.first->second;

  if (InsertRes.second) {
    // New loop.

    // Limit the number of instructions to avoid causing significant code
    // expansion, and the number of basic blocks, to avoid loops with
    // large numbers of branches which cause loop unswitching to go crazy.
    // This is a very ad-hoc heuristic.

    // FIXME: This is overly conservative because it does not take into
    // consideration code simplification opportunities and code that can
    // be shared by the resultant unswitched loops.
    CodeMetrics Metrics;
    for (Loop::block_iterator I = L->block_begin(),
           E = L->block_end();
         I != E; ++I)
      Metrics.analyzeBasicBlock(*I);

    Props.SizeEstimation = std::min(Metrics.NumInsts, Metrics.NumBlocks * 5);
    Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
    MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;
  }

  if (!Props.CanBeUnswitchedCount) {
    DEBUG(dbgs() << "NOT unswitching loop %"
          << L->getHeader()->getName() << ", cost too high: "
          << L->getBlocks().size() << "\n");

    return false;
  }

  // Be careful. This links are good only before new loop addition.
  CurrentLoopProperties = &Props;
  CurLoopInstructions = &Props.UnswitchedVals;

  return true;
}

// Clean all data related to given loop.
void LUAnalysisCache::forgetLoop(const Loop* L) {

  LoopPropsMapIt LIt = LoopsProperties.find(L);

  if (LIt != LoopsProperties.end()) {
    LoopProperties& Props = LIt->second;
    MaxSize += Props.CanBeUnswitchedCount * Props.SizeEstimation;
    LoopsProperties.erase(LIt);
  }

  CurrentLoopProperties = NULL;
  CurLoopInstructions = NULL;
}

// Mark case value as unswitched.
// Since SI instruction can be partly unswitched, in order to avoid
// extra unswitching in cloned loops keep track all unswitched values.
void LUAnalysisCache::setUnswitched(const SwitchInst* SI, const Value* V) {
  (*CurLoopInstructions)[SI].insert(V);
}

// Check was this case value unswitched before or not.
bool LUAnalysisCache::isUnswitched(const SwitchInst* SI, const Value* V) {
  return (*CurLoopInstructions)[SI].count(V);
}

// Clone all loop-unswitch related loop properties.
// Redistribute unswitching quotas.
// Note, that new loop data is stored inside the VMap.
void LUAnalysisCache::cloneData(const Loop* NewLoop, const Loop* OldLoop,
                     const ValueToValueMapTy& VMap) {

  LoopProperties& NewLoopProps = LoopsProperties[NewLoop];
  LoopProperties& OldLoopProps = *CurrentLoopProperties;
  UnswitchedValsMap& Insts = OldLoopProps.UnswitchedVals;

  // Reallocate "can-be-unswitched quota"

  --OldLoopProps.CanBeUnswitchedCount;
  unsigned Quota = OldLoopProps.CanBeUnswitchedCount;
  NewLoopProps.CanBeUnswitchedCount = Quota / 2;
  OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2;

  NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation;

  // Clone unswitched values info:
  // for new loop switches we clone info about values that was
  // already unswitched and has redundant successors.
  for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) {
    const SwitchInst* OldInst = I->first;
    Value* NewI = VMap.lookup(OldInst);
    const SwitchInst* NewInst = cast_or_null<SwitchInst>(NewI);
    assert(NewInst && "All instructions that are in SrcBB must be in VMap.");

    NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst];
  }
}

char LoopUnswitch::ID = 0;
INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
                      false, false)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_DEPENDENCY(LCSSA)
INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
                      false, false)

Pass *llvm::createLoopUnswitchPass(bool Os) {
  return new LoopUnswitch(Os);
}

/// FindLIVLoopCondition - Cond is a condition that occurs in L.  If it is
/// invariant in the loop, or has an invariant piece, return the invariant.
/// Otherwise, return null.
static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {

  // We started analyze new instruction, increment scanned instructions counter.
  ++TotalInsts;

  // We can never unswitch on vector conditions.
  if (Cond->getType()->isVectorTy())
    return 0;

  // Constants should be folded, not unswitched on!
  if (isa<Constant>(Cond)) return 0;

  // TODO: Handle: br (VARIANT|INVARIANT).

