1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
|
//===- InstructionCombining.cpp - Combine multiple instructions -------------=//
//
// InstructionCombining - Combine instructions to form fewer, simple
// instructions. This pass does not modify the CFG, and has a tendancy to
// make instructions dead, so a subsequent DIE pass is useful.
//
// This pass combines things like:
// %Y = add int 1, %X
// %Z = add int 1, %Y
// into:
// %Z = add int 2, %X
//
// This is a simple worklist driven algorithm.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/InstructionCombining.h"
#include "llvm/ConstantHandling.h"
#include "llvm/iMemory.h"
#include "llvm/iOther.h"
#include "llvm/iOperators.h"
#include "llvm/Pass.h"
#include "llvm/Support/InstIterator.h"
#include "llvm/Support/InstVisitor.h"
#include "../TransformInternals.h"
namespace {
class InstCombiner : public FunctionPass,
public InstVisitor<InstCombiner, Instruction*> {
// Worklist of all of the instructions that need to be simplified.
std::vector<Instruction*> WorkList;
void AddUsesToWorkList(Instruction *I) {
// The instruction was simplified, add all users of the instruction to
// the work lists because they might get more simplified now...
//
for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
UI != UE; ++UI)
WorkList.push_back(cast<Instruction>(*UI));
}
public:
const char *getPassName() const { return "Instruction Combining"; }
virtual bool runOnFunction(Function *F);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.preservesCFG();
}
// Visitation implementation - Implement instruction combining for different
// instruction types. The semantics are as follows:
// Return Value:
// null - No change was made
// I - Change was made, I is still valid
// otherwise - Change was made, replace I with returned instruction
//
Instruction *visitAdd(BinaryOperator *I);
Instruction *visitSub(BinaryOperator *I);
Instruction *visitMul(BinaryOperator *I);
Instruction *visitCastInst(CastInst *CI);
Instruction *visitGetElementPtrInst(GetElementPtrInst *GEP);
Instruction *visitMemAccessInst(MemAccessInst *MAI);
// visitInstruction - Specify what to return for unhandled instructions...
Instruction *visitInstruction(Instruction *I) { return 0; }
};
}
// Make sure that this instruction has a constant on the right hand side if it
// has any constant arguments. If not, fix it an return true.
//
static bool SimplifyBinOp(BinaryOperator *I) {
if (isa<Constant>(I->getOperand(0)) && !isa<Constant>(I->getOperand(1)))
return !I->swapOperands();
return false;
}
Instruction *InstCombiner::visitAdd(BinaryOperator *I) {
if (I->use_empty()) return 0; // Don't fix dead add instructions...
bool Changed = SimplifyBinOp(I);
Value *Op1 = I->getOperand(0);
// Simplify add instructions with a constant RHS...
if (Constant *Op2 = dyn_cast<Constant>(I->getOperand(1))) {
// Eliminate 'add int %X, 0'
if (I->getType()->isIntegral() && Op2->isNullValue()) {
AddUsesToWorkList(I); // Add all modified instrs to worklist
I->replaceAllUsesWith(Op1);
return I;
}
if (BinaryOperator *IOp1 = dyn_cast<BinaryOperator>(Op1)) {
Changed |= SimplifyBinOp(IOp1);
if (IOp1->getOpcode() == Instruction::Add &&
isa<Constant>(IOp1->getOperand(1))) {
// Fold:
// %Y = add int %X, 1
// %Z = add int %Y, 1
// into:
// %Z = add int %X, 2
//
if (Constant *Val = *Op2 + *cast<Constant>(IOp1->getOperand(1))) {
I->setOperand(0, IOp1->getOperand(0));
I->setOperand(1, Val);
return I;
}
}
}
}
return Changed ? I : 0;
}
Instruction *InstCombiner::visitSub(BinaryOperator *I) {
if (I->use_empty()) return 0; // Don't fix dead add instructions...
bool Changed = SimplifyBinOp(I);
// If this is a subtract instruction with a constant RHS, convert it to an add
// instruction of a negative constant
//
if (Constant *Op2 = dyn_cast<Constant>(I->getOperand(1)))
// Calculate 0 - RHS
if (Constant *RHS = *Constant::getNullValue(I->getType()) - *Op2) {
return BinaryOperator::create(Instruction::Add, I->getOperand(0), RHS,
I->getName());
}
return Changed ? I : 0;
}
Instruction *InstCombiner::visitMul(BinaryOperator *I) {
if (I->use_empty()) return 0; // Don't fix dead add instructions...
