aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/Instrumentation/MemorySanitizer.cpp
blob: 947a2e3b12c7d8e507a512ffe4a388de215e8ff6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
//===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file is a part of MemorySanitizer, a detector of uninitialized
/// reads.
///
/// Status: early prototype.
///
/// The algorithm of the tool is similar to Memcheck
/// (http://goo.gl/QKbem). We associate a few shadow bits with every
/// byte of the application memory, poison the shadow of the malloc-ed
/// or alloca-ed memory, load the shadow bits on every memory read,
/// propagate the shadow bits through some of the arithmetic
/// instruction (including MOV), store the shadow bits on every memory
/// write, report a bug on some other instructions (e.g. JMP) if the
/// associated shadow is poisoned.
///
/// But there are differences too. The first and the major one:
/// compiler instrumentation instead of binary instrumentation. This
/// gives us much better register allocation, possible compiler
/// optimizations and a fast start-up. But this brings the major issue
/// as well: msan needs to see all program events, including system
/// calls and reads/writes in system libraries, so we either need to
/// compile *everything* with msan or use a binary translation
/// component (e.g. DynamoRIO) to instrument pre-built libraries.
/// Another difference from Memcheck is that we use 8 shadow bits per
/// byte of application memory and use a direct shadow mapping. This
/// greatly simplifies the instrumentation code and avoids races on
/// shadow updates (Memcheck is single-threaded so races are not a
/// concern there. Memcheck uses 2 shadow bits per byte with a slow
/// path storage that uses 8 bits per byte).
///
/// The default value of shadow is 0, which means "clean" (not poisoned).
///
/// Every module initializer should call __msan_init to ensure that the
/// shadow memory is ready. On error, __msan_warning is called. Since
/// parameters and return values may be passed via registers, we have a
/// specialized thread-local shadow for return values
/// (__msan_retval_tls) and parameters (__msan_param_tls).
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "msan"

#include "llvm/Transforms/Instrumentation.h"
#include "BlackList.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/ValueMap.h"
#include "llvm/DataLayout.h"
#include "llvm/Function.h"
#include "llvm/IRBuilder.h"
#include "llvm/InlineAsm.h"
#include "llvm/InstVisitor.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/LLVMContext.h"
#include "llvm/MDBuilder.h"
#include "llvm/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include "llvm/Type.h"

using namespace llvm;

static const uint64_t kShadowMask32 = 1ULL << 31;
static const uint64_t kShadowMask64 = 1ULL << 46;
static const uint64_t kOriginOffset32 = 1ULL << 30;
static const uint64_t kOriginOffset64 = 1ULL << 45;

// This is an important flag that makes the reports much more
// informative at the cost of greater slowdown. Not fully implemented
// yet.
// FIXME: this should be a top-level clang flag, e.g.
// -fmemory-sanitizer-full.
static cl::opt<bool> ClTrackOrigins("msan-track-origins",
       cl::desc("Track origins (allocation sites) of poisoned memory"),
       cl::Hidden, cl::init(false));
static cl::opt<bool> ClKeepGoing("msan-keep-going",
       cl::desc("keep going after reporting a UMR"),
       cl::Hidden, cl::init(false));
static cl::opt<bool> ClPoisonStack("msan-poison-stack",
       cl::desc("poison uninitialized stack variables"),
       cl::Hidden, cl::init(true));
static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
       cl::desc("poison uninitialized stack variables with a call"),
       cl::Hidden, cl::init(false));
static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
       cl::desc("poison uninitialized stack variables with the given patter"),
       cl::Hidden, cl::init(0xff));

static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
       cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
       cl::Hidden, cl::init(true));

static cl::opt<bool> ClStoreCleanOrigin("msan-store-clean-origin",
       cl::desc("store origin for clean (fully initialized) values"),
       cl::Hidden, cl::init(false));

// This flag controls whether we check the shadow of the address
// operand of load or store. Such bugs are very rare, since load from
// a garbage address typically results in SEGV, but still happen
// (e.g. only lower bits of address are garbage, or the access happens
// early at program startup where malloc-ed memory is more likely to
// be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
       cl::desc("report accesses through a pointer which has poisoned shadow"),
       cl::Hidden, cl::init(true));

static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
       cl::desc("print out instructions with default strict semantics"),
       cl::Hidden, cl::init(false));

static cl::opt<std::string>  ClBlackListFile("msan-blacklist",
       cl::desc("File containing the list of functions where MemorySanitizer "
                "should not report bugs"), cl::Hidden);

namespace {

/// \brief An instrumentation pass implementing detection of uninitialized
/// reads.
///
/// MemorySanitizer: instrument the code in module to find
/// uninitialized reads.
class MemorySanitizer : public FunctionPass {
public:
  MemorySanitizer() : FunctionPass(ID), TD(0), WarningFn(0) { }
  const char *getPassName() const { return "MemorySanitizer"; }
  bool runOnFunction(Function &F);
  bool doInitialization(Module &M);
  static char ID;  // Pass identification, replacement for typeid.

private:
  void initializeCallbacks(Module &M);

  DataLayout *TD;
  LLVMContext *C;
  Type *IntptrTy;
  Type *OriginTy;
  /// \brief Thread-local shadow storage for function parameters.
  GlobalVariable *ParamTLS;
  /// \brief Thread-local origin storage for function parameters.
  GlobalVariable *ParamOriginTLS;
  /// \brief Thread-local shadow storage for function return value.
  GlobalVariable *RetvalTLS;
  /// \brief Thread-local origin storage for function return value.
  GlobalVariable *RetvalOriginTLS;
  /// \brief Thread-local shadow storage for in-register va_arg function
  /// parameters (x86_64-specific).
  GlobalVariable *VAArgTLS;
  /// \brief Thread-local shadow storage for va_arg overflow area
  /// (x86_64-specific).
  GlobalVariable *VAArgOverflowSizeTLS;
  /// \brief Thread-local space used to pass origin value to the UMR reporting
  /// function.
  GlobalVariable *OriginTLS;

  /// \brief The run-time callback to print a warning.
  Value *WarningFn;
  /// \brief Run-time helper that copies origin info for a memory range.
  Value *MsanCopyOriginFn;
  /// \brief Run-time helper that generates a new origin value for a stack
  /// allocation.
  Value *MsanSetAllocaOriginFn;
  /// \brief Run-time helper that poisons stack on function entry.
  Value *MsanPoisonStackFn;
  /// \brief MSan runtime replacements for memmove, memcpy and memset.
  Value *MemmoveFn, *MemcpyFn, *MemsetFn;

  /// \brief Address mask used in application-to-shadow address calculation.
  /// ShadowAddr is computed as ApplicationAddr & ~ShadowMask.
  uint64_t ShadowMask;
  /// \brief Offset of the origin shadow from the "normal" shadow.
  /// OriginAddr is computed as (ShadowAddr + OriginOffset) & ~3ULL
  uint64_t OriginOffset;
  /// \brief Branch weights for error reporting.
  MDNode *ColdCallWeights;
  /// \brief Branch weights for origin store.
  MDNode *OriginStoreWeights;
  /// \brief The blacklist.
  OwningPtr<BlackList> BL;
  /// \brief An empty volatile inline asm that prevents callback merge.
  InlineAsm *EmptyAsm;

  friend struct MemorySanitizerVisitor;
  friend struct VarArgAMD64Helper;
};
}  // namespace

char MemorySanitizer::ID = 0;
INITIALIZE_PASS(MemorySanitizer, "msan",
                "MemorySanitizer: detects uninitialized reads.",
                false, false)