  // Hoist simple values out.
  if (L->makeLoopInvariant(Cond, Changed))
    return Cond;

  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
    if (BO->getOpcode() == Instruction::And ||
        BO->getOpcode() == Instruction::Or) {
      // If either the left or right side is invariant, we can unswitch on this,
      // which will cause the branch to go away in one loop and the condition to
      // simplify in the other one.
      if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
        return LHS;
      if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
        return RHS;
    }

  return 0;
}

bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
  LI = &getAnalysis<LoopInfo>();
  LPM = &LPM_Ref;
  DT = getAnalysisIfAvailable<DominatorTree>();
  currentLoop = L;
  Function *F = currentLoop->getHeader()->getParent();
  bool Changed = false;
  do {
    assert(currentLoop->isLCSSAForm(*DT));
    redoLoop = false;
    Changed |= processCurrentLoop();
  } while(redoLoop);

  if (Changed) {
    // FIXME: Reconstruct dom info, because it is not preserved properly.
    if (DT)
      DT->runOnFunction(*F);
  }
  return Changed;
}

/// processCurrentLoop - Do actual work and unswitch loop if possible
/// and profitable.
bool LoopUnswitch::processCurrentLoop() {
  bool Changed = false;

  initLoopData();

  // If LoopSimplify was unable to form a preheader, don't do any unswitching.
  if (!loopPreheader)
    return false;

  // Loops with indirectbr cannot be cloned.
  if (!currentLoop->isSafeToClone())
    return false;

  // Without dedicated exits, splitting the exit edge may fail.
  if (!currentLoop->hasDedicatedExits())
    return false;

  LLVMContext &Context = loopHeader->getContext();

  // Probably we reach the quota of branches for this loop. If so
  // stop unswitching.
  if (!BranchesInfo.countLoop(currentLoop))
    return false;

  // Loop over all of the basic blocks in the loop.  If we find an interior
  // block that is branching on a loop-invariant condition, we can unswitch this
  // loop.
  for (Loop::block_iterator I = currentLoop->block_begin(),
         E = currentLoop->block_end(); I != E; ++I) {
    TerminatorInst *TI = (*I)->getTerminator();
    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
      // If this isn't branching on an invariant condition, we can't unswitch
      // it.
      if (BI->isConditional()) {
        // See if this, or some part of it, is loop invariant.  If so, we can
        // unswitch on it if we desire.
        Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
                                               currentLoop, Changed);
        if (LoopCond && UnswitchIfProfitable(LoopCond,
                                             ConstantInt::getTrue(Context))) {
          ++NumBranches;
          return true;
        }
      }
    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
      Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
                                             currentLoop, Changed);
      unsigned NumCases = SI->getNumCases();
      if (LoopCond && NumCases) {
        // Find a value to unswitch on:
        // FIXME: this should chose the most expensive case!
        // FIXME: scan for a case with a non-critical edge?
        Constant *UnswitchVal = NULL;

        // Do not process same value again and again.
        // At this point we have some cases already unswitched and
        // some not yet unswitched. Let's find the first not yet unswitched one.
        for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
             i != e; ++i) {
          Constant* UnswitchValCandidate = i.getCaseValue();
          if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) {
            UnswitchVal = UnswitchValCandidate;
            break;
          }
        }

        if (!UnswitchVal)
          continue;

        if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
          ++NumSwitches;
          return true;
        }
      }
    }

    // Scan the instructions to check for unswitchable values.
    for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
         BBI != E; ++BBI)
      if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
        Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
                                               currentLoop, Changed);
        if (LoopCond && UnswitchIfProfitable(LoopCond,
                                             ConstantInt::getTrue(Context))) {
          ++NumSelects;
          return true;
        }
      }
  }
  return Changed;
}

/// isTrivialLoopExitBlock - Check to see if all paths from BB exit the
/// loop with no side effects (including infinite loops).
///
/// If true, we return true and set ExitBB to the block we
/// exit through.
///
static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
                                         BasicBlock *&ExitBB,
                                         std::set<BasicBlock*> &Visited) {
  if (!Visited.insert(BB).second) {
    // Already visited. Without more analysis, this could indicate an infinite
    // loop.
    return false;
  } else if (!L->contains(BB)) {
    // Otherwise, this is a loop exit, this is fine so long as this is the
    // first exit.
    if (ExitBB != 0) return false;
    ExitBB = BB;
    return true;
  }

  // Otherwise, this is an unvisited intra-loop node.  Check all successors.
  for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
    // Check to see if the successor is a trivial loop exit.
    if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
      return false;
  }

