aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/InstCombine/InstructionCombining.cpp
blob: 9a46f25e66ff812cd63447e260e8b24f3ed7db72 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// InstructionCombining - Combine instructions to form fewer, simple
// instructions.  This pass does not modify the CFG.  This pass is where
// algebraic simplification happens.
//
// This pass combines things like:
//    %Y = add i32 %X, 1
//    %Z = add i32 %Y, 1
// into:
//    %Z = add i32 %X, 2
//
// This is a simple worklist driven algorithm.
//
// This pass guarantees that the following canonicalizations are performed on
// the program:
//    1. If a binary operator has a constant operand, it is moved to the RHS
//    2. Bitwise operators with constant operands are always grouped so that
//       shifts are performed first, then or's, then and's, then xor's.
//    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
//    4. All cmp instructions on boolean values are replaced with logical ops
//    5. add X, X is represented as (X*2) => (X << 1)
//    6. Multiplies with a power-of-two constant argument are transformed into
//       shifts.
//   ... etc.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "instcombine"
#include "llvm/Transforms/Scalar.h"
#include "InstCombine.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/DataLayout.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/PatternMatch.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm-c/Initialization.h"
#include <algorithm>
#include <climits>
using namespace llvm;
using namespace llvm::PatternMatch;

STATISTIC(NumCombined , "Number of insts combined");
STATISTIC(NumConstProp, "Number of constant folds");
STATISTIC(NumDeadInst , "Number of dead inst eliminated");
STATISTIC(NumSunkInst , "Number of instructions sunk");
STATISTIC(NumExpand,    "Number of expansions");
STATISTIC(NumFactor   , "Number of factorizations");
STATISTIC(NumReassoc  , "Number of reassociations");

// Initialization Routines
void llvm::initializeInstCombine(PassRegistry &Registry) {
  initializeInstCombinerPass(Registry);
}

void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
  initializeInstCombine(*unwrap(R));
}

char InstCombiner::ID = 0;
INITIALIZE_PASS_BEGIN(InstCombiner, "instcombine",
                "Combine redundant instructions", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
INITIALIZE_PASS_END(InstCombiner, "instcombine",
                "Combine redundant instructions", false, false)

void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  AU.addRequired<TargetLibraryInfo>();
}


Value *InstCombiner::EmitGEPOffset(User *GEP) {
  return llvm::EmitGEPOffset(Builder, *getDataLayout(), GEP);
}

/// ShouldChangeType - Return true if it is desirable to convert a computation
/// from 'From' to 'To'.  We don't want to convert from a legal to an illegal
/// type for example, or from a smaller to a larger illegal type.
bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
  assert(From->isIntegerTy() && To->isIntegerTy());

  // If we don't have TD, we don't know if the source/dest are legal.
  if (!TD) return false;

  unsigned FromWidth = From->getPrimitiveSizeInBits();
  unsigned ToWidth = To->getPrimitiveSizeInBits();
  bool FromLegal = TD->isLegalInteger(FromWidth);
  bool ToLegal = TD->isLegalInteger(ToWidth);

  // If this is a legal integer from type, and the result would be an illegal
  // type, don't do the transformation.
  if (FromLegal && !ToLegal)
    return false;

  // Otherwise, if both are illegal, do not increase the size of the result. We
  // do allow things like i160 -> i64, but not i64 -> i160.
  if (!FromLegal && !ToLegal && ToWidth > FromWidth)
    return false;

  return true;
}

// Return true, if No Signed Wrap should be maintained for I.
// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
// where both B and C should be ConstantInts, results in a constant that does
// not overflow. This function only handles the Add and Sub opcodes. For
// all other opcodes, the function conservatively returns false.
static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
  OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
  if (!OBO || !OBO->hasNoSignedWrap()) {
    return false;
  }

  // We reason about Add and Sub Only.
  Instruction::BinaryOps Opcode = I.getOpcode();
  if (Opcode != Instruction::Add &&
      Opcode != Instruction::Sub) {
    return false;
  }

  ConstantInt *CB = dyn_cast<ConstantInt>(B);
  ConstantInt *CC = dyn_cast<ConstantInt>(C);

  if (!CB || !CC) {
    return false;
  }

  const APInt &BVal = CB->getValue();
  const APInt &CVal = CC->getValue();
  bool Overflow = false;

  if (Opcode == Instruction::Add) {
    BVal.sadd_ov(CVal, Overflow);
  } else {
    BVal.ssub_ov(CVal, Overflow);
  }

  return !Overflow;
}

/// SimplifyAssociativeOrCommutative - This performs a few simplifications for
/// operators which are associative or commutative:
//
//  Commutative operators:
//
//  1. Order operands such that they are listed from right (least complex) to
//     left (most complex).  This puts constants before unary operators before
//     binary operators.
//
//  Associative operators:
//
//  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
//  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
//
//  Associative and commutative operators:
//
//  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
//  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
//  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
//     if C1 and C2 are constants.
//
bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
  Instruction::BinaryOps Opcode = I.getOpcode();
  bool Changed = false;

  do {
    // Order operands such that they are listed from right (least complex) to
    // left (most complex).  This puts constants before unary operators before
    // binary operators.
    if (I.isCommutative() && getComplexity(I.getOperand(0)) <
        getComplexity(I.getOperand(1)))
      Changed = !I.swapOperands();

    BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
    BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));

    if (I.isAssociative()) {
      // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
      if (Op0 && Op0->getOpcode() == Opcode) {
        Value *A = Op0->getOperand(0);
        Value *B = Op0->getOperand(1);
        Value *C = I.getOperand(1);

        // Does "B op C" simplify?
        if (Value *V = SimplifyBinOp(Opcode, B, C, TD)) {
          // It simplifies to V.  Form "A op V".
          I.setOperand(0, A);
          I.setOperand(1, V);
          // Conservatively clear the optional flags, since they may not be
          // preserved by the reassociation.
          if (MaintainNoSignedWrap(I, B, C) &&
              (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
            // Note: this is only valid because SimplifyBinOp doesn't look at
            // the operands to Op0.
            I.clearSubclassOptionalData();
            I.setHasNoSignedWrap(true);
          } else {
            I.clearSubclassOptionalData();
          }

          Changed = true;
          ++NumReassoc;
          continue;
        }
      }

      // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
      if (Op1 && Op1->getOpcode() == Opcode) {
        Value *A = I.getOperand(0);
        Value *B = Op1->getOperand(0);
        Value *C = Op1->getOperand(1);

        // Does "A op B" simplify?
        if (Value *V = SimplifyBinOp(Opcode, A, B, TD)) {
          // It simplifies to V.  Form "V op C".
          I.setOperand(0, V);
          I.setOperand(1, C);
          // Conservatively clear the optional flags, since they may not be
          // preserved by the reassociation.
          I.clearSubclassOptionalData();
          Changed = true;
          ++NumReassoc;
          continue;
        }
      }
    }

    if (I.isAssociative() && I.isCommutative()) {
      // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
      if (Op0 && Op0->getOpcode() == Opcode) {
        Value *A = Op0->getOperand(0);
        Value *B = Op0->getOperand(1);
        Value *C = I.getOperand(1);