FunctionPass *llvm::createMemorySanitizerPass() {
  return new MemorySanitizer();
}

/// \brief Create a non-const global initialized with the given string.
///
/// Creates a writable global for Str so that we can pass it to the
/// run-time lib. Runtime uses first 4 bytes of the string to store the
/// frame ID, so the string needs to be mutable.
static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
                                                            StringRef Str) {
  Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
  return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
                            GlobalValue::PrivateLinkage, StrConst, "");
}


/// \brief Insert extern declaration of runtime-provided functions and globals.
void MemorySanitizer::initializeCallbacks(Module &M) {
  // Only do this once.
  if (WarningFn)
    return;

  IRBuilder<> IRB(*C);
  // Create the callback.
  // FIXME: this function should have "Cold" calling conv,
  // which is not yet implemented.
  StringRef WarningFnName = ClKeepGoing ? "__msan_warning"
                                        : "__msan_warning_noreturn";
  WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), NULL);

  MsanCopyOriginFn = M.getOrInsertFunction(
    "__msan_copy_origin", IRB.getVoidTy(), IRB.getInt8PtrTy(),
    IRB.getInt8PtrTy(), IntptrTy, NULL);
  MsanSetAllocaOriginFn = M.getOrInsertFunction(
    "__msan_set_alloca_origin", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
    IRB.getInt8PtrTy(), NULL);
  MsanPoisonStackFn = M.getOrInsertFunction(
    "__msan_poison_stack", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, NULL);
  MemmoveFn = M.getOrInsertFunction(
    "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
    IntptrTy, NULL);
  MemcpyFn = M.getOrInsertFunction(
    "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
    IntptrTy, NULL);
  MemsetFn = M.getOrInsertFunction(
    "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
    IntptrTy, NULL);

  // Create globals.
  RetvalTLS = new GlobalVariable(
    M, ArrayType::get(IRB.getInt64Ty(), 8), false,
    GlobalVariable::ExternalLinkage, 0, "__msan_retval_tls", 0,
    GlobalVariable::GeneralDynamicTLSModel);
  RetvalOriginTLS = new GlobalVariable(
    M, OriginTy, false, GlobalVariable::ExternalLinkage, 0,
    "__msan_retval_origin_tls", 0, GlobalVariable::GeneralDynamicTLSModel);

  ParamTLS = new GlobalVariable(
    M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
    GlobalVariable::ExternalLinkage, 0, "__msan_param_tls", 0,
    GlobalVariable::GeneralDynamicTLSModel);
  ParamOriginTLS = new GlobalVariable(
    M, ArrayType::get(OriginTy, 1000), false, GlobalVariable::ExternalLinkage,
    0, "__msan_param_origin_tls", 0, GlobalVariable::GeneralDynamicTLSModel);

  VAArgTLS = new GlobalVariable(
    M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
    GlobalVariable::ExternalLinkage, 0, "__msan_va_arg_tls", 0,
    GlobalVariable::GeneralDynamicTLSModel);
  VAArgOverflowSizeTLS = new GlobalVariable(
    M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, 0,
    "__msan_va_arg_overflow_size_tls", 0,
    GlobalVariable::GeneralDynamicTLSModel);
  OriginTLS = new GlobalVariable(
    M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, 0,
    "__msan_origin_tls", 0, GlobalVariable::GeneralDynamicTLSModel);

  // We insert an empty inline asm after __msan_report* to avoid callback merge.
  EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
                            StringRef(""), StringRef(""),
                            /*hasSideEffects=*/true);
}

/// \brief Module-level initialization.
///
/// inserts a call to __msan_init to the module's constructor list.
bool MemorySanitizer::doInitialization(Module &M) {
  TD = getAnalysisIfAvailable<DataLayout>();
  if (!TD)
    return false;
  BL.reset(new BlackList(ClBlackListFile));
  C = &(M.getContext());
  unsigned PtrSize = TD->getPointerSizeInBits(/* AddressSpace */0);
  switch (PtrSize) {
    case 64:
      ShadowMask = kShadowMask64;
      OriginOffset = kOriginOffset64;
      break;
    case 32:
      ShadowMask = kShadowMask32;
      OriginOffset = kOriginOffset32;
      break;
    default:
      report_fatal_error("unsupported pointer size");
      break;
  }

  IRBuilder<> IRB(*C);
  IntptrTy = IRB.getIntPtrTy(TD);
  OriginTy = IRB.getInt32Ty();

  ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
  OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);

  // Insert a call to __msan_init/__msan_track_origins into the module's CTORs.
  appendToGlobalCtors(M, cast<Function>(M.getOrInsertFunction(
                      "__msan_init", IRB.getVoidTy(), NULL)), 0);

  new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
                     IRB.getInt32(ClTrackOrigins), "__msan_track_origins");

  return true;
}

namespace {

/// \brief A helper class that handles instrumentation of VarArg
/// functions on a particular platform.
///
/// Implementations are expected to insert the instrumentation
/// necessary to propagate argument shadow through VarArg function
/// calls. Visit* methods are called during an InstVisitor pass over
/// the function, and should avoid creating new basic blocks. A new
/// instance of this class is created for each instrumented function.
struct VarArgHelper {
  /// \brief Visit a CallSite.
  virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;

  /// \brief Visit a va_start call.
  virtual void visitVAStartInst(VAStartInst &I) = 0;

  /// \brief Visit a va_copy call.
  virtual void visitVACopyInst(VACopyInst &I) = 0;

  /// \brief Finalize function instrumentation.
  ///
  /// This method is called after visiting all interesting (see above)
  /// instructions in a function.
  virtual void finalizeInstrumentation() = 0;

  virtual ~VarArgHelper() {}
};

struct MemorySanitizerVisitor;

VarArgHelper*
CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
                   MemorySanitizerVisitor &Visitor);

/// This class does all the work for a given function. Store and Load
/// instructions store and load corresponding shadow and origin
/// values. Most instructions propagate shadow from arguments to their
/// return values. Certain instructions (most importantly, BranchInst)
/// test their argument shadow and print reports (with a runtime call) if it's
/// non-zero.
struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
  Function &F;
  MemorySanitizer &MS;
  SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
  ValueMap<Value*, Value*> ShadowMap, OriginMap;
  bool InsertChecks;
  OwningPtr<VarArgHelper> VAHelper;

  // An unfortunate workaround for asymmetric lowering of va_arg stuff.
  // See a comment in visitCallSite for more details.
  static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
  static const unsigned AMD64FpEndOffset = 176;

  struct ShadowOriginAndInsertPoint {
    Instruction *Shadow;
    Instruction *Origin;
    Instruction *OrigIns;
    ShadowOriginAndInsertPoint(Instruction *S, Instruction *O, Instruction *I)
      : Shadow(S), Origin(O), OrigIns(I) { }
    ShadowOriginAndInsertPoint() : Shadow(0), Origin(0), OrigIns(0) { }
  };
  SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
  SmallVector<Instruction*, 16> StoreList;