bool Changed = SimplifyBinOp(I);
Value *Op1 = I->getOperand(0);
// Simplify add instructions with a constant RHS...
if (Constant *Op2 = dyn_cast<Constant>(I->getOperand(1))) {
if (I->getType()->isIntegral() && cast<ConstantInt>(Op2)->equalsInt(1)){
// Eliminate 'mul int %X, 1'
AddUsesToWorkList(I); // Add all modified instrs to worklist
I->replaceAllUsesWith(Op1);
return I;
} else if (I->getType()->isIntegral() &&
cast<ConstantInt>(Op2)->equalsInt(2)) {
// Convert 'mul int %X, 2' to 'add int %X, %X'
return BinaryOperator::create(Instruction::Add, Op1, Op1, I->getName());
} else if (Op2->isNullValue()) {
// Eliminate 'mul int %X, 0'
AddUsesToWorkList(I); // Add all modified instrs to worklist
I->replaceAllUsesWith(Op2); // Set this value to zero directly
return I;
}
}
return Changed ? I : 0;
}
// isEliminableCastOfCast - Return true if it is valid to eliminate the CI
// instruction.
//
static inline bool isEliminableCastOfCast(const CastInst *CI,
const CastInst *CSrc) {
assert(CI->getOperand(0) == CSrc);
const Type *SrcTy = CSrc->getOperand(0)->getType();
const Type *MidTy = CSrc->getType();
const Type *DstTy = CI->getType();
// It is legal to eliminate the instruction if casting A->B->A
if (SrcTy == DstTy) return true;
// Allow free casting and conversion of sizes as long as the sign doesn't
// change...
if (SrcTy->isSigned() == MidTy->isSigned() &&
MidTy->isSigned() == DstTy->isSigned())
return true;
// Otherwise, we cannot succeed. Specifically we do not want to allow things
// like: short -> ushort -> uint, because this can create wrong results if
// the input short is negative!
//
return false;
}
// CastInst simplification
//
Instruction *InstCombiner::visitCastInst(CastInst *CI) {
// If the user is casting a value to the same type, eliminate this cast
// instruction...
if (CI->getType() == CI->getOperand(0)->getType() && !CI->use_empty()) {
AddUsesToWorkList(CI); // Add all modified instrs to worklist
CI->replaceAllUsesWith(CI->getOperand(0));
return CI;
}
// If casting the result of another cast instruction, try to eliminate this
// one!
//
if (CastInst *CSrc = dyn_cast<CastInst>(CI->getOperand(0)))
if (isEliminableCastOfCast(CI, CSrc)) {
// This instruction now refers directly to the cast's src operand. This
// has a good chance of making CSrc dead.
CI->setOperand(0, CSrc->getOperand(0));
return CI;
}
return 0;
}
Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst *GEP) {
// Is it getelementptr %P, uint 0
// If so, elminate the noop.
if (GEP->getNumOperands() == 2 && !GEP->use_empty() &&
GEP->getOperand(1) == Constant::getNullValue(Type::UIntTy)) {
AddUsesToWorkList(GEP); // Add all modified instrs to worklist
GEP->replaceAllUsesWith(GEP->getOperand(0));
return GEP;
}
return visitMemAccessInst(GEP);
}
// Combine Indices - If the source pointer to this mem access instruction is a
// getelementptr instruction, combine the indices of the GEP into this
// instruction
//
Instruction *InstCombiner::visitMemAccessInst(MemAccessInst *MAI) {
GetElementPtrInst *Src =
dyn_cast<GetElementPtrInst>(MAI->getPointerOperand());
if (!Src) return 0;
std::vector<Value *> Indices;
// Only special case we have to watch out for is pointer arithmetic on the
// 0th index of MAI.
unsigned FirstIdx = MAI->getFirstIndexOperandNumber();
if (FirstIdx == MAI->getNumOperands() ||
(FirstIdx == MAI->getNumOperands()-1 &&
MAI->getOperand(FirstIdx) == ConstantUInt::get(Type::UIntTy, 0))) {
|