        // Does "C op A" simplify?
        if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
          // It simplifies to V.  Form "V op B".
          I.setOperand(0, V);
          I.setOperand(1, B);
          // Conservatively clear the optional flags, since they may not be
          // preserved by the reassociation.
          I.clearSubclassOptionalData();
          Changed = true;
          ++NumReassoc;
          continue;
        }
      }

      // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
      if (Op1 && Op1->getOpcode() == Opcode) {
        Value *A = I.getOperand(0);
        Value *B = Op1->getOperand(0);
        Value *C = Op1->getOperand(1);

        // Does "C op A" simplify?
        if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
          // It simplifies to V.  Form "B op V".
          I.setOperand(0, B);
          I.setOperand(1, V);
          // Conservatively clear the optional flags, since they may not be
          // preserved by the reassociation.
          I.clearSubclassOptionalData();
          Changed = true;
          ++NumReassoc;
          continue;
        }
      }

      // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
      // if C1 and C2 are constants.
      if (Op0 && Op1 &&
          Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
          isa<Constant>(Op0->getOperand(1)) &&
          isa<Constant>(Op1->getOperand(1)) &&
          Op0->hasOneUse() && Op1->hasOneUse()) {
        Value *A = Op0->getOperand(0);
        Constant *C1 = cast<Constant>(Op0->getOperand(1));
        Value *B = Op1->getOperand(0);
        Constant *C2 = cast<Constant>(Op1->getOperand(1));

        Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
        BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
        InsertNewInstWith(New, I);
        New->takeName(Op1);
        I.setOperand(0, New);
        I.setOperand(1, Folded);
        // Conservatively clear the optional flags, since they may not be
        // preserved by the reassociation.
        I.clearSubclassOptionalData();

        Changed = true;
        continue;
      }
    }

    // No further simplifications.
    return Changed;
  } while (1);
}

/// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
/// "(X LOp Y) ROp (X LOp Z)".
static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
                                     Instruction::BinaryOps ROp) {
  switch (LOp) {
  default:
    return false;

  case Instruction::And:
    // And distributes over Or and Xor.
    switch (ROp) {
    default:
      return false;
    case Instruction::Or:
    case Instruction::Xor:
      return true;
    }

  case Instruction::Mul:
    // Multiplication distributes over addition and subtraction.
    switch (ROp) {
    default:
      return false;
    case Instruction::Add:
    case Instruction::Sub:
      return true;
    }

  case Instruction::Or:
    // Or distributes over And.
    switch (ROp) {
    default:
      return false;
    case Instruction::And:
      return true;
    }
  }
}

/// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
/// "(X ROp Z) LOp (Y ROp Z)".
static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
                                     Instruction::BinaryOps ROp) {
  if (Instruction::isCommutative(ROp))
    return LeftDistributesOverRight(ROp, LOp);
  // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
  // but this requires knowing that the addition does not overflow and other
  // such subtleties.
  return false;
}

/// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
/// which some other binary operation distributes over either by factorizing
/// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
/// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
/// a win).  Returns the simplified value, or null if it didn't simplify.
Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
  Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op

  // Factorization.
  if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) {
    // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
    // a common term.
    Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
    Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
    Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'

    // Does "X op' Y" always equal "Y op' X"?
    bool InnerCommutative = Instruction::isCommutative(InnerOpcode);

    // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
    if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
      // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
      // commutative case, "(A op' B) op (C op' A)"?
      if (A == C || (InnerCommutative && A == D)) {
        if (A != C)
          std::swap(C, D);
        // Consider forming "A op' (B op D)".
        // If "B op D" simplifies then it can be formed with no cost.
        Value *V = SimplifyBinOp(TopLevelOpcode, B, D, TD);
        // If "B op D" doesn't simplify then only go on if both of the existing
        // operations "A op' B" and "C op' D" will be zapped as no longer used.
        if (!V && Op0->hasOneUse() && Op1->hasOneUse())
          V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName());
        if (V) {
          ++NumFactor;
          V = Builder->CreateBinOp(InnerOpcode, A, V);
          V->takeName(&I);
          return V;
        }
      }

    // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
    if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
      // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
      // commutative case, "(A op' B) op (B op' D)"?
      if (B == D || (InnerCommutative && B == C)) {
        if (B != D)
          std::swap(C, D);
        // Consider forming "(A op C) op' B".
        // If "A op C" simplifies then it can be formed with no cost.
        Value *V = SimplifyBinOp(TopLevelOpcode, A, C, TD);
        // If "A op C" doesn't simplify then only go on if both of the existing
        // operations "A op' B" and "C op' D" will be zapped as no longer used.
        if (!V && Op0->hasOneUse() && Op1->hasOneUse())
          V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName());
        if (V) {
          ++NumFactor;
          V = Builder->CreateBinOp(InnerOpcode, V, B);
          V->takeName(&I);
          return V;
        }
      }
  }

  // Expansion.
  if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
    // The instruction has the form "(A op' B) op C".  See if expanding it out
    // to "(A op C) op' (B op C)" results in simplifications.
    Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
    Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'

    // Do "A op C" and "B op C" both simplify?
    if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, TD))
      if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, TD)) {
        // They do! Return "L op' R".
        ++NumExpand;
        // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
        if ((L == A && R == B) ||
            (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
          return Op0;
        // Otherwise return "L op' R" if it simplifies.
        if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
          return V;
        // Otherwise, create a new instruction.
        C = Builder->CreateBinOp(InnerOpcode, L, R);
        C->takeName(&I);
        return C;
      }
  }

  if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
    // The instruction has the form "A op (B op' C)".  See if expanding it out
    // to "(A op B) op' (A op C)" results in simplifications.
    Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
    Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'

    // Do "A op B" and "A op C" both simplify?
    if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, TD))
      if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, TD)) {
        // They do! Return "L op' R".
        ++NumExpand;
        // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
        if ((L == B && R == C) ||
            (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
          return Op1;
        // Otherwise return "L op' R" if it simplifies.
        if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
          return V;
        // Otherwise, create a new instruction.
        A = Builder->CreateBinOp(InnerOpcode, L, R);
        A->takeName(&I);
        return A;
      }
  }

  return 0;
}

// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
// if the LHS is a constant zero (which is the 'negate' form).
//
Value *InstCombiner::dyn_castNegVal(Value *V) const {
  if (BinaryOperator::isNeg(V))
    return BinaryOperator::getNegArgument(V);

  // Constants can be considered to be negated values if they can be folded.
  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
    return ConstantExpr::getNeg(C);

  if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
    if (C->getType()->getElementType()->isIntegerTy())
      return ConstantExpr::getNeg(C);

  return 0;
}

// dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
// instruction if the LHS is a constant negative zero (which is the 'negate'
// form).
//
Value *InstCombiner::dyn_castFNegVal(Value *V) const {
  if (BinaryOperator::isFNeg(V))
    return BinaryOperator::getFNegArgument(V);