  MemorySanitizerVisitor(Function &F, MemorySanitizer &MS)
    : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) {
    InsertChecks = !MS.BL->isIn(F);
    DEBUG(if (!InsertChecks)
            dbgs() << "MemorySanitizer is not inserting checks into '"
                   << F.getName() << "'\n");
  }

  void materializeStores() {
    for (size_t i = 0, n = StoreList.size(); i < n; i++) {
      StoreInst& I = *dyn_cast<StoreInst>(StoreList[i]);

      IRBuilder<> IRB(&I);
      Value *Val = I.getValueOperand();
      Value *Addr = I.getPointerOperand();
      Value *Shadow = getShadow(Val);
      Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);

      StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, I.getAlignment());
      DEBUG(dbgs() << "  STORE: " << *NewSI << "\n");
      (void)NewSI;
      // If the store is volatile, add a check.
      if (I.isVolatile())
        insertCheck(Val, &I);
      if (ClCheckAccessAddress)
        insertCheck(Addr, &I);

      if (ClTrackOrigins) {
        if (ClStoreCleanOrigin || isa<StructType>(Shadow->getType())) {
          IRB.CreateAlignedStore(getOrigin(Val), getOriginPtr(Addr, IRB), I.getAlignment());
        } else {
          Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);

          Constant *Cst = dyn_cast_or_null<Constant>(ConvertedShadow);
          // TODO(eugenis): handle non-zero constant shadow by inserting an
          // unconditional check (can not simply fail compilation as this could
          // be in the dead code).
          if (Cst)
            continue;

          Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
              getCleanShadow(ConvertedShadow), "_mscmp");
          Instruction *CheckTerm =
            SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false, MS.OriginStoreWeights);
          IRBuilder<> IRBNewBlock(CheckTerm);
          IRBNewBlock.CreateAlignedStore(getOrigin(Val),
              getOriginPtr(Addr, IRBNewBlock), I.getAlignment());
        }
      }
    }
  }

  void materializeChecks() {
    for (size_t i = 0, n = InstrumentationList.size(); i < n; i++) {
      Instruction *Shadow = InstrumentationList[i].Shadow;
      Instruction *OrigIns = InstrumentationList[i].OrigIns;
      IRBuilder<> IRB(OrigIns);
      DEBUG(dbgs() << "  SHAD0 : " << *Shadow << "\n");
      Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
      DEBUG(dbgs() << "  SHAD1 : " << *ConvertedShadow << "\n");
      Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
                                    getCleanShadow(ConvertedShadow), "_mscmp");
      Instruction *CheckTerm =
        SplitBlockAndInsertIfThen(cast<Instruction>(Cmp),
                                  /* Unreachable */ !ClKeepGoing,
                                  MS.ColdCallWeights);

      IRB.SetInsertPoint(CheckTerm);
      if (ClTrackOrigins) {
        Instruction *Origin = InstrumentationList[i].Origin;
        IRB.CreateStore(Origin ? (Value*)Origin : (Value*)IRB.getInt32(0),
                        MS.OriginTLS);
      }
      CallInst *Call = IRB.CreateCall(MS.WarningFn);
      Call->setDebugLoc(OrigIns->getDebugLoc());
      IRB.CreateCall(MS.EmptyAsm);
      DEBUG(dbgs() << "  CHECK: " << *Cmp << "\n");
    }
    DEBUG(dbgs() << "DONE:\n" << F);
  }

  /// \brief Add MemorySanitizer instrumentation to a function.
  bool runOnFunction() {
    MS.initializeCallbacks(*F.getParent());
    if (!MS.TD) return false;
    // Iterate all BBs in depth-first order and create shadow instructions
    // for all instructions (where applicable).
    // For PHI nodes we create dummy shadow PHIs which will be finalized later.
    for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
         DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
      BasicBlock *BB = *DI;
      visit(*BB);
    }

    // Finalize PHI nodes.
    for (size_t i = 0, n = ShadowPHINodes.size(); i < n; i++) {
      PHINode *PN = ShadowPHINodes[i];
      PHINode *PNS = cast<PHINode>(getShadow(PN));
      PHINode *PNO = ClTrackOrigins ? cast<PHINode>(getOrigin(PN)) : 0;
      size_t NumValues = PN->getNumIncomingValues();
      for (size_t v = 0; v < NumValues; v++) {
        PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
        if (PNO)
          PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
      }
    }

    VAHelper->finalizeInstrumentation();

    // Delayed instrumentation of StoreInst.
    // This may add new checks to be inserted later.
    materializeStores();

    // Insert shadow value checks.
    materializeChecks();

    return true;
  }

  /// \brief Compute the shadow type that corresponds to a given Value.
  Type *getShadowTy(Value *V) {
    return getShadowTy(V->getType());
  }

  /// \brief Compute the shadow type that corresponds to a given Type.
  Type *getShadowTy(Type *OrigTy) {
    if (!OrigTy->isSized()) {
      return 0;
    }
    // For integer type, shadow is the same as the original type.
    // This may return weird-sized types like i1.
    if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
      return IT;
    if (VectorType *VT = dyn_cast<VectorType>(OrigTy))
      return VectorType::getInteger(VT);
    if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
      SmallVector<Type*, 4> Elements;
      for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
        Elements.push_back(getShadowTy(ST->getElementType(i)));
      StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
      DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
      return Res;
    }
    uint32_t TypeSize = MS.TD->getTypeStoreSizeInBits(OrigTy);
    return IntegerType::get(*MS.C, TypeSize);
  }

  /// \brief Flatten a vector type.
  Type *getShadowTyNoVec(Type *ty) {
    if (VectorType *vt = dyn_cast<VectorType>(ty))
      return IntegerType::get(*MS.C, vt->getBitWidth());
    return ty;
  }

  /// \brief Convert a shadow value to it's flattened variant.
  Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
    Type *Ty = V->getType();
    Type *NoVecTy = getShadowTyNoVec(Ty);
    if (Ty == NoVecTy) return V;
    return IRB.CreateBitCast(V, NoVecTy);
  }

  /// \brief Compute the shadow address that corresponds to a given application
  /// address.
  ///
  /// Shadow = Addr & ~ShadowMask.
  Value *getShadowPtr(Value *Addr, Type *ShadowTy,
                      IRBuilder<> &IRB) {
    Value *ShadowLong =
      IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
                    ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
    return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
  }

  /// \brief Compute the origin address that corresponds to a given application
  /// address.
  ///
  /// OriginAddr = (ShadowAddr + OriginOffset) & ~3ULL
  Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB) {
    Value *ShadowLong =
      IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
                    ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
    Value *Add =
      IRB.CreateAdd(ShadowLong,
                    ConstantInt::get(MS.IntptrTy, MS.OriginOffset));
    Value *SecondAnd =
      IRB.CreateAnd(Add, ConstantInt::get(MS.IntptrTy, ~3ULL));
    return IRB.CreateIntToPtr(SecondAnd, PointerType::get(IRB.getInt32Ty(), 0));
  }

  /// \brief Compute the shadow address for a given function argument.
  ///
  /// Shadow = ParamTLS+ArgOffset.
  Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
                                 int ArgOffset) {
    Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
    Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
    return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
                              "_msarg");
  }

  /// \brief Compute the origin address for a given function argument.
  Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
                                 int ArgOffset) {
    if (!ClTrackOrigins) return 0;
    Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
    Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
    return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
                              "_msarg_o");
  }

  /// \brief Compute the shadow address for a retval.
  Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
    Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy);
    return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
                              "_msret");
  }

  /// \brief Compute the origin address for a retval.
  Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
    // We keep a single origin for the entire retval. Might be too optimistic.
    return MS.RetvalOriginTLS;
  }

  /// \brief Set SV to be the shadow value for V.
  void setShadow(Value *V, Value *SV) {
    assert(!ShadowMap.count(V) && "Values may only have one shadow");
    ShadowMap[V] = SV;
  }

  /// \brief Set Origin to be the origin value for V.
  void setOrigin(Value *V, Value *Origin) {
    if (!ClTrackOrigins) return;
    assert(!OriginMap.count(V) && "Values may only have one origin");
    DEBUG(dbgs() << "ORIGIN: " << *V << "  ==> " << *Origin << "\n");
    OriginMap[V] = Origin;
  }

  /// \brief Create a clean shadow value for a given value.
  ///
  /// Clean shadow (all zeroes) means all bits of the value are defined
  /// (initialized).
  Value *getCleanShadow(Value *V) {
    Type *ShadowTy = getShadowTy(V);
    if (!ShadowTy)
      return 0;
    return Constant::getNullValue(ShadowTy);
  }

  /// \brief Create a dirty shadow of a given shadow type.
  Constant *getPoisonedShadow(Type *ShadowTy) {
    assert(ShadowTy);
    if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
      return Constant::getAllOnesValue(ShadowTy);
    StructType *ST = cast<StructType>(ShadowTy);
    SmallVector<Constant *, 4> Vals;
    for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
      Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
    return ConstantStruct::get(ST, Vals);
  }

  /// \brief Create a clean (zero) origin.
  Value *getCleanOrigin() {
    return Constant::getNullValue(MS.OriginTy);
  }

  /// \brief Get the shadow value for a given Value.
  ///
  /// This function either returns the value set earlier with setShadow,
  /// or extracts if from ParamTLS (for function arguments).
  Value *getShadow(Value *V) {
    if (Instruction *I = dyn_cast<Instruction>(V)) {
      // For instructions the shadow is already stored in the map.
      Value *Shadow = ShadowMap[V];
      if (!Shadow) {
        DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
        (void)I;
        assert(Shadow && "No shadow for a value");
      }
      return Shadow;
    }
    if (UndefValue *U = dyn_cast<UndefValue>(V)) {
      Value *AllOnes = getPoisonedShadow(getShadowTy(V));
      DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
      (void)U;
      return AllOnes;
    }
    if (Argument *A = dyn_cast<Argument>(V)) {
      // For arguments we compute the shadow on demand and store it in the map.
      Value **ShadowPtr = &ShadowMap[V];
      if (*ShadowPtr)
        return *ShadowPtr;
      Function *F = A->getParent();
      IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI());
      unsigned ArgOffset = 0;
      for (Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
           AI != AE; ++AI) {
        if (!AI->getType()->isSized()) {
          DEBUG(dbgs() << "Arg is not sized\n");
          continue;
        }
        unsigned Size = AI->hasByValAttr()
          ? MS.TD->getTypeAllocSize(AI->getType()->getPointerElementType())
          : MS.TD->getTypeAllocSize(AI->getType());
        if (A == AI) {
          Value *Base = getShadowPtrForArgument(AI, EntryIRB, ArgOffset);
          if (AI->hasByValAttr()) {
            // ByVal pointer itself has clean shadow. We copy the actual
            // argument shadow to the underlying memory.
            Value *Cpy = EntryIRB.CreateMemCpy(
              getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB),
              Base, Size, AI->getParamAlignment());
            DEBUG(dbgs() << "  ByValCpy: " << *Cpy << "\n");
            (void)Cpy;
            *ShadowPtr = getCleanShadow(V);
          } else {
            *ShadowPtr = EntryIRB.CreateLoad(Base);
          }
          DEBUG(dbgs() << "  ARG:    "  << *AI << " ==> " <<
                **ShadowPtr << "\n");
          if (ClTrackOrigins) {
            Value* OriginPtr = getOriginPtrForArgument(AI, EntryIRB, ArgOffset);
            setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
          }
        }
        ArgOffset += DataLayout::RoundUpAlignment(Size, 8);
      }
      assert(*ShadowPtr && "Could not find shadow for an argument");
      return *ShadowPtr;
    }
    // For everything else the shadow is zero.
    return getCleanShadow(V);
  }

  /// \brief Get the shadow for i-th argument of the instruction I.
  Value *getShadow(Instruction *I, int i) {
    return getShadow(I->getOperand(i));
  }

  /// \brief Get the origin for a value.
  Value *getOrigin(Value *V) {
    if (!ClTrackOrigins) return 0;
    if (isa<Instruction>(V) || isa<Argument>(V)) {
      Value *Origin = OriginMap[V];
      if (!Origin) {
        DEBUG(dbgs() << "NO ORIGIN: " << *V << "\n");
        Origin = getCleanOrigin();
      }
      return Origin;
    }
    return getCleanOrigin();
  }

  /// \brief Get the origin for i-th argument of the instruction I.
  Value *getOrigin(Instruction *I, int i) {
    return getOrigin(I->getOperand(i));
  }

  /// \brief Remember the place where a shadow check should be inserted.
  ///
  /// This location will be later instrumented with a check that will print a
  /// UMR warning in runtime if the value is not fully defined.
  void insertCheck(Value *Val, Instruction *OrigIns) {
    assert(Val);
    if (!InsertChecks) return;
    Instruction *Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
    if (!Shadow) return;
#ifndef NDEBUG
    Type *ShadowTy = Shadow->getType();
    assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
           "Can only insert checks for integer and vector shadow types");
#endif
    Instruction *Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
    InstrumentationList.push_back(
      ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
  }

  //------------------- Visitors.

  /// \brief Instrument LoadInst
  ///
  /// Loads the corresponding shadow and (optionally) origin.
  /// Optionally, checks that the load address is fully defined.
  void visitLoadInst(LoadInst &I) {
    assert(I.getType()->isSized() && "Load type must have size");
    IRBuilder<> IRB(&I);
    Type *ShadowTy = getShadowTy(&I);
    Value *Addr = I.getPointerOperand();
    Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
    setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld"));

    if (ClCheckAccessAddress)
      insertCheck(I.getPointerOperand(), &I);

    if (ClTrackOrigins)
      setOrigin(&I, IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB), I.getAlignment()));
  }

  /// \brief Instrument StoreInst
  ///
  /// Stores the corresponding shadow and (optionally) origin.
  /// Optionally, checks that the store address is fully defined.
  /// Volatile stores check that the value being stored is fully defined.
  void visitStoreInst(StoreInst &I) {
    StoreList.push_back(&I);
  }

  // Vector manipulation.
  void visitExtractElementInst(ExtractElementInst &I) {
    insertCheck(I.getOperand(1), &I);
    IRBuilder<> IRB(&I);
    setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
              "_msprop"));
    setOrigin(&I, getOrigin(&I, 0));
  }

  void visitInsertElementInst(InsertElementInst &I) {
    insertCheck(I.getOperand(2), &I);
    IRBuilder<> IRB(&I);
    setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
              I.getOperand(2), "_msprop"));
    setOriginForNaryOp(I);
  }

  void visitShuffleVectorInst(ShuffleVectorInst &I) {
    insertCheck(I.getOperand(2), &I);
    IRBuilder<> IRB(&I);
    setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
              I.getOperand(2), "_msprop"));
    setOriginForNaryOp(I);
  }

  // Casts.
  void visitSExtInst(SExtInst &I) {
    IRBuilder<> IRB(&I);
    setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
    setOrigin(&I, getOrigin(&I, 0));
  }

  void visitZExtInst(ZExtInst &I) {
    IRBuilder<> IRB(&I);
    setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
    setOrigin(&I, getOrigin(&I, 0));
  }

  void visitTruncInst(TruncInst &I) {
    IRBuilder<> IRB(&I);
    setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
    setOrigin(&I, getOrigin(&I, 0));
  }

  void visitBitCastInst(BitCastInst &I) {
    IRBuilder<> IRB(&I);
    setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
    setOrigin(&I, getOrigin(&I, 0));
  }

  void visitPtrToIntInst(PtrToIntInst &I) {
    IRBuilder<> IRB(&I);
    setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
             "_msprop_ptrtoint"));
    setOrigin(&I, getOrigin(&I, 0));
  }

  void visitIntToPtrInst(IntToPtrInst &I) {
    IRBuilder<> IRB(&I);
    setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
             "_msprop_inttoptr"));
    setOrigin(&I, getOrigin(&I, 0));
  }

  void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
  void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
  void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
  void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
  void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
  void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }

  /// \brief Propagate shadow for bitwise AND.
  ///
  /// This code is exact, i.e. if, for example, a bit in the left argument
  /// is defined and 0, then neither the value not definedness of the
  /// corresponding bit in B don't affect the resulting shadow.
  void visitAnd(BinaryOperator &I) {
    IRBuilder<> IRB(&I);
    //  "And" of 0 and a poisoned value results in unpoisoned value.
    //  1&1 => 1;     0&1 => 0;     p&1 => p;
    //  1&0 => 0;     0&0 => 0;     p&0 => 0;
    //  1&p => p;     0&p => 0;     p&p => p;
    //  S = (S1 & S2) | (V1 & S2) | (S1 & V2)
    Value *S1 = getShadow(&I, 0);
    Value *S2 = getShadow(&I, 1);
    Value *V1 = I.getOperand(0);
    Value *V2 = I.getOperand(1);
    if (V1->getType() != S1->getType()) {
      V1 = IRB.CreateIntCast(V1, S1->getType(), false);
      V2 = IRB.CreateIntCast(V2, S2->getType(), false);
    }
    Value *S1S2 = IRB.CreateAnd(S1, S2);
    Value *V1S2 = IRB.CreateAnd(V1, S2);
    Value *S1V2 = IRB.CreateAnd(S1, V2);
    setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
    setOriginForNaryOp(I);
  }

  void visitOr(BinaryOperator &I) {
    IRBuilder<> IRB(&I);
    //  "Or" of 1 and a poisoned value results in unpoisoned value.
    //  1|1 => 1;     0|1 => 1;     p|1 => 1;
    //  1|0 => 1;     0|0 => 0;     p|0 => p;
    //  1|p => 1;     0|p => p;     p|p => p;
    //  S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
    Value *S1 = getShadow(&I, 0);
    Value *S2 = getShadow(&I, 1);
    Value *V1 = IRB.CreateNot(I.getOperand(0));
    Value *V2 = IRB.CreateNot(I.getOperand(1));
    if (V1->getType() != S1->getType()) {
      V1 = IRB.CreateIntCast(V1, S1->getType(), false);
      V2 = IRB.CreateIntCast(V2, S2->getType(), false);
    }
    Value *S1S2 = IRB.CreateAnd(S1, S2);
    Value *V1S2 = IRB.CreateAnd(V1, S2);
    Value *S1V2 = IRB.CreateAnd(S1, V2);
    setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
    setOriginForNaryOp(I);
  }

  /// \brief Propagate origin for an instruction.
  ///
  /// This is a general case of origin propagation. For an Nary operation,
  /// is set to the origin of an argument that is not entirely initialized.
  /// If there is more than one such arguments, the rightmost of them is picked.
  /// It does not matter which one is picked if all arguments are initialized.
  void setOriginForNaryOp(Instruction &I) {
    if (!ClTrackOrigins) return;
    IRBuilder<> IRB(&I);
    Value *Origin = getOrigin(&I, 0);
    for (unsigned Op = 1, n = I.getNumOperands(); Op < n; ++Op) {
      Value *S = convertToShadowTyNoVec(getShadow(&I, Op), IRB);
      Origin = IRB.CreateSelect(IRB.CreateICmpNE(S, getCleanShadow(S)),
                                getOrigin(&I, Op), Origin);
    }
    setOrigin(&I, Origin);
  }

  /// \brief Propagate shadow for a binary operation.
  ///
  /// Shadow = Shadow0 | Shadow1, all 3 must have the same type.
  /// Bitwise OR is selected as an operation that will never lose even a bit of
  /// poison.
  void handleShadowOrBinary(Instruction &I) {
    IRBuilder<> IRB(&I);
    Value *Shadow0 = getShadow(&I, 0);
    Value *Shadow1 = getShadow(&I, 1);
    setShadow(&I, IRB.CreateOr(Shadow0, Shadow1, "_msprop"));
    setOriginForNaryOp(I);
  }

  /// \brief Propagate shadow for arbitrary operation.
  ///
  /// This is a general case of shadow propagation, used in all cases where we
  /// don't know and/or care about what the operation actually does.
  /// It converts all input shadow values to a common type (extending or
  /// truncating as necessary), and bitwise OR's them.
  ///
  /// This is much cheaper than inserting checks (i.e. requiring inputs to be
  /// fully initialized), and less prone to false positives.
  // FIXME: is the casting actually correct?
  // FIXME: merge this with handleShadowOrBinary.
  void handleShadowOr(Instruction &I) {
    IRBuilder<> IRB(&I);
    Value *Shadow = getShadow(&I, 0);
    for (unsigned Op = 1, n = I.getNumOperands(); Op < n; ++Op)
      Shadow = IRB.CreateOr(
        Shadow, IRB.CreateIntCast(getShadow(&I, Op), Shadow->getType(), false),
        "_msprop");
    Shadow = IRB.CreateIntCast(Shadow, getShadowTy(&I), false);
    setShadow(&I, Shadow);
    setOriginForNaryOp(I);
  }

  void visitFAdd(BinaryOperator &I) { handleShadowOrBinary(I); }
  void visitFSub(BinaryOperator &I) { handleShadowOrBinary(I); }
  void visitFMul(BinaryOperator &I) { handleShadowOrBinary(I); }
  void visitAdd(BinaryOperator &I) { handleShadowOrBinary(I); }
  void visitSub(BinaryOperator &I) { handleShadowOrBinary(I); }
  void visitXor(BinaryOperator &I) { handleShadowOrBinary(I); }
  void visitMul(BinaryOperator &I) { handleShadowOrBinary(I); }

  void handleDiv(Instruction &I) {
    IRBuilder<> IRB(&I);
    // Strict on the second argument.
    insertCheck(I.getOperand(1), &I);
    setShadow(&I, getShadow(&I, 0));
    setOrigin(&I, getOrigin(&I, 0));
  }

  void visitUDiv(BinaryOperator &I) { handleDiv(I); }
  void visitSDiv(BinaryOperator &I) { handleDiv(I); }
  void visitFDiv(BinaryOperator &I) { handleDiv(I); }
  void visitURem(BinaryOperator &I) { handleDiv(I); }
  void visitSRem(BinaryOperator &I) { handleDiv(I); }
  void visitFRem(BinaryOperator &I) { handleDiv(I); }

  /// \brief Instrument == and != comparisons.
  ///
  /// Sometimes the comparison result is known even if some of the bits of the
  /// arguments are not.
  void handleEqualityComparison(ICmpInst &I) {
    IRBuilder<> IRB(&I);
    Value *A = I.getOperand(0);
    Value *B = I.getOperand(1);
    Value *Sa = getShadow(A);
    Value *Sb = getShadow(B);
    if (A->getType()->isPointerTy())
      A = IRB.CreatePointerCast(A, MS.IntptrTy);
    if (B->getType()->isPointerTy())
      B = IRB.CreatePointerCast(B, MS.IntptrTy);
    // A == B  <==>  (C = A^B) == 0
    // A != B  <==>  (C = A^B) != 0
    // Sc = Sa | Sb
    Value *C = IRB.CreateXor(A, B);
    Value *Sc = IRB.CreateOr(Sa, Sb);
    // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
    // Result is defined if one of the following is true
    // * there is a defined 1 bit in C
    // * C is fully defined
    // Si = !(C & ~Sc) && Sc
    Value *Zero = Constant::getNullValue(Sc->getType());
    Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
    Value *Si =
      IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
                    IRB.CreateICmpEQ(
                      IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
    Si->setName("_msprop_icmp");
    setShadow(&I, Si);
    setOriginForNaryOp(I);
  }

  /// \brief Instrument signed relational comparisons.
  ///
  /// Handle (x<0) and (x>=0) comparisons (essentially, sign bit tests) by
  /// propagating the highest bit of the shadow. Everything else is delegated
  /// to handleShadowOr().
  void handleSignedRelationalComparison(ICmpInst &I) {
    Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
    Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
    Value* op = NULL;
    CmpInst::Predicate pre = I.getPredicate();
    if (constOp0 && constOp0->isNullValue() &&
        (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE)) {
      op = I.getOperand(1);
    } else if (constOp1 && constOp1->isNullValue() &&
               (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) {
      op = I.getOperand(0);
    }
    if (op) {
      IRBuilder<> IRB(&I);
      Value* Shadow =
        IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), "_msprop_icmpslt");
      setShadow(&I, Shadow);
      setOrigin(&I, getOrigin(op));
    } else {
      handleShadowOr(I);
    }
  }

  void visitICmpInst(ICmpInst &I) {
    if (ClHandleICmp && I.isEquality())
      handleEqualityComparison(I);
    else if (ClHandleICmp && I.isSigned() && I.isRelational())
      handleSignedRelationalComparison(I);
    else
      handleShadowOr(I);
  }

  void visitFCmpInst(FCmpInst &I) {
    handleShadowOr(I);
  }

  void handleShift(BinaryOperator &I) {
    IRBuilder<> IRB(&I);
    // If any of the S2 bits are poisoned, the whole thing is poisoned.
    // Otherwise perform the same shift on S1.
    Value *S1 = getShadow(&I, 0);
    Value *S2 = getShadow(&I, 1);
    Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
                                   S2->getType());
    Value *V2 = I.getOperand(1);
    Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
    setShadow(&I, IRB.CreateOr(Shift, S2Conv));
    setOriginForNaryOp(I);
  }

  void visitShl(BinaryOperator &I) { handleShift(I); }
  void visitAShr(BinaryOperator &I) { handleShift(I); }
  void visitLShr(BinaryOperator &I) { handleShift(I); }

  /// \brief Instrument llvm.memmove
  ///
  /// At this point we don't know if llvm.memmove will be inlined or not.
  /// If we don't instrument it and it gets inlined,
  /// our interceptor will not kick in and we will lose the memmove.
  /// If we instrument the call here, but it does not get inlined,
  /// we will memove the shadow twice: which is bad in case
  /// of overlapping regions. So, we simply lower the intrinsic to a call.
  ///
  /// Similar situation exists for memcpy and memset.
  void visitMemMoveInst(MemMoveInst &I) {
    IRBuilder<> IRB(&I);
    IRB.CreateCall3(
      MS.MemmoveFn,
      IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
      IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
      IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
    I.eraseFromParent();
  }

  // Similar to memmove: avoid copying shadow twice.
  // This is somewhat unfortunate as it may slowdown small constant memcpys.
  // FIXME: consider doing manual inline for small constant sizes and proper
  // alignment.
  void visitMemCpyInst(MemCpyInst &I) {
    IRBuilder<> IRB(&I);
    IRB.CreateCall3(
      MS.MemcpyFn,
      IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
      IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
      IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
    I.eraseFromParent();
  }

  // Same as memcpy.
  void visitMemSetInst(MemSetInst &I) {
    IRBuilder<> IRB(&I);
    IRB.CreateCall3(
      MS.MemsetFn,
      IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
      IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
      IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
    I.eraseFromParent();
  }

  void visitVAStartInst(VAStartInst &I) {
    VAHelper->visitVAStartInst(I);
  }

  void visitVACopyInst(VACopyInst &I) {
    VAHelper->visitVACopyInst(I);
  }

  void handleBswap(IntrinsicInst &I) {
    IRBuilder<> IRB(&I);
    Value *Op = I.getArgOperand(0);
    Type *OpType = Op->getType();
    Function *BswapFunc = Intrinsic::getDeclaration(
      F.getParent(), Intrinsic::bswap, ArrayRef<Type*>(&OpType, 1));
    setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
    setOrigin(&I, getOrigin(Op));
  }

  void visitIntrinsicInst(IntrinsicInst &I) {
    switch (I.getIntrinsicID()) {
    case llvm::Intrinsic::bswap:
      handleBswap(I); break;
    default:
      visitInstruction(I); break;
    }
  }

  void visitCallSite(CallSite CS) {
    Instruction &I = *CS.getInstruction();
    assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite");
    if (CS.isCall()) {
      CallInst *Call = cast<CallInst>(&I);

      // For inline asm, do the usual thing: check argument shadow and mark all
      // outputs as clean. Note that any side effects of the inline asm that are
      // not immediately visible in its constraints are not handled.
      if (Call->isInlineAsm()) {
        visitInstruction(I);
        return;
      }

      // Allow only tail calls with the same types, otherwise
      // we may have a false positive: shadow for a non-void RetVal
      // will get propagated to a void RetVal.
      if (Call->isTailCall() && Call->getType() != Call->getParent()->getType())
        Call->setTailCall(false);

      assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");

      // We are going to insert code that relies on the fact that the callee
      // will become a non-readonly function after it is instrumented by us. To
      // prevent this code from being optimized out, mark that function
      // non-readonly in advance.
      if (Function *Func = Call->getCalledFunction()) {
        // Clear out readonly/readnone attributes.
        AttrBuilder B;
        B.addAttribute(Attributes::ReadOnly)
          .addAttribute(Attributes::ReadNone);
        Func->removeAttribute(AttributeSet::FunctionIndex,
                              Attributes::get(Func->getContext(), B));
      }
    }
    IRBuilder<> IRB(&I);
    unsigned ArgOffset = 0;
    DEBUG(dbgs() << "  CallSite: " << I << "\n");
    for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
         ArgIt != End; ++ArgIt) {
      Value *A = *ArgIt;
      unsigned i = ArgIt - CS.arg_begin();
      if (!A->getType()->isSized()) {
        DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
        continue;
      }
      unsigned Size = 0;
      Value *Store = 0;
      // Compute the Shadow for arg even if it is ByVal, because
      // in that case getShadow() will copy the actual arg shadow to
      // __msan_param_tls.
      Value *ArgShadow = getShadow(A);
      Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
      DEBUG(dbgs() << "  Arg#" << i << ": " << *A <<
            " Shadow: " << *ArgShadow << "\n");
      if (CS.paramHasAttr(i + 1, Attributes::ByVal)) {
        assert(A->getType()->isPointerTy() &&
               "ByVal argument is not a pointer!");
        Size = MS.TD->getTypeAllocSize(A->getType()->getPointerElementType());
        unsigned Alignment = CS.getParamAlignment(i + 1);
        Store = IRB.CreateMemCpy(ArgShadowBase,
                                 getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
                                 Size, Alignment);
      } else {
        Size = MS.TD->getTypeAllocSize(A->getType());
        Store = IRB.CreateStore(ArgShadow, ArgShadowBase);
      }
      if (ClTrackOrigins)
        IRB.CreateStore(getOrigin(A),
                        getOriginPtrForArgument(A, IRB, ArgOffset));
      assert(Size != 0 && Store != 0);
      DEBUG(dbgs() << "  Param:" << *Store << "\n");
      ArgOffset += DataLayout::RoundUpAlignment(Size, 8);
    }
    DEBUG(dbgs() << "  done with call args\n");

    FunctionType *FT =
      cast<FunctionType>(CS.getCalledValue()->getType()-> getContainedType(0));
    if (FT->isVarArg()) {
      VAHelper->visitCallSite(CS, IRB);
    }

    // Now, get the shadow for the RetVal.
    if (!I.getType()->isSized()) return;
    IRBuilder<> IRBBefore(&I);
    // Untill we have full dynamic coverage, make sure the retval shadow is 0.
    Value *Base = getShadowPtrForRetval(&I, IRBBefore);
    IRBBefore.CreateStore(getCleanShadow(&I), Base);
    Instruction *NextInsn = 0;
    if (CS.isCall()) {
      NextInsn = I.getNextNode();
    } else {
      BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
      if (!NormalDest->getSinglePredecessor()) {
        // FIXME: this case is tricky, so we are just conservative here.
        // Perhaps we need to split the edge between this BB and NormalDest,
        // but a naive attempt to use SplitEdge leads to a crash.
        setShadow(&I, getCleanShadow(&I));
        setOrigin(&I, getCleanOrigin());
        return;
      }
      NextInsn = NormalDest->getFirstInsertionPt();
      assert(NextInsn &&
             "Could not find insertion point for retval shadow load");
    }
    IRBuilder<> IRBAfter(NextInsn);
    setShadow(&I, IRBAfter.CreateLoad(getShadowPtrForRetval(&I, IRBAfter),
                                      "_msret"));
    if (ClTrackOrigins)
      setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter)));
  }

  void visitReturnInst(ReturnInst &I) {
    IRBuilder<> IRB(&I);
    if (Value *RetVal = I.getReturnValue()) {
      // Set the shadow for the RetVal.
      Value *Shadow = getShadow(RetVal);
      Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
      DEBUG(dbgs() << "Return: " << *Shadow << "\n" << *ShadowPtr << "\n");
      IRB.CreateStore(Shadow, ShadowPtr);
      if (ClTrackOrigins)
        IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
    }
  }

  void visitPHINode(PHINode &I) {
    IRBuilder<> IRB(&I);
    ShadowPHINodes.push_back(&I);
    setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
                                "_msphi_s"));
    if (ClTrackOrigins)
      setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
                                  "_msphi_o"));
  }

  void visitAllocaInst(AllocaInst &I) {
    setShadow(&I, getCleanShadow(&I));
    if (!ClPoisonStack) return;
    IRBuilder<> IRB(I.getNextNode());
    uint64_t Size = MS.TD->getTypeAllocSize(I.getAllocatedType());
    if (ClPoisonStackWithCall) {
      IRB.CreateCall2(MS.MsanPoisonStackFn,
                      IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
                      ConstantInt::get(MS.IntptrTy, Size));
    } else {
      Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB);
      IRB.CreateMemSet(ShadowBase, IRB.getInt8(ClPoisonStackPattern),
                       Size, I.getAlignment());
    }

    if (ClTrackOrigins) {
      setOrigin(&I, getCleanOrigin());
      SmallString<2048> StackDescriptionStorage;
      raw_svector_ostream StackDescription(StackDescriptionStorage);
      // We create a string with a description of the stack allocation and
      // pass it into __msan_set_alloca_origin.
      // It will be printed by the run-time if stack-originated UMR is found.
      // The first 4 bytes of the string are set to '----' and will be replaced
      // by __msan_va_arg_overflow_size_tls at the first call.
      StackDescription << "----" << I.getName() << "@" << F.getName();
      Value *Descr =
          createPrivateNonConstGlobalForString(*F.getParent(),
                                               StackDescription.str());
      IRB.CreateCall3(MS.MsanSetAllocaOriginFn,
                      IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
                      ConstantInt::get(MS.IntptrTy, Size),
                      IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()));
    }
  }

  void visitSelectInst(SelectInst& I) {
    IRBuilder<> IRB(&I);
    setShadow(&I,  IRB.CreateSelect(I.getCondition(),
              getShadow(I.getTrueValue()), getShadow(I.getFalseValue()),
              "_msprop"));
    if (ClTrackOrigins)
      setOrigin(&I, IRB.CreateSelect(I.getCondition(),
                getOrigin(I.getTrueValue()), getOrigin(I.getFalseValue())));
  }

  void visitLandingPadInst(LandingPadInst &I) {
    // Do nothing.
    // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1
    setShadow(&I, getCleanShadow(&I));
    setOrigin(&I, getCleanOrigin());
  }

  void visitGetElementPtrInst(GetElementPtrInst &I) {
    handleShadowOr(I);
  }

  void visitExtractValueInst(ExtractValueInst &I) {
    IRBuilder<> IRB(&I);
    Value *Agg = I.getAggregateOperand();
    DEBUG(dbgs() << "ExtractValue:  " << I << "\n");
    Value *AggShadow = getShadow(Agg);
    DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
    Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
    DEBUG(dbgs() << "   ResShadow:  " << *ResShadow << "\n");
    setShadow(&I, ResShadow);
    setOrigin(&I, getCleanOrigin());
  }

  void visitInsertValueInst(InsertValueInst &I) {
    IRBuilder<> IRB(&I);
    DEBUG(dbgs() << "InsertValue:  " << I << "\n");
    Value *AggShadow = getShadow(I.getAggregateOperand());
    Value *InsShadow = getShadow(I.getInsertedValueOperand());
    DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
    DEBUG(dbgs() << "   InsShadow:  " << *InsShadow << "\n");
    Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
    DEBUG(dbgs() << "   Res:        " << *Res << "\n");
    setShadow(&I, Res);
    setOrigin(&I, getCleanOrigin());
  }

  void dumpInst(Instruction &I) {
    if (CallInst *CI = dyn_cast<CallInst>(&I)) {
      errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
    } else {
      errs() << "ZZZ " << I.getOpcodeName() << "\n";
    }
    errs() << "QQQ " << I << "\n";
  }

  void visitResumeInst(ResumeInst &I) {
    DEBUG(dbgs() << "Resume: " << I << "\n");
    // Nothing to do here.
  }

  void visitInstruction(Instruction &I) {
    // Everything else: stop propagating and check for poisoned shadow.
    if (ClDumpStrictInstructions)
      dumpInst(I);
    DEBUG(dbgs() << "DEFAULT: " << I << "\n");
    for (size_t i = 0, n = I.getNumOperands(); i < n; i++)
      insertCheck(I.getOperand(i), &I);
    setShadow(&I, getCleanShadow(&I));
    setOrigin(&I, getCleanOrigin());
  }
};

/// \brief AMD64-specific implementation of VarArgHelper.
struct VarArgAMD64Helper : public VarArgHelper {
  // An unfortunate workaround for asymmetric lowering of va_arg stuff.
  // See a comment in visitCallSite for more details.
  static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
  static const unsigned AMD64FpEndOffset = 176;

  Function &F;
  MemorySanitizer &MS;
  MemorySanitizerVisitor &MSV;
  Value *VAArgTLSCopy;
  Value *VAArgOverflowSize;

  SmallVector<CallInst*, 16> VAStartInstrumentationList;

  VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
                    MemorySanitizerVisitor &MSV)
    : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(0), VAArgOverflowSize(0) { }

  enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };

  ArgKind classifyArgument(Value* arg) {
    // A very rough approximation of X86_64 argument classification rules.
    Type *T = arg->getType();
    if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
      return AK_FloatingPoint;
    if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
      return AK_GeneralPurpose;
    if (T->isPointerTy())
      return AK_GeneralPurpose;
    return AK_Memory;
  }

  // For VarArg functions, store the argument shadow in an ABI-specific format
  // that corresponds to va_list layout.
  // We do this because Clang lowers va_arg in the frontend, and this pass
  // only sees the low level code that deals with va_list internals.
  // A much easier alternative (provided that Clang emits va_arg instructions)
  // would have been to associate each live instance of va_list with a copy of
  // MSanParamTLS, and extract shadow on va_arg() call in the argument list
  // order.
  void visitCallSite(CallSite &CS, IRBuilder<> &IRB) {
    unsigned GpOffset = 0;
    unsigned FpOffset = AMD64GpEndOffset;
    unsigned OverflowOffset = AMD64FpEndOffset;
    for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
         ArgIt != End; ++ArgIt) {
      Value *A = *ArgIt;
      ArgKind AK = classifyArgument(A);
      if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
        AK = AK_Memory;
      if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
        AK = AK_Memory;
      Value *Base;
      switch (AK) {
      case AK_GeneralPurpose:
        Base = getShadowPtrForVAArgument(A, IRB, GpOffset);
        GpOffset += 8;
        break;
      case AK_FloatingPoint:
        Base = getShadowPtrForVAArgument(A, IRB, FpOffset);
        FpOffset += 16;
        break;
      case AK_Memory:
        uint64_t ArgSize = MS.TD->getTypeAllocSize(A->getType());
        Base = getShadowPtrForVAArgument(A, IRB, OverflowOffset);
        OverflowOffset += DataLayout::RoundUpAlignment(ArgSize, 8);
      }
      IRB.CreateStore(MSV.getShadow(A), Base);
    }
    Constant *OverflowSize =
      ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
    IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
  }

  /// \brief Compute the shadow address for a given va_arg.
  Value *getShadowPtrForVAArgument(Value *A, IRBuilder<> &IRB,
                                   int ArgOffset) {
    Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
    Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
    return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(A), 0),
                              "_msarg");
  }

  void visitVAStartInst(VAStartInst &I) {
    IRBuilder<> IRB(&I);
    VAStartInstrumentationList.push_back(&I);
    Value *VAListTag = I.getArgOperand(0);
    Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);

    // Unpoison the whole __va_list_tag.
    // FIXME: magic ABI constants.
    IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
                     /* size */24, /* alignment */16, false);
  }

  void visitVACopyInst(VACopyInst &I) {
    IRBuilder<> IRB(&I);
    Value *VAListTag = I.getArgOperand(0);
    Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);

    // Unpoison the whole __va_list_tag.
    // FIXME: magic ABI constants.
    IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
                     /* size */ 24, /* alignment */ 16, false);
  }

  void finalizeInstrumentation() {
    assert(!VAArgOverflowSize && !VAArgTLSCopy &&
           "finalizeInstrumentation called twice");
    if (!VAStartInstrumentationList.empty()) {
      // If there is a va_start in this function, make a backup copy of
      // va_arg_tls somewhere in the function entry block.
      IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
      VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
      Value *CopySize =
        IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
                      VAArgOverflowSize);
      VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
      IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
    }

    // Instrument va_start.
    // Copy va_list shadow from the backup copy of the TLS contents.
    for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
      CallInst *OrigInst = VAStartInstrumentationList[i];
      IRBuilder<> IRB(OrigInst->getNextNode());
      Value *VAListTag = OrigInst->getArgOperand(0);

      Value *RegSaveAreaPtrPtr =
        IRB.CreateIntToPtr(
          IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
                        ConstantInt::get(MS.IntptrTy, 16)),
          Type::getInt64PtrTy(*MS.C));
      Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
      Value *RegSaveAreaShadowPtr =
        MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
      IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy,
                       AMD64FpEndOffset, 16);

      Value *OverflowArgAreaPtrPtr =
        IRB.CreateIntToPtr(
          IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
                        ConstantInt::get(MS.IntptrTy, 8)),
          Type::getInt64PtrTy(*MS.C));
      Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr);
      Value *OverflowArgAreaShadowPtr =
        MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB);
      Value *SrcPtr =
        getShadowPtrForVAArgument(VAArgTLSCopy, IRB, AMD64FpEndOffset);
      IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16);
    }
  }
};

VarArgHelper* CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
                                 MemorySanitizerVisitor &Visitor) {
  return new VarArgAMD64Helper(Func, Msan, Visitor);
}

}  // namespace

bool MemorySanitizer::runOnFunction(Function &F) {
  MemorySanitizerVisitor Visitor(F, *this);

  // Clear out readonly/readnone attributes.
  AttrBuilder B;
  B.addAttribute(Attributes::ReadOnly)
    .addAttribute(Attributes::ReadNone);
  F.removeAttribute(AttributeSet::FunctionIndex,
                    Attributes::get(F.getContext(), B));

  return Visitor.runOnFunction();
}