aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
blob: eb7d4930edfaa4c2134dfcb1fe0961d0b5dee86e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
//===-- LoopIdiomRecognize.cpp - Loop idiom recognition -------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass implements an idiom recognizer that transforms simple loops into a
// non-loop form.  In cases that this kicks in, it can be a significant
// performance win.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "loop-idiom"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

// TODO: Recognize "N" size array multiplies: replace with call to blas or
// something.

namespace {
  class LoopIdiomRecognize : public LoopPass {
    Loop *CurLoop;
    const TargetData *TD;
    ScalarEvolution *SE;
  public:
    static char ID;
    explicit LoopIdiomRecognize() : LoopPass(ID) {
      initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
    }

    bool runOnLoop(Loop *L, LPPassManager &LPM);

    bool processLoopStore(StoreInst *SI, const SCEV *BECount);
    
    /// This transformation requires natural loop information & requires that
    /// loop preheaders be inserted into the CFG.
    ///
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequired<LoopInfo>();
      AU.addPreserved<LoopInfo>();
      AU.addRequiredID(LoopSimplifyID);
      AU.addPreservedID(LoopSimplifyID);
      AU.addRequiredID(LCSSAID);
      AU.addPreservedID(LCSSAID);
      AU.addRequired<ScalarEvolution>();
      AU.addPreserved<ScalarEvolution>();
      AU.addPreserved<DominatorTree>();
    }
  };
}

char LoopIdiomRecognize::ID = 0;
INITIALIZE_PASS_BEGIN(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
                      false, false)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LCSSA)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_END(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
                    false, false)

Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognize(); }

bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
  CurLoop = L;
  
  // We only look at trivial single basic block loops.
  // TODO: eventually support more complex loops, scanning the header.
  if (L->getBlocks().size() != 1)
    return false;
  
  // The trip count of the loop must be analyzable.
  SE = &getAnalysis<ScalarEvolution>();
  if (!SE->hasLoopInvariantBackedgeTakenCount(L))
    return false;
  const SCEV *BECount = SE->getBackedgeTakenCount(L);
  if (isa<SCEVCouldNotCompute>(BECount)) return false;
  
  // We require target data for now.
  TD = getAnalysisIfAvailable<TargetData>();
  if (TD == 0) return false;
  
  BasicBlock *BB = L->getHeader();
  DEBUG(dbgs() << "loop-idiom Scanning: F[" << BB->getParent()->getName()
               << "] Loop %" << BB->getName() << "\n");

  bool MadeChange = false;
  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
    // Look for store instructions, which may be memsets.
    if (StoreInst *SI = dyn_cast<StoreInst>(I++))
      MadeChange |= processLoopStore(SI, BECount);
  }
  
  return MadeChange;
}

/// scanBlock - Look over a block to see if we can promote anything out of it.
bool LoopIdiomRecognize::processLoopStore(StoreInst *SI, const SCEV *BECount) {
  Value *StoredVal = SI->getValueOperand();
  
  // Check to see if the store updates all bits in memory.  We don't want to
  // process things like a store of i3.  We also require that the store be a
  // multiple of a byte.
  uint64_t SizeInBits = TD->getTypeSizeInBits(StoredVal->getType());
  if ((SizeInBits & 7) || (SizeInBits >> 32) != 0 ||
      SizeInBits != TD->getTypeStoreSizeInBits(StoredVal->getType()))
    return false;
  
  // See if the pointer expression is an AddRec like {base,+,1} on the current
  // loop, which indicates a strided store.  If we have something else, it's a
  // random store we can't handle.
  const SCEVAddRecExpr *Ev =
    dyn_cast<SCEVAddRecExpr>(SE->getSCEV(SI->getPointerOperand()));
  if (Ev == 0 || Ev->getLoop() != CurLoop || !Ev->isAffine())
    return false;

  // Check to see if the stride matches the size of the store.  If so, then we
  // know that every byte is touched in the loop.
  unsigned StoreSize = (unsigned)SizeInBits >> 3; 
  const SCEVConstant *Stride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
  if (Stride == 0 || StoreSize != Stride->getValue()->getValue())
    return false;
  
  errs() << "Found strided store: " << *Ev << "\n";
  
  // Check for memcpy here.
  
  
  // If the stored value is a byte-wise value (like i32 -1), then it may be
  // turned into a memset of i8 -1, assuming that all the consequtive bytes
  // are stored.  A store of i32 0x01020304 can never be turned into a memset.
  Value *SplatValue = isBytewiseValue(StoredVal);
  if (SplatValue == 0) return false;
  

  return false;
}