  // Constants can be considered to be negated values if they can be folded.
  if (ConstantFP *C = dyn_cast<ConstantFP>(V))
    return ConstantExpr::getFNeg(C);

  if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
    if (C->getType()->getElementType()->isFloatingPointTy())
      return ConstantExpr::getFNeg(C);

  return 0;
}

static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
                                             InstCombiner *IC) {
  if (CastInst *CI = dyn_cast<CastInst>(&I)) {
    return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
  }

  // Figure out if the constant is the left or the right argument.
  bool ConstIsRHS = isa<Constant>(I.getOperand(1));
  Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));

  if (Constant *SOC = dyn_cast<Constant>(SO)) {
    if (ConstIsRHS)
      return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
    return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
  }

  Value *Op0 = SO, *Op1 = ConstOperand;
  if (!ConstIsRHS)
    std::swap(Op0, Op1);

  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
    return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
                                    SO->getName()+".op");
  if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
                                   SO->getName()+".cmp");
  if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
                                   SO->getName()+".cmp");
  llvm_unreachable("Unknown binary instruction type!");
}

// FoldOpIntoSelect - Given an instruction with a select as one operand and a
// constant as the other operand, try to fold the binary operator into the
// select arguments.  This also works for Cast instructions, which obviously do
// not have a second operand.
Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
  // Don't modify shared select instructions
  if (!SI->hasOneUse()) return 0;
  Value *TV = SI->getOperand(1);
  Value *FV = SI->getOperand(2);

  if (isa<Constant>(TV) || isa<Constant>(FV)) {
    // Bool selects with constant operands can be folded to logical ops.
    if (SI->getType()->isIntegerTy(1)) return 0;

    // If it's a bitcast involving vectors, make sure it has the same number of
    // elements on both sides.
    if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
      VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
      VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());

      // Verify that either both or neither are vectors.
      if ((SrcTy == NULL) != (DestTy == NULL)) return 0;
      // If vectors, verify that they have the same number of elements.
      if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
        return 0;
    }

    Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
    Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);

    return SelectInst::Create(SI->getCondition(),
                              SelectTrueVal, SelectFalseVal);
  }
  return 0;
}


/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
/// has a PHI node as operand #0, see if we can fold the instruction into the
/// PHI (which is only possible if all operands to the PHI are constants).
///
Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
  PHINode *PN = cast<PHINode>(I.getOperand(0));
  unsigned NumPHIValues = PN->getNumIncomingValues();
  if (NumPHIValues == 0)
    return 0;

  // We normally only transform phis with a single use.  However, if a PHI has
  // multiple uses and they are all the same operation, we can fold *all* of the
  // uses into the PHI.
  if (!PN->hasOneUse()) {
    // Walk the use list for the instruction, comparing them to I.
    for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
         UI != E; ++UI) {
      Instruction *User = cast<Instruction>(*UI);
      if (User != &I && !I.isIdenticalTo(User))
        return 0;
    }
    // Otherwise, we can replace *all* users with the new PHI we form.
  }

  // Check to see if all of the operands of the PHI are simple constants
  // (constantint/constantfp/undef).  If there is one non-constant value,
  // remember the BB it is in.  If there is more than one or if *it* is a PHI,
  // bail out.  We don't do arbitrary constant expressions here because moving
  // their computation can be expensive without a cost model.
  BasicBlock *NonConstBB = 0;
  for (unsigned i = 0; i != NumPHIValues; ++i) {
    Value *InVal = PN->getIncomingValue(i);
    if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
      continue;

    if (isa<PHINode>(InVal)) return 0;  // Itself a phi.
    if (NonConstBB) return 0;  // More than one non-const value.

    NonConstBB = PN->getIncomingBlock(i);

    // If the InVal is an invoke at the end of the pred block, then we can't
    // insert a computation after it without breaking the edge.
    if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
      if (II->getParent() == NonConstBB)
        return 0;

    // If the incoming non-constant value is in I's block, we will remove one
    // instruction, but insert another equivalent one, leading to infinite
    // instcombine.
    if (NonConstBB == I.getParent())
      return 0;
  }

  // If there is exactly one non-constant value, we can insert a copy of the
  // operation in that block.  However, if this is a critical edge, we would be
  // inserting the computation one some other paths (e.g. inside a loop).  Only
  // do this if the pred block is unconditionally branching into the phi block.
  if (NonConstBB != 0) {
    BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
    if (!BI || !BI->isUnconditional()) return 0;
  }

  // Okay, we can do the transformation: create the new PHI node.
  PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
  InsertNewInstBefore(NewPN, *PN);
  NewPN->takeName(PN);

  // If we are going to have to insert a new computation, do so right before the
  // predecessors terminator.
  if (NonConstBB)
    Builder->SetInsertPoint(NonConstBB->getTerminator());

  // Next, add all of the operands to the PHI.
  if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
    // We only currently try to fold the condition of a select when it is a phi,
    // not the true/false values.
    Value *TrueV = SI->getTrueValue();
    Value *FalseV = SI->getFalseValue();
    BasicBlock *PhiTransBB = PN->getParent();
    for (unsigned i = 0; i != NumPHIValues; ++i) {
      BasicBlock *ThisBB = PN->getIncomingBlock(i);
      Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
      Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
      Value *InV = 0;
      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
        InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
      else
        InV = Builder->CreateSelect(PN->getIncomingValue(i),
                                    TrueVInPred, FalseVInPred, "phitmp");
      NewPN->addIncoming(InV, ThisBB);
    }
  } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
    Constant *C = cast<Constant>(I.getOperand(1));
    for (unsigned i = 0; i != NumPHIValues; ++i) {
      Value *InV = 0;
      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
        InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
      else if (isa<ICmpInst>(CI))
        InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
                                  C, "phitmp");
      else
        InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
                                  C, "phitmp");
      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
    }
  } else if (I.getNumOperands() == 2) {
    Constant *C = cast<Constant>(I.getOperand(1));
    for (unsigned i = 0; i != NumPHIValues; ++i) {
      Value *InV = 0;
      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
        InV = ConstantExpr::get(I.getOpcode(), InC, C);
      else
        InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
                                   PN->getIncomingValue(i), C, "phitmp");
      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
    }
  } else {
    CastInst *CI = cast<CastInst>(&I);
    Type *RetTy = CI->getType();
    for (unsigned i = 0; i != NumPHIValues; ++i) {
      Value *InV;
      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
        InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
      else
        InV = Builder->CreateCast(CI->getOpcode(),
                                PN->getIncomingValue(i), I.getType(), "phitmp");
      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
    }
  }

  for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
       UI != E; ) {
    Instruction *User = cast<Instruction>(*UI++);
    if (User == &I) continue;
    ReplaceInstUsesWith(*User, NewPN);
    EraseInstFromFunction(*User);
  }
  return ReplaceInstUsesWith(I, NewPN);
}

/// FindElementAtOffset - Given a type and a constant offset, determine whether
/// or not there is a sequence of GEP indices into the type that will land us at
/// the specified offset.  If so, fill them into NewIndices and return the
/// resultant element type, otherwise return null.
Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset,
                                          SmallVectorImpl<Value*> &NewIndices) {
  if (!TD) return 0;
  if (!Ty->isSized()) return 0;

  // Start with the index over the outer type.  Note that the type size
  // might be zero (even if the offset isn't zero) if the indexed type
  // is something like [0 x {int, int}]
  Type *IntPtrTy = TD->getIntPtrType(Ty->getContext());
  int64_t FirstIdx = 0;
  if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
    FirstIdx = Offset/TySize;
    Offset -= FirstIdx*TySize;

    // Handle hosts where % returns negative instead of values [0..TySize).
    if (Offset < 0) {
      --FirstIdx;
      Offset += TySize;
      assert(Offset >= 0);
    }
    assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
  }

  NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));

  // Index into the types.  If we fail, set OrigBase to null.
  while (Offset) {
    // Indexing into tail padding between struct/array elements.
    if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
      return 0;

    if (StructType *STy = dyn_cast<StructType>(Ty)) {
      const StructLayout *SL = TD->getStructLayout(STy);
      assert(Offset < (int64_t)SL->getSizeInBytes() &&
             "Offset must stay within the indexed type");

      unsigned Elt = SL->getElementContainingOffset(Offset);
      NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
                                            Elt));

      Offset -= SL->getElementOffset(Elt);
      Ty = STy->getElementType(Elt);
    } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
      uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
      assert(EltSize && "Cannot index into a zero-sized array");
      NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
      Offset %= EltSize;
      Ty = AT->getElementType();
    } else {
      // Otherwise, we can't index into the middle of this atomic type, bail.
      return 0;
    }
  }

  return Ty;
}

static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
  // If this GEP has only 0 indices, it is the same pointer as
  // Src. If Src is not a trivial GEP too, don't combine
  // the indices.
  if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
      !Src.hasOneUse())
    return false;
  return true;
}

/// Descale - Return a value X such that Val = X * Scale, or null if none.  If
/// the multiplication is known not to overflow then NoSignedWrap is set.
Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
  assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
  assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
         Scale.getBitWidth() && "Scale not compatible with value!");

  // If Val is zero or Scale is one then Val = Val * Scale.
  if (match(Val, m_Zero()) || Scale == 1) {
    NoSignedWrap = true;
    return Val;
  }

  // If Scale is zero then it does not divide Val.
  if (Scale.isMinValue())
    return 0;

  // Look through chains of multiplications, searching for a constant that is
  // divisible by Scale.  For example, descaling X*(Y*(Z*4)) by a factor of 4
  // will find the constant factor 4 and produce X*(Y*Z).  Descaling X*(Y*8) by
  // a factor of 4 will produce X*(Y*2).  The principle of operation is to bore
  // down from Val:
  //
  //     Val = M1 * X          ||   Analysis starts here and works down
  //      M1 = M2 * Y          ||   Doesn't descend into terms with more
  //      M2 =  Z * 4          \/   than one use
  //
  // Then to modify a term at the bottom:
  //
  //     Val = M1 * X
  //      M1 =  Z * Y          ||   Replaced M2 with Z
  //
  // Then to work back up correcting nsw flags.

  // Op - the term we are currently analyzing.  Starts at Val then drills down.
  // Replaced with its descaled value before exiting from the drill down loop.
  Value *Op = Val;

  // Parent - initially null, but after drilling down notes where Op came from.
  // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
  // 0'th operand of Val.
  std::pair<Instruction*, unsigned> Parent;

  // RequireNoSignedWrap - Set if the transform requires a descaling at deeper
  // levels that doesn't overflow.
  bool RequireNoSignedWrap = false;

  // logScale - log base 2 of the scale.  Negative if not a power of 2.
  int32_t logScale = Scale.exactLogBase2();

  for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down

    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
      // If Op is a constant divisible by Scale then descale to the quotient.
      APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
      APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
      if (!Remainder.isMinValue())
        // Not divisible by Scale.
        return 0;
      // Replace with the quotient in the parent.
      Op = ConstantInt::get(CI->getType(), Quotient);
      NoSignedWrap = true;
      break;
    }

    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {

      if (BO->getOpcode() == Instruction::Mul) {
        // Multiplication.
        NoSignedWrap = BO->hasNoSignedWrap();
        if (RequireNoSignedWrap && !NoSignedWrap)
          return 0;

        // There are three cases for multiplication: multiplication by exactly
        // the scale, multiplication by a constant different to the scale, and
        // multiplication by something else.
        Value *LHS = BO->getOperand(0);
        Value *RHS = BO->getOperand(1);

        if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
          // Multiplication by a constant.
          if (CI->getValue() == Scale) {
            // Multiplication by exactly the scale, replace the multiplication
            // by its left-hand side in the parent.
            Op = LHS;
            break;
          }

          // Otherwise drill down into the constant.
          if (!Op->hasOneUse())
            return 0;

          Parent = std::make_pair(BO, 1);
          continue;
        }

        // Multiplication by something else. Drill down into the left-hand side
        // since that's where the reassociate pass puts the good stuff.
        if (!Op->hasOneUse())
          return 0;

        Parent = std::make_pair(BO, 0);
        continue;
      }

      if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
          isa<ConstantInt>(BO->getOperand(1))) {
        // Multiplication by a power of 2.
        NoSignedWrap = BO->hasNoSignedWrap();
        if (RequireNoSignedWrap && !NoSignedWrap)
          return 0;

        Value *LHS = BO->getOperand(0);
        int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
          getLimitedValue(Scale.getBitWidth());
        // Op = LHS << Amt.

        if (Amt == logScale) {
          // Multiplication by exactly the scale, replace the multiplication
          // by its left-hand side in the parent.
          Op = LHS;
          break;
        }
        if (Amt < logScale || !Op->hasOneUse())
          return 0;

        // Multiplication by more than the scale.  Reduce the multiplying amount
        // by the scale in the parent.
        Parent = std::make_pair(BO, 1);
        Op = ConstantInt::get(BO->getType(), Amt - logScale);
        break;
      }
    }

    if (!Op->hasOneUse())
      return 0;

    if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
      if (Cast->getOpcode() == Instruction::SExt) {
        // Op is sign-extended from a smaller type, descale in the smaller type.
        unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
        APInt SmallScale = Scale.trunc(SmallSize);
        // Suppose Op = sext X, and we descale X as Y * SmallScale.  We want to
        // descale Op as (sext Y) * Scale.  In order to have
        //   sext (Y * SmallScale) = (sext Y) * Scale
        // some conditions need to hold however: SmallScale must sign-extend to
        // Scale and the multiplication Y * SmallScale should not overflow.
        if (SmallScale.sext(Scale.getBitWidth()) != Scale)
          // SmallScale does not sign-extend to Scale.
          return 0;
        assert(SmallScale.exactLogBase2() == logScale);
        // Require that Y * SmallScale must not overflow.
        RequireNoSignedWrap = true;