  // Okay, everything after this looks good, check to make sure that this block
  // doesn't include any side effects.
  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
    if (I->mayHaveSideEffects())
      return false;

  return true;
}

/// isTrivialLoopExitBlock - Return true if the specified block unconditionally
/// leads to an exit from the specified loop, and has no side-effects in the
/// process.  If so, return the block that is exited to, otherwise return null.
static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
  std::set<BasicBlock*> Visited;
  Visited.insert(L->getHeader());  // Branches to header make infinite loops.
  BasicBlock *ExitBB = 0;
  if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
    return ExitBB;
  return 0;
}

/// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
/// trivial: that is, that the condition controls whether or not the loop does
/// anything at all.  If this is a trivial condition, unswitching produces no
/// code duplications (equivalently, it produces a simpler loop and a new empty
/// loop, which gets deleted).
///
/// If this is a trivial condition, return true, otherwise return false.  When
/// returning true, this sets Cond and Val to the condition that controls the
/// trivial condition: when Cond dynamically equals Val, the loop is known to
/// exit.  Finally, this sets LoopExit to the BB that the loop exits to when
/// Cond == Val.
///
bool LoopUnswitch::IsTrivialUnswitchCondition(Value *Cond, Constant **Val,
                                       BasicBlock **LoopExit) {
  BasicBlock *Header = currentLoop->getHeader();
  TerminatorInst *HeaderTerm = Header->getTerminator();
  LLVMContext &Context = Header->getContext();

  BasicBlock *LoopExitBB = 0;
  if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
    // If the header block doesn't end with a conditional branch on Cond, we
    // can't handle it.
    if (!BI->isConditional() || BI->getCondition() != Cond)
      return false;

    // Check to see if a successor of the branch is guaranteed to
    // exit through a unique exit block without having any
    // side-effects.  If so, determine the value of Cond that causes it to do
    // this.
    if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
                                             BI->getSuccessor(0)))) {
      if (Val) *Val = ConstantInt::getTrue(Context);
    } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
                                                    BI->getSuccessor(1)))) {
      if (Val) *Val = ConstantInt::getFalse(Context);
    }
  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
    // If this isn't a switch on Cond, we can't handle it.
    if (SI->getCondition() != Cond) return false;

    // Check to see if a successor of the switch is guaranteed to go to the
    // latch block or exit through a one exit block without having any
    // side-effects.  If so, determine the value of Cond that causes it to do
    // this.
    // Note that we can't trivially unswitch on the default case or
    // on already unswitched cases.
    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
         i != e; ++i) {
      BasicBlock* LoopExitCandidate;
      if ((LoopExitCandidate = isTrivialLoopExitBlock(currentLoop,
                                               i.getCaseSuccessor()))) {
        // Okay, we found a trivial case, remember the value that is trivial.
        ConstantInt* CaseVal = i.getCaseValue();

        // Check that it was not unswitched before, since already unswitched
        // trivial vals are looks trivial too.
        if (BranchesInfo.isUnswitched(SI, CaseVal))
          continue;
        LoopExitBB = LoopExitCandidate;
        if (Val) *Val = CaseVal;
        break;
      }
    }
  }

  // If we didn't find a single unique LoopExit block, or if the loop exit block
  // contains phi nodes, this isn't trivial.
  if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
    return false;   // Can't handle this.

  if (LoopExit) *LoopExit = LoopExitBB;

  // We already know that nothing uses any scalar values defined inside of this
  // loop.  As such, we just have to check to see if this loop will execute any
  // side-effecting instructions (e.g. stores, calls, volatile loads) in the
  // part of the loop that the code *would* execute.  We already checked the
  // tail, check the header now.
  for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
    if (I->mayHaveSideEffects())
      return false;
  return true;
}

/// UnswitchIfProfitable - We have found that we can unswitch currentLoop when
/// LoopCond == Val to simplify the loop.  If we decide that this is profitable,
/// unswitch the loop, reprocess the pieces, then return true.
bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val) {
  Function *F = loopHeader->getParent();
  Constant *CondVal = 0;
  BasicBlock *ExitBlock = 0;

  if (IsTrivialUnswitchCondition(LoopCond, &CondVal, &ExitBlock)) {
    // If the condition is trivial, always unswitch. There is no code growth
    // for this case.
    UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, ExitBlock);
    return true;
  }

  // Check to see if it would be profitable to unswitch current loop.

  // Do not do non-trivial unswitch while optimizing for size.
  if (OptimizeForSize || F->hasFnAttr(Attribute::OptimizeForSize))
    return false;

  UnswitchNontrivialCondition(LoopCond, Val, currentLoop);
  return true;
}

/// CloneLoop - Recursively clone the specified loop and all of its children,
/// mapping the blocks with the specified map.
static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
                       LoopInfo *LI, LPPassManager *LPM) {
  Loop *New = new Loop();
  LPM->insertLoop(New, PL);

  // Add all of the blocks in L to the new loop.
  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
       I != E; ++I)
    if (LI->getLoopFor(*I) == L)
      New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), LI->getBase());

  // Add all of the subloops to the new loop.
  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
    CloneLoop(*I, New, VM, LI, LPM);

  return New;
}

/// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
/// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest.  Insert the
/// code immediately before InsertPt.
void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
                                                  BasicBlock *TrueDest,
                                                  BasicBlock *FalseDest,
                                                  Instruction *InsertPt) {
  // Insert a conditional branch on LIC to the two preheaders.  The original
  // code is the true version and the new code is the false version.
  Value *BranchVal = LIC;
  if (!isa<ConstantInt>(Val) ||
      Val->getType() != Type::getInt1Ty(LIC->getContext()))
    BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val);
  else if (Val != ConstantInt::getTrue(Val->getContext()))
    // We want to enter the new loop when the condition is true.
    std::swap(TrueDest, FalseDest);

  // Insert the new branch.
  BranchInst *BI = BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt);

  // If either edge is critical, split it. This helps preserve LoopSimplify
  // form for enclosing loops.
  SplitCriticalEdge(BI, 0, this);
  SplitCriticalEdge(BI, 1, this);
}

/// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
/// condition in it (a cond branch from its header block to its latch block,
/// where the path through the loop that doesn't execute its body has no
/// side-effects), unswitch it.  This doesn't involve any code duplication, just
/// moving the conditional branch outside of the loop and updating loop info.
void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
                                            Constant *Val,
                                            BasicBlock *ExitBlock) {
  DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
        << loopHeader->getName() << " [" << L->getBlocks().size()
        << " blocks] in Function " << L->getHeader()->getParent()->getName()
        << " on cond: " << *Val << " == " << *Cond << "\n");

  // First step, split the preheader, so that we know that there is a safe place
  // to insert the conditional branch.  We will change loopPreheader to have a
  // conditional branch on Cond.
  BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, this);

  // Now that we have a place to insert the conditional branch, create a place
  // to branch to: this is the exit block out of the loop that we should
  // short-circuit to.

  // Split this block now, so that the loop maintains its exit block, and so
  // that the jump from the preheader can execute the contents of the exit block
  // without actually branching to it (the exit block should be dominated by the
  // loop header, not the preheader).
  assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
  BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin(), this);

  // Okay, now we have a position to branch from and a position to branch to,
  // insert the new conditional branch.
  EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
                                 loopPreheader->getTerminator());
  LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L);
  loopPreheader->getTerminator()->eraseFromParent();

  // We need to reprocess this loop, it could be unswitched again.
  redoLoop = true;

  // Now that we know that the loop is never entered when this condition is a
  // particular value, rewrite the loop with this info.  We know that this will
  // at least eliminate the old branch.
  RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
  ++NumTrivial;
}

/// SplitExitEdges - Split all of the edges from inside the loop to their exit
/// blocks.  Update the appropriate Phi nodes as we do so.
void LoopUnswitch::SplitExitEdges(Loop *L,
                                const SmallVector<BasicBlock *, 8> &ExitBlocks){

  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
    BasicBlock *ExitBlock = ExitBlocks[i];
    SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
                                       pred_end(ExitBlock));

    // Although SplitBlockPredecessors doesn't preserve loop-simplify in
    // general, if we call it on all predecessors of all exits then it does.
    if (!ExitBlock->isLandingPad()) {
      SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", this);
    } else {
      SmallVector<BasicBlock*, 2> NewBBs;
      SplitLandingPadPredecessors(ExitBlock, Preds, ".us-lcssa", ".us-lcssa",
                                  this, NewBBs);
    }
  }
}

/// UnswitchNontrivialCondition - We determined that the loop is profitable
/// to unswitch when LIC equal Val.  Split it into loop versions and test the
/// condition outside of either loop.  Return the loops created as Out1/Out2.
void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
                                               Loop *L) {
  Function *F = loopHeader->getParent();
  DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
        << loopHeader->getName() << " [" << L->getBlocks().size()
        << " blocks] in Function " << F->getName()
        << " when '" << *Val << "' == " << *LIC << "\n");

  if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
    SE->forgetLoop(L);

  LoopBlocks.clear();
  NewBlocks.clear();

  // First step, split the preheader and exit blocks, and add these blocks to
  // the LoopBlocks list.
  BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, this);
  LoopBlocks.push_back(NewPreheader);

  // We want the loop to come after the preheader, but before the exit blocks.
  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());

  SmallVector<BasicBlock*, 8> ExitBlocks;
  L->getUniqueExitBlocks(ExitBlocks);

  // Split all of the edges from inside the loop to their exit blocks.  Update
  // the appropriate Phi nodes as we do so.
  SplitExitEdges(L, ExitBlocks);

  // The exit blocks may have been changed due to edge splitting, recompute.
  ExitBlocks.clear();
  L->getUniqueExitBlocks(ExitBlocks);

  // Add exit blocks to the loop blocks.
  LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());

  // Next step, clone all of the basic blocks that make up the loop (including
  // the loop preheader and exit blocks), keeping track of the mapping between
  // the instructions and blocks.
  NewBlocks.reserve(LoopBlocks.size());
  ValueToValueMapTy VMap;
  for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
    BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);

    NewBlocks.push_back(NewBB);
    VMap[LoopBlocks[i]] = NewBB;  // Keep the BB mapping.
    LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
  }

  // Splice the newly inserted blocks into the function right before the
  // original preheader.
  F->getBasicBlockList().splice(NewPreheader, F->getBasicBlockList(),
                                NewBlocks[0], F->end());

  // Now we create the new Loop object for the versioned loop.
  Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);

  // Recalculate unswitching quota, inherit simplified switches info for NewBB,
  // Probably clone more loop-unswitch related loop properties.
  BranchesInfo.cloneData(NewLoop, L, VMap);

  Loop *ParentLoop = L->getParentLoop();
  if (ParentLoop) {
    // Make sure to add the cloned preheader and exit blocks to the parent loop
    // as well.
    ParentLoop->addBasicBlockToLoop(NewBlocks[0], LI->getBase());
  }

  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
    BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
    // The new exit block should be in the same loop as the old one.
    if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
      ExitBBLoop->addBasicBlockToLoop(NewExit, LI->getBase());

    assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
           "Exit block should have been split to have one successor!");
    BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);

    // If the successor of the exit block had PHI nodes, add an entry for
    // NewExit.
    PHINode *PN;
    for (BasicBlock::iterator I = ExitSucc->begin(); isa<PHINode>(I); ++I) {
      PN = cast<PHINode>(I);
      Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
      ValueToValueMapTy::iterator It = VMap.find(V);
      if (It != VMap.end()) V = It->second;
      PN->addIncoming(V, NewExit);
    }

    if (LandingPadInst *LPad = NewExit->getLandingPadInst()) {
      PN = PHINode::Create(LPad->getType(), 0, "",
                           ExitSucc->getFirstInsertionPt());

      for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc);
           I != E; ++I) {
        BasicBlock *BB = *I;
        LandingPadInst *LPI = BB->getLandingPadInst();
        LPI->replaceAllUsesWith(PN);
        PN->addIncoming(LPI, BB);
      }
    }
  }

  // Rewrite the code to refer to itself.
  for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
    for (BasicBlock::iterator I = NewBlocks[i]->begin(),
           E = NewBlocks[i]->end(); I != E; ++I)
      RemapInstruction(I, VMap,RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);

  // Rewrite the original preheader to select between versions of the loop.
  BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
  assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
         "Preheader splitting did not work correctly!");

  // Emit the new branch that selects between the two versions of this loop.
  EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
  LPM->deleteSimpleAnalysisValue(OldBR, L);
  OldBR->eraseFromParent();

  LoopProcessWorklist.push_back(NewLoop);
  redoLoop = true;

  // Keep a WeakVH holding onto LIC.  If the first call to RewriteLoopBody
  // deletes the instruction (for example by simplifying a PHI that feeds into
  // the condition that we're unswitching on), we don't rewrite the second
  // iteration.
  WeakVH LICHandle(LIC);

  // Now we rewrite the original code to know that the condition is true and the
  // new code to know that the condition is false.
  RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);

  // It's possible that simplifying one loop could cause the other to be
  // changed to another value or a constant.  If its a constant, don't simplify
  // it.
  if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
      LICHandle && !isa<Constant>(LICHandle))
    RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);
}

/// RemoveFromWorklist - Remove all instances of I from the worklist vector
/// specified.
static void RemoveFromWorklist(Instruction *I,
                               std::vector<Instruction*> &Worklist) {
  std::vector<Instruction*>::iterator WI = std::find(Worklist.begin(),
                                                     Worklist.end(), I);
  while (WI != Worklist.end()) {
    unsigned Offset = WI-Worklist.begin();
    Worklist.erase(WI);
    WI = std::find(Worklist.begin()+Offset, Worklist.end(), I);
  }
}

/// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
/// program, replacing all uses with V and update the worklist.
static void ReplaceUsesOfWith(Instruction *I, Value *V,
                              std::vector<Instruction*> &Worklist,
                              Loop *L, LPPassManager *LPM) {
  DEBUG(dbgs() << "Replace with '" << *V << "': " << *I);

  // Add uses to the worklist, which may be dead now.
  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
    if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
      Worklist.push_back(Use);

  // Add users to the worklist which may be simplified now.
  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
       UI != E; ++UI)
    Worklist.push_back(cast<Instruction>(*UI));
  LPM->deleteSimpleAnalysisValue(I, L);
  RemoveFromWorklist(I, Worklist);
  I->replaceAllUsesWith(V);
  I->eraseFromParent();
  ++NumSimplify;
}

/// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
/// information, and remove any dead successors it has.
///
void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
                                     std::vector<Instruction*> &Worklist,
                                     Loop *L) {
  if (pred_begin(BB) != pred_end(BB)) {
    // This block isn't dead, since an edge to BB was just removed, see if there
    // are any easy simplifications we can do now.
    if (BasicBlock *Pred = BB->getSinglePredecessor()) {
      // If it has one pred, fold phi nodes in BB.
      while (isa<PHINode>(BB->begin()))
        ReplaceUsesOfWith(BB->begin(),
                          cast<PHINode>(BB->begin())->getIncomingValue(0),
                          Worklist, L, LPM);

      // If this is the header of a loop and the only pred is the latch, we now
      // have an unreachable loop.
      if (Loop *L = LI->getLoopFor(BB))
        if (loopHeader == BB && L->contains(Pred)) {
          // Remove the branch from the latch to the header block, this makes
          // the header dead, which will make the latch dead (because the header
          // dominates the latch).
          LPM->deleteSimpleAnalysisValue(Pred->getTerminator(), L);
          Pred->getTerminator()->eraseFromParent();
          new UnreachableInst(BB->getContext(), Pred);

          // The loop is now broken, remove it from LI.
          RemoveLoopFromHierarchy(L);

          // Reprocess the header, which now IS dead.
          RemoveBlockIfDead(BB, Worklist, L);
          return;
        }

      // If pred ends in a uncond branch, add uncond branch to worklist so that
      // the two blocks will get merged.
      if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
        if (BI->isUnconditional())
          Worklist.push_back(BI);
    }
    return;
  }

  DEBUG(dbgs() << "Nuking dead block: " << *BB);

  // Remove the instructions in the basic block from the worklist.
  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
    RemoveFromWorklist(I, Worklist);

    // Anything that uses the instructions in this basic block should have their
    // uses replaced with undefs.
    // If I is not void type then replaceAllUsesWith undef.
    // This allows ValueHandlers and custom metadata to adjust itself.
    if (!I->getType()->isVoidTy())
      I->replaceAllUsesWith(UndefValue::get(I->getType()));
  }

  // If this is the edge to the header block for a loop, remove the loop and
  // promote all subloops.
  if (Loop *BBLoop = LI->getLoopFor(BB)) {
    if (BBLoop->getLoopLatch() == BB) {
      RemoveLoopFromHierarchy(BBLoop);
      if (currentLoop == BBLoop) {
        currentLoop = 0;
        redoLoop = false;
      }
    }
  }

  // Remove the block from the loop info, which removes it from any loops it
  // was in.
  LI->removeBlock(BB);


  // Remove phi node entries in successors for this block.
  TerminatorInst *TI = BB->getTerminator();
  SmallVector<BasicBlock*, 4> Succs;
  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
    Succs.push_back(TI->getSuccessor(i));
    TI->getSuccessor(i)->removePredecessor(BB);
  }

  // Unique the successors, remove anything with multiple uses.
  array_pod_sort(Succs.begin(), Succs.end());
  Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end());

  // Remove the basic block, including all of the instructions contained in it.
  LPM->deleteSimpleAnalysisValue(BB, L);
  BB->eraseFromParent();
  // Remove successor blocks here that are not dead, so that we know we only
  // have dead blocks in this list.  Nondead blocks have a way of becoming dead,
  // then getting removed before we revisit them, which is badness.
  //
  for (unsigned i = 0; i != Succs.size(); ++i)
    if (pred_begin(Succs[i]) != pred_end(Succs[i])) {
      // One exception is loop headers.  If this block was the preheader for a
      // loop, then we DO want to visit the loop so the loop gets deleted.
      // We know that if the successor is a loop header, that this loop had to
      // be the preheader: the case where this was the latch block was handled
      // above and headers can only have two predecessors.
      if (!LI->isLoopHeader(Succs[i])) {
        Succs.erase(Succs.begin()+i);
        --i;
      }
    }

  for (unsigned i = 0, e = Succs.size(); i != e; ++i)
    RemoveBlockIfDead(Succs[i], Worklist, L);
}

/// RemoveLoopFromHierarchy - We have discovered that the specified loop has
/// become unwrapped, either because the backedge was deleted, or because the
/// edge into the header was removed.  If the edge into the header from the
/// latch block was removed, the loop is unwrapped but subloops are still alive,
/// so they just reparent loops.  If the loops are actually dead, they will be
/// removed later.
void LoopUnswitch::RemoveLoopFromHierarchy(Loop *L) {
  LPM->deleteLoopFromQueue(L);
  RemoveLoopFromWorklist(L);
}

// RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
// the value specified by Val in the specified loop, or we know it does NOT have
// that value.  Rewrite any uses of LIC or of properties correlated to it.
void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
                                                        Constant *Val,
                                                        bool IsEqual) {
  assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");

  // FIXME: Support correlated properties, like:
  //  for (...)
  //    if (li1 < li2)
  //      ...
  //    if (li1 > li2)
  //      ...

  // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
  // selects, switches.
  std::vector<Instruction*> Worklist;
  LLVMContext &Context = Val->getContext();


  // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
  // in the loop with the appropriate one directly.
  if (IsEqual || (isa<ConstantInt>(Val) &&
      Val->getType()->isIntegerTy(1))) {
    Value *Replacement;
    if (IsEqual)
      Replacement = Val;
    else
      Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
                                     !cast<ConstantInt>(Val)->getZExtValue());

    for (Value::use_iterator UI = LIC->use_begin(), E = LIC->use_end();
         UI != E; ++UI) {
      Instruction *U = dyn_cast<Instruction>(*UI);
      if (!U || !L->contains(U))
        continue;
      Worklist.push_back(U);
    }

    for (std::vector<Instruction*>::iterator UI = Worklist.begin();
         UI != Worklist.end(); ++UI)
      (*UI)->replaceUsesOfWith(LIC, Replacement);

    SimplifyCode(Worklist, L);
    return;
  }

  // Otherwise, we don't know the precise value of LIC, but we do know that it
  // is certainly NOT "Val".  As such, simplify any uses in the loop that we
  // can.  This case occurs when we unswitch switch statements.
  for (Value::use_iterator UI = LIC->use_begin(), E = LIC->use_end();
       UI != E; ++UI) {
    Instruction *U = dyn_cast<Instruction>(*UI);
    if (!U || !L->contains(U))
      continue;

    Worklist.push_back(U);

    // TODO: We could do other simplifications, for example, turning
    // 'icmp eq LIC, Val' -> false.

    // If we know that LIC is not Val, use this info to simplify code.
    SwitchInst *SI = dyn_cast<SwitchInst>(U);
    if (SI == 0 || !isa<ConstantInt>(Val)) continue;

    SwitchInst::CaseIt DeadCase = SI->findCaseValue(cast<ConstantInt>(Val));
    // Default case is live for multiple values.
    if (DeadCase == SI->case_default()) continue;

    // Found a dead case value.  Don't remove PHI nodes in the
    // successor if they become single-entry, those PHI nodes may
    // be in the Users list.

    BasicBlock *Switch = SI->getParent();
    BasicBlock *SISucc = DeadCase.getCaseSuccessor();
    BasicBlock *Latch = L->getLoopLatch();

    BranchesInfo.setUnswitched(SI, Val);

    if (!SI->findCaseDest(SISucc)) continue;  // Edge is critical.
    // If the DeadCase successor dominates the loop latch, then the
    // transformation isn't safe since it will delete the sole predecessor edge
    // to the latch.
    if (Latch && DT->dominates(SISucc, Latch))
      continue;

    // FIXME: This is a hack.  We need to keep the successor around
    // and hooked up so as to preserve the loop structure, because
    // trying to update it is complicated.  So instead we preserve the
    // loop structure and put the block on a dead code path.
    SplitEdge(Switch, SISucc, this);
    // Compute the successors instead of relying on the return value
    // of SplitEdge, since it may have split the switch successor
    // after PHI nodes.
    BasicBlock *NewSISucc = DeadCase.getCaseSuccessor();
    BasicBlock *OldSISucc = *succ_begin(NewSISucc);
    // Create an "unreachable" destination.
    BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
                                           Switch->getParent(),
                                           OldSISucc);
    new UnreachableInst(Context, Abort);
    // Force the new case destination to branch to the "unreachable"
    // block while maintaining a (dead) CFG edge to the old block.
    NewSISucc->getTerminator()->eraseFromParent();
    BranchInst::Create(Abort, OldSISucc,
                       ConstantInt::getTrue(Context), NewSISucc);
    // Release the PHI operands for this edge.
    for (BasicBlock::iterator II = NewSISucc->begin();
         PHINode *PN = dyn_cast<PHINode>(II); ++II)
      PN->setIncomingValue(PN->getBasicBlockIndex(Switch),
                           UndefValue::get(PN->getType()));
    // Tell the domtree about the new block. We don't fully update the
    // domtree here -- instead we force it to do a full recomputation
    // after the pass is complete -- but we do need to inform it of
    // new blocks.
    if (DT)
      DT->addNewBlock(Abort, NewSISucc);
  }

  SimplifyCode(Worklist, L);
}

/// SimplifyCode - Okay, now that we have simplified some instructions in the
/// loop, walk over it and constant prop, dce, and fold control flow where
/// possible.  Note that this is effectively a very simple loop-structure-aware
/// optimizer.  During processing of this loop, L could very well be deleted, so
/// it must not be used.
///
/// FIXME: When the loop optimizer is more mature, separate this out to a new
/// pass.
///
void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
  while (!Worklist.empty()) {
    Instruction *I = Worklist.back();
    Worklist.pop_back();

    // Simple DCE.
    if (isInstructionTriviallyDead(I)) {
      DEBUG(dbgs() << "Remove dead instruction '" << *I);

      // Add uses to the worklist, which may be dead now.
      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
        if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
          Worklist.push_back(Use);
      LPM->deleteSimpleAnalysisValue(I, L);
      RemoveFromWorklist(I, Worklist);
      I->eraseFromParent();
      ++NumSimplify;
      continue;
    }

    // See if instruction simplification can hack this up.  This is common for
    // things like "select false, X, Y" after unswitching made the condition be
    // 'false'.
    if (Value *V = SimplifyInstruction(I, 0, 0, DT))
      if (LI->replacementPreservesLCSSAForm(I, V)) {
        ReplaceUsesOfWith(I, V, Worklist, L, LPM);
        continue;
      }

    // Special case hacks that appear commonly in unswitched code.
    if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
      if (BI->isUnconditional()) {
        // If BI's parent is the only pred of the successor, fold the two blocks
        // together.
        BasicBlock *Pred = BI->getParent();
        BasicBlock *Succ = BI->getSuccessor(0);
        BasicBlock *SinglePred = Succ->getSinglePredecessor();
        if (!SinglePred) continue;  // Nothing to do.
        assert(SinglePred == Pred && "CFG broken");

        DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- "
              << Succ->getName() << "\n");

        // Resolve any single entry PHI nodes in Succ.
        while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
          ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);

        // If Succ has any successors with PHI nodes, update them to have
        // entries coming from Pred instead of Succ.
        Succ->replaceAllUsesWith(Pred);

        // Move all of the successor contents from Succ to Pred.
        Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(),
                                   Succ->end());
        LPM->deleteSimpleAnalysisValue(BI, L);
        BI->eraseFromParent();
        RemoveFromWorklist(BI, Worklist);

        // Remove Succ from the loop tree.
        LI->removeBlock(Succ);
        LPM->deleteSimpleAnalysisValue(Succ, L);
        Succ->eraseFromParent();
        ++NumSimplify;
        continue;
      }

      if (ConstantInt *CB = dyn_cast<ConstantInt>(BI->getCondition())){
        // Conditional branch.  Turn it into an unconditional branch, then
        // remove dead blocks.
        continue;  // FIXME: Enable.

        DEBUG(dbgs() << "Folded branch: " << *BI);
        BasicBlock *DeadSucc = BI->getSuccessor(CB->getZExtValue());
        BasicBlock *LiveSucc = BI->getSuccessor(!CB->getZExtValue());
        DeadSucc->removePredecessor(BI->getParent(), true);
        Worklist.push_back(BranchInst::Create(LiveSucc, BI));
        LPM->deleteSimpleAnalysisValue(BI, L);
        BI->eraseFromParent();
        RemoveFromWorklist(BI, Worklist);
        ++NumSimplify;

        RemoveBlockIfDead(DeadSucc, Worklist, L);
      }
      continue;
    }
  }
}