        // Drill down through the cast.
        Parent = std::make_pair(Cast, 0);
        Scale = SmallScale;
        continue;
      }

      if (Cast->getOpcode() == Instruction::Trunc) {
        // Op is truncated from a larger type, descale in the larger type.
        // Suppose Op = trunc X, and we descale X as Y * sext Scale.  Then
        //   trunc (Y * sext Scale) = (trunc Y) * Scale
        // always holds.  However (trunc Y) * Scale may overflow even if
        // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
        // from this point up in the expression (see later).
        if (RequireNoSignedWrap)
          return 0;

        // Drill down through the cast.
        unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
        Parent = std::make_pair(Cast, 0);
        Scale = Scale.sext(LargeSize);
        if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
          logScale = -1;
        assert(Scale.exactLogBase2() == logScale);
        continue;
      }
    }

    // Unsupported expression, bail out.
    return 0;
  }

  // We know that we can successfully descale, so from here on we can safely
  // modify the IR.  Op holds the descaled version of the deepest term in the
  // expression.  NoSignedWrap is 'true' if multiplying Op by Scale is known
  // not to overflow.

  if (!Parent.first)
    // The expression only had one term.
    return Op;

  // Rewrite the parent using the descaled version of its operand.
  assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
  assert(Op != Parent.first->getOperand(Parent.second) &&
         "Descaling was a no-op?");
  Parent.first->setOperand(Parent.second, Op);
  Worklist.Add(Parent.first);

  // Now work back up the expression correcting nsw flags.  The logic is based
  // on the following observation: if X * Y is known not to overflow as a signed
  // multiplication, and Y is replaced by a value Z with smaller absolute value,
  // then X * Z will not overflow as a signed multiplication either.  As we work
  // our way up, having NoSignedWrap 'true' means that the descaled value at the
  // current level has strictly smaller absolute value than the original.
  Instruction *Ancestor = Parent.first;
  do {
    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
      // If the multiplication wasn't nsw then we can't say anything about the
      // value of the descaled multiplication, and we have to clear nsw flags
      // from this point on up.
      bool OpNoSignedWrap = BO->hasNoSignedWrap();
      NoSignedWrap &= OpNoSignedWrap;
      if (NoSignedWrap != OpNoSignedWrap) {
        BO->setHasNoSignedWrap(NoSignedWrap);
        Worklist.Add(Ancestor);
      }
    } else if (Ancestor->getOpcode() == Instruction::Trunc) {
      // The fact that the descaled input to the trunc has smaller absolute
      // value than the original input doesn't tell us anything useful about
      // the absolute values of the truncations.
      NoSignedWrap = false;
    }
    assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
           "Failed to keep proper track of nsw flags while drilling down?");

    if (Ancestor == Val)
      // Got to the top, all done!
      return Val;

    // Move up one level in the expression.
    assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
    Ancestor = Ancestor->use_back();
  } while (1);
}

Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
  SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());

  if (Value *V = SimplifyGEPInst(Ops, TD))
    return ReplaceInstUsesWith(GEP, V);

  Value *PtrOp = GEP.getOperand(0);

  // Eliminate unneeded casts for indices, and replace indices which displace
  // by multiples of a zero size type with zero.
  if (TD) {
    bool MadeChange = false;
    Type *IntPtrTy = TD->getIntPtrType(GEP.getPointerOperandType());

    gep_type_iterator GTI = gep_type_begin(GEP);
    for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
         I != E; ++I, ++GTI) {
      // Skip indices into struct types.
      SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
      if (!SeqTy) continue;

      // If the element type has zero size then any index over it is equivalent
      // to an index of zero, so replace it with zero if it is not zero already.
      if (SeqTy->getElementType()->isSized() &&
          TD->getTypeAllocSize(SeqTy->getElementType()) == 0)
        if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
          *I = Constant::getNullValue(IntPtrTy);
          MadeChange = true;
        }

      Type *IndexTy = (*I)->getType();
      if (IndexTy != IntPtrTy) {
        // If we are using a wider index than needed for this platform, shrink
        // it to what we need.  If narrower, sign-extend it to what we need.
        // This explicit cast can make subsequent optimizations more obvious.
        *I = Builder->CreateIntCast(*I, IntPtrTy, true);
        MadeChange = true;
      }
    }
    if (MadeChange) return &GEP;
  }

  // Combine Indices - If the source pointer to this getelementptr instruction
  // is a getelementptr instruction, combine the indices of the two
  // getelementptr instructions into a single instruction.
  //
  if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
    if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
      return 0;

    // Note that if our source is a gep chain itself then we wait for that
    // chain to be resolved before we perform this transformation.  This
    // avoids us creating a TON of code in some cases.
    if (GEPOperator *SrcGEP =
          dyn_cast<GEPOperator>(Src->getOperand(0)))
      if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
        return 0;   // Wait until our source is folded to completion.

    SmallVector<Value*, 8> Indices;

    // Find out whether the last index in the source GEP is a sequential idx.
    bool EndsWithSequential = false;
    for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
         I != E; ++I)
      EndsWithSequential = !(*I)->isStructTy();

    // Can we combine the two pointer arithmetics offsets?
    if (EndsWithSequential) {
      // Replace: gep (gep %P, long B), long A, ...
      // With:    T = long A+B; gep %P, T, ...
      //
      Value *Sum;
      Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
      Value *GO1 = GEP.getOperand(1);
      if (SO1 == Constant::getNullValue(SO1->getType())) {
        Sum = GO1;
      } else if (GO1 == Constant::getNullValue(GO1->getType())) {
        Sum = SO1;
      } else {
        // If they aren't the same type, then the input hasn't been processed
        // by the loop above yet (which canonicalizes sequential index types to
        // intptr_t).  Just avoid transforming this until the input has been
        // normalized.
        if (SO1->getType() != GO1->getType())
          return 0;
        Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
      }

      // Update the GEP in place if possible.
      if (Src->getNumOperands() == 2) {
        GEP.setOperand(0, Src->getOperand(0));
        GEP.setOperand(1, Sum);
        return &GEP;
      }
      Indices.append(Src->op_begin()+1, Src->op_end()-1);
      Indices.push_back(Sum);
      Indices.append(GEP.op_begin()+2, GEP.op_end());
    } else if (isa<Constant>(*GEP.idx_begin()) &&
               cast<Constant>(*GEP.idx_begin())->isNullValue() &&
               Src->getNumOperands() != 1) {
      // Otherwise we can do the fold if the first index of the GEP is a zero
      Indices.append(Src->op_begin()+1, Src->op_end());
      Indices.append(GEP.idx_begin()+1, GEP.idx_end());
    }

    if (!Indices.empty())
      return (GEP.isInBounds() && Src->isInBounds()) ?
        GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices,
                                          GEP.getName()) :
        GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName());
  }

  // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
  Value *StrippedPtr = PtrOp->stripPointerCasts();
  PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());

  // We do not handle pointer-vector geps here.
  if (!StrippedPtrTy)
    return 0;

  if (StrippedPtr != PtrOp &&
    StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {

    bool HasZeroPointerIndex = false;
    if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
      HasZeroPointerIndex = C->isZero();

    // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
    // into     : GEP [10 x i8]* X, i32 0, ...
    //
    // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
    //           into     : GEP i8* X, ...
    //
    // This occurs when the program declares an array extern like "int X[];"
    if (HasZeroPointerIndex) {
      PointerType *CPTy = cast<PointerType>(PtrOp->getType());
      if (ArrayType *CATy =
          dyn_cast<ArrayType>(CPTy->getElementType())) {
        // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
        if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
          // -> GEP i8* X, ...
          SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
          GetElementPtrInst *Res =
            GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName());
          Res->setIsInBounds(GEP.isInBounds());
          return Res;
        }

        if (ArrayType *XATy =
              dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
          // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
          if (CATy->getElementType() == XATy->getElementType()) {
            // -> GEP [10 x i8]* X, i32 0, ...
            // At this point, we know that the cast source type is a pointer
            // to an array of the same type as the destination pointer
            // array.  Because the array type is never stepped over (there
            // is a leading zero) we can fold the cast into this GEP.
            GEP.setOperand(0, StrippedPtr);
            return &GEP;
          }
        }
      }
    } else if (GEP.getNumOperands() == 2) {
      // Transform things like:
      // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
      // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
      Type *SrcElTy = StrippedPtrTy->getElementType();
      Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
      if (TD && SrcElTy->isArrayTy() &&
          TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
          TD->getTypeAllocSize(ResElTy)) {
        Value *Idx[2];
        Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
        Idx[1] = GEP.getOperand(1);
        Value *NewGEP = GEP.isInBounds() ?
          Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
          Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
        // V and GEP are both pointer types --> BitCast
        return new BitCastInst(NewGEP, GEP.getType());
      }

      // Transform things like:
      // %V = mul i64 %N, 4
      // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
      // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
      if (TD && ResElTy->isSized() && SrcElTy->isSized()) {
        // Check that changing the type amounts to dividing the index by a scale
        // factor.
        uint64_t ResSize = TD->getTypeAllocSize(ResElTy);
        uint64_t SrcSize = TD->getTypeAllocSize(SrcElTy);
        if (ResSize && SrcSize % ResSize == 0) {
          Value *Idx = GEP.getOperand(1);
          unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
          uint64_t Scale = SrcSize / ResSize;

          // Earlier transforms ensure that the index has type IntPtrType, which
          // considerably simplifies the logic by eliminating implicit casts.
          assert(Idx->getType() == TD->getIntPtrType(GEP.getContext()) &&
                 "Index not cast to pointer width?");

          bool NSW;
          if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
            // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
            // If the multiplication NewIdx * Scale may overflow then the new
            // GEP may not be "inbounds".
            Value *NewGEP = GEP.isInBounds() && NSW ?
              Builder->CreateInBoundsGEP(StrippedPtr, NewIdx, GEP.getName()) :
              Builder->CreateGEP(StrippedPtr, NewIdx, GEP.getName());
            // The NewGEP must be pointer typed, so must the old one -> BitCast
            return new BitCastInst(NewGEP, GEP.getType());
          }
        }
      }

      // Similarly, transform things like:
      // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
      //   (where tmp = 8*tmp2) into:
      // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
      if (TD && ResElTy->isSized() && SrcElTy->isSized() &&
          SrcElTy->isArrayTy()) {
        // Check that changing to the array element type amounts to dividing the
        // index by a scale factor.
        uint64_t ResSize = TD->getTypeAllocSize(ResElTy);
        uint64_t ArrayEltSize =
          TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
        if (ResSize && ArrayEltSize % ResSize == 0) {
          Value *Idx = GEP.getOperand(1);
          unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
          uint64_t Scale = ArrayEltSize / ResSize;

          // Earlier transforms ensure that the index has type IntPtrType, which
          // considerably simplifies the logic by eliminating implicit casts.
          assert(Idx->getType() == TD->getIntPtrType(GEP.getContext()) &&
                 "Index not cast to pointer width?");

          bool NSW;
          if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
            // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
            // If the multiplication NewIdx * Scale may overflow then the new
            // GEP may not be "inbounds".
            Value *Off[2];
            Off[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
            Off[1] = NewIdx;
            Value *NewGEP = GEP.isInBounds() && NSW ?
              Builder->CreateInBoundsGEP(StrippedPtr, Off, GEP.getName()) :
              Builder->CreateGEP(StrippedPtr, Off, GEP.getName());
            // The NewGEP must be pointer typed, so must the old one -> BitCast
            return new BitCastInst(NewGEP, GEP.getType());
          }
        }
      }
    }
  }

  /// See if we can simplify:
  ///   X = bitcast A* to B*
  ///   Y = gep X, <...constant indices...>
  /// into a gep of the original struct.  This is important for SROA and alias
  /// analysis of unions.  If "A" is also a bitcast, wait for A/X to be merged.
  if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
    if (TD &&
        !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices() &&
        StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {

      // Determine how much the GEP moves the pointer.
      SmallVector<Value*, 8> Ops(GEP.idx_begin(), GEP.idx_end());
      int64_t Offset = TD->getIndexedOffset(GEP.getPointerOperandType(), Ops);

      // If this GEP instruction doesn't move the pointer, just replace the GEP
      // with a bitcast of the real input to the dest type.
      if (Offset == 0) {
        // If the bitcast is of an allocation, and the allocation will be
        // converted to match the type of the cast, don't touch this.
        if (isa<AllocaInst>(BCI->getOperand(0)) ||
            isAllocationFn(BCI->getOperand(0), TLI)) {
          // See if the bitcast simplifies, if so, don't nuke this GEP yet.
          if (Instruction *I = visitBitCast(*BCI)) {
            if (I != BCI) {
              I->takeName(BCI);
              BCI->getParent()->getInstList().insert(BCI, I);
              ReplaceInstUsesWith(*BCI, I);
            }
            return &GEP;
          }
        }
        return new BitCastInst(BCI->getOperand(0), GEP.getType());
      }

      // Otherwise, if the offset is non-zero, we need to find out if there is a
      // field at Offset in 'A's type.  If so, we can pull the cast through the
      // GEP.
      SmallVector<Value*, 8> NewIndices;
      Type *InTy =
        cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
      if (FindElementAtOffset(InTy, Offset, NewIndices)) {
        Value *NGEP = GEP.isInBounds() ?
          Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices) :
          Builder->CreateGEP(BCI->getOperand(0), NewIndices);

        if (NGEP->getType() == GEP.getType())
          return ReplaceInstUsesWith(GEP, NGEP);
        NGEP->takeName(&GEP);
        return new BitCastInst(NGEP, GEP.getType());
      }
    }
  }

  return 0;
}



static bool
isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users,
                     const TargetLibraryInfo *TLI) {
  SmallVector<Instruction*, 4> Worklist;
  Worklist.push_back(AI);

  do {
    Instruction *PI = Worklist.pop_back_val();
    for (Value::use_iterator UI = PI->use_begin(), UE = PI->use_end(); UI != UE;
         ++UI) {
      Instruction *I = cast<Instruction>(*UI);
      switch (I->getOpcode()) {
      default:
        // Give up the moment we see something we can't handle.
        return false;

      case Instruction::BitCast:
      case Instruction::GetElementPtr:
        Users.push_back(I);
        Worklist.push_back(I);
        continue;

      case Instruction::ICmp: {
        ICmpInst *ICI = cast<ICmpInst>(I);
        // We can fold eq/ne comparisons with null to false/true, respectively.
        if (!ICI->isEquality() || !isa<ConstantPointerNull>(ICI->getOperand(1)))
          return false;
        Users.push_back(I);
        continue;
      }

      case Instruction::Call:
        // Ignore no-op and store intrinsics.
        if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
          switch (II->getIntrinsicID()) {
          default:
            return false;

          case Intrinsic::memmove:
          case Intrinsic::memcpy:
          case Intrinsic::memset: {
            MemIntrinsic *MI = cast<MemIntrinsic>(II);
            if (MI->isVolatile() || MI->getRawDest() != PI)
              return false;
          }
          // fall through
          case Intrinsic::dbg_declare:
          case Intrinsic::dbg_value:
          case Intrinsic::invariant_start:
          case Intrinsic::invariant_end:
          case Intrinsic::lifetime_start:
          case Intrinsic::lifetime_end:
          case Intrinsic::objectsize:
            Users.push_back(I);
            continue;
          }
        }

        if (isFreeCall(I, TLI)) {
          Users.push_back(I);
          continue;
        }
        return false;

      case Instruction::Store: {
        StoreInst *SI = cast<StoreInst>(I);
        if (SI->isVolatile() || SI->getPointerOperand() != PI)
          return false;
        Users.push_back(I);
        continue;
      }
      }
      llvm_unreachable("missing a return?");
    }
  } while (!Worklist.empty());
  return true;
}

Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
  // If we have a malloc call which is only used in any amount of comparisons
  // to null and free calls, delete the calls and replace the comparisons with
  // true or false as appropriate.
  SmallVector<WeakVH, 64> Users;
  if (isAllocSiteRemovable(&MI, Users, TLI)) {
    for (unsigned i = 0, e = Users.size(); i != e; ++i) {
      Instruction *I = cast_or_null<Instruction>(&*Users[i]);
      if (!I) continue;

      if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
        ReplaceInstUsesWith(*C,
                            ConstantInt::get(Type::getInt1Ty(C->getContext()),
                                             C->isFalseWhenEqual()));
      } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
        ReplaceInstUsesWith(*I, UndefValue::get(I->getType()));
      } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
        if (II->getIntrinsicID() == Intrinsic::objectsize) {
          ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
          uint64_t DontKnow = CI->isZero() ? -1ULL : 0;
          ReplaceInstUsesWith(*I, ConstantInt::get(I->getType(), DontKnow));
        }
      }
      EraseInstFromFunction(*I);
    }

    if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
      // Replace invoke with a NOP intrinsic to maintain the original CFG
      Module *M = II->getParent()->getParent()->getParent();
      Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
      InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
                         ArrayRef<Value *>(), "", II->getParent());
    }
    return EraseInstFromFunction(MI);
  }
  return 0;
}



Instruction *InstCombiner::visitFree(CallInst &FI) {
  Value *Op = FI.getArgOperand(0);

  // free undef -> unreachable.
  if (isa<UndefValue>(Op)) {
    // Insert a new store to null because we cannot modify the CFG here.
    Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
                         UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
    return EraseInstFromFunction(FI);
  }

  // If we have 'free null' delete the instruction.  This can happen in stl code
  // when lots of inlining happens.
  if (isa<ConstantPointerNull>(Op))
    return EraseInstFromFunction(FI);

  return 0;
}



Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
  // Change br (not X), label True, label False to: br X, label False, True
  Value *X = 0;
  BasicBlock *TrueDest;
  BasicBlock *FalseDest;
  if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
      !isa<Constant>(X)) {
    // Swap Destinations and condition...
    BI.setCondition(X);
    BI.swapSuccessors();
    return &BI;
  }

  // Cannonicalize fcmp_one -> fcmp_oeq
  FCmpInst::Predicate FPred; Value *Y;
  if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
                             TrueDest, FalseDest)) &&
      BI.getCondition()->hasOneUse())
    if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
        FPred == FCmpInst::FCMP_OGE) {
      FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
      Cond->setPredicate(FCmpInst::getInversePredicate(FPred));

      // Swap Destinations and condition.
      BI.swapSuccessors();
      Worklist.Add(Cond);
      return &BI;
    }

  // Cannonicalize icmp_ne -> icmp_eq
  ICmpInst::Predicate IPred;
  if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
                      TrueDest, FalseDest)) &&
      BI.getCondition()->hasOneUse())
    if (IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE ||
        IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
        IPred == ICmpInst::ICMP_SGE) {
      ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
      Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
      // Swap Destinations and condition.
      BI.swapSuccessors();
      Worklist.Add(Cond);
      return &BI;
    }

  return 0;
}

Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
  Value *Cond = SI.getCondition();
  if (Instruction *I = dyn_cast<Instruction>(Cond)) {
    if (I->getOpcode() == Instruction::Add)
      if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
        // change 'switch (X+4) case 1:' into 'switch (X) case -3'
        // Skip the first item since that's the default case.
        for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
             i != e; ++i) {
          ConstantInt* CaseVal = i.getCaseValue();
          Constant* NewCaseVal = ConstantExpr::getSub(cast<Constant>(CaseVal),
                                                      AddRHS);
          assert(isa<ConstantInt>(NewCaseVal) &&
                 "Result of expression should be constant");
          i.setValue(cast<ConstantInt>(NewCaseVal));
        }
        SI.setCondition(I->getOperand(0));
        Worklist.Add(I);
        return &SI;
      }
  }
  return 0;
}

Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
  Value *Agg = EV.getAggregateOperand();

  if (!EV.hasIndices())
    return ReplaceInstUsesWith(EV, Agg);

  if (Constant *C = dyn_cast<Constant>(Agg)) {
    if (Constant *C2 = C->getAggregateElement(*EV.idx_begin())) {
      if (EV.getNumIndices() == 0)
        return ReplaceInstUsesWith(EV, C2);
      // Extract the remaining indices out of the constant indexed by the
      // first index
      return ExtractValueInst::Create(C2, EV.getIndices().slice(1));
    }
    return 0; // Can't handle other constants
  }

  if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
    // We're extracting from an insertvalue instruction, compare the indices
    const unsigned *exti, *exte, *insi, *inse;
    for (exti = EV.idx_begin(), insi = IV->idx_begin(),
         exte = EV.idx_end(), inse = IV->idx_end();
         exti != exte && insi != inse;
         ++exti, ++insi) {
      if (*insi != *exti)
        // The insert and extract both reference distinctly different elements.
        // This means the extract is not influenced by the insert, and we can
        // replace the aggregate operand of the extract with the aggregate
        // operand of the insert. i.e., replace
        // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
        // %E = extractvalue { i32, { i32 } } %I, 0
        // with
        // %E = extractvalue { i32, { i32 } } %A, 0
        return ExtractValueInst::Create(IV->getAggregateOperand(),
                                        EV.getIndices());
    }
    if (exti == exte && insi == inse)
      // Both iterators are at the end: Index lists are identical. Replace
      // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
      // %C = extractvalue { i32, { i32 } } %B, 1, 0
      // with "i32 42"
      return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
    if (exti == exte) {
      // The extract list is a prefix of the insert list. i.e. replace
      // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
      // %E = extractvalue { i32, { i32 } } %I, 1
      // with
      // %X = extractvalue { i32, { i32 } } %A, 1
      // %E = insertvalue { i32 } %X, i32 42, 0
      // by switching the order of the insert and extract (though the
      // insertvalue should be left in, since it may have other uses).
      Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
                                                 EV.getIndices());
      return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
                                     makeArrayRef(insi, inse));
    }
    if (insi == inse)
      // The insert list is a prefix of the extract list
      // We can simply remove the common indices from the extract and make it
      // operate on the inserted value instead of the insertvalue result.
      // i.e., replace
      // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
      // %E = extractvalue { i32, { i32 } } %I, 1, 0
      // with
      // %E extractvalue { i32 } { i32 42 }, 0
      return ExtractValueInst::Create(IV->getInsertedValueOperand(),
                                      makeArrayRef(exti, exte));
  }
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
    // We're extracting from an intrinsic, see if we're the only user, which
    // allows us to simplify multiple result intrinsics to simpler things that
    // just get one value.
    if (II->hasOneUse()) {
      // Check if we're grabbing the overflow bit or the result of a 'with
      // overflow' intrinsic.  If it's the latter we can remove the intrinsic
      // and replace it with a traditional binary instruction.
      switch (II->getIntrinsicID()) {
      case Intrinsic::uadd_with_overflow:
      case Intrinsic::sadd_with_overflow:
        if (*EV.idx_begin() == 0) {  // Normal result.
          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
          ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
          EraseInstFromFunction(*II);
          return BinaryOperator::CreateAdd(LHS, RHS);
        }

        // If the normal result of the add is dead, and the RHS is a constant,
        // we can transform this into a range comparison.
        // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
        if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
          if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
            return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
                                ConstantExpr::getNot(CI));
        break;
      case Intrinsic::usub_with_overflow:
      case Intrinsic::ssub_with_overflow:
        if (*EV.idx_begin() == 0) {  // Normal result.
          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
          ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
          EraseInstFromFunction(*II);
          return BinaryOperator::CreateSub(LHS, RHS);
        }
        break;
      case Intrinsic::umul_with_overflow:
      case Intrinsic::smul_with_overflow:
        if (*EV.idx_begin() == 0) {  // Normal result.
          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
          ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
          EraseInstFromFunction(*II);
          return BinaryOperator::CreateMul(LHS, RHS);
        }
        break;
      default:
        break;
      }
    }
  }
  if (LoadInst *L = dyn_cast<LoadInst>(Agg))
    // If the (non-volatile) load only has one use, we can rewrite this to a
    // load from a GEP. This reduces the size of the load.
    // FIXME: If a load is used only by extractvalue instructions then this
    //        could be done regardless of having multiple uses.
    if (L->isSimple() && L->hasOneUse()) {
      // extractvalue has integer indices, getelementptr has Value*s. Convert.
      SmallVector<Value*, 4> Indices;
      // Prefix an i32 0 since we need the first element.
      Indices.push_back(Builder->getInt32(0));
      for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
            I != E; ++I)
        Indices.push_back(Builder->getInt32(*I));

      // We need to insert these at the location of the old load, not at that of
      // the extractvalue.
      Builder->SetInsertPoint(L->getParent(), L);
      Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices);
      // Returning the load directly will cause the main loop to insert it in
      // the wrong spot, so use ReplaceInstUsesWith().
      return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
    }
  // We could simplify extracts from other values. Note that nested extracts may
  // already be simplified implicitly by the above: extract (extract (insert) )
  // will be translated into extract ( insert ( extract ) ) first and then just
  // the value inserted, if appropriate. Similarly for extracts from single-use
  // loads: extract (extract (load)) will be translated to extract (load (gep))
  // and if again single-use then via load (gep (gep)) to load (gep).
  // However, double extracts from e.g. function arguments or return values
  // aren't handled yet.
  return 0;
}

enum Personality_Type {
  Unknown_Personality,
  GNU_Ada_Personality,
  GNU_CXX_Personality,
  GNU_ObjC_Personality
};

/// RecognizePersonality - See if the given exception handling personality
/// function is one that we understand.  If so, return a description of it;
/// otherwise return Unknown_Personality.
static Personality_Type RecognizePersonality(Value *Pers) {
  Function *F = dyn_cast<Function>(Pers->stripPointerCasts());
  if (!F)
    return Unknown_Personality;
  return StringSwitch<Personality_Type>(F->getName())
    .Case("__gnat_eh_personality", GNU_Ada_Personality)
    .Case("__gxx_personality_v0",  GNU_CXX_Personality)
    .Case("__objc_personality_v0", GNU_ObjC_Personality)
    .Default(Unknown_Personality);
}

/// isCatchAll - Return 'true' if the given typeinfo will match anything.
static bool isCatchAll(Personality_Type Personality, Constant *TypeInfo) {
  switch (Personality) {
  case Unknown_Personality:
    return false;
  case GNU_Ada_Personality:
    // While __gnat_all_others_value will match any Ada exception, it doesn't
    // match foreign exceptions (or didn't, before gcc-4.7).
    return false;
  case GNU_CXX_Personality:
  case GNU_ObjC_Personality:
    return TypeInfo->isNullValue();
  }
  llvm_unreachable("Unknown personality!");
}

static bool shorter_filter(const Value *LHS, const Value *RHS) {
  return
    cast<ArrayType>(LHS->getType())->getNumElements()
  <
    cast<ArrayType>(RHS->getType())->getNumElements();
}

Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
  // The logic here should be correct for any real-world personality function.
  // However if that turns out not to be true, the offending logic can always
  // be conditioned on the personality function, like the catch-all logic is.
  Personality_Type Personality = RecognizePersonality(LI.getPersonalityFn());

  // Simplify the list of clauses, eg by removing repeated catch clauses
  // (these are often created by inlining).
  bool MakeNewInstruction = false; // If true, recreate using the following:
  SmallVector<Value *, 16> NewClauses; // - Clauses for the new instruction;
  bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.

  SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
  for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
    bool isLastClause = i + 1 == e;
    if (LI.isCatch(i)) {
      // A catch clause.
      Value *CatchClause = LI.getClause(i);
      Constant *TypeInfo = cast<Constant>(CatchClause->stripPointerCasts());

      // If we already saw this clause, there is no point in having a second
      // copy of it.
      if (AlreadyCaught.insert(TypeInfo)) {
        // This catch clause was not already seen.
        NewClauses.push_back(CatchClause);
      } else {
        // Repeated catch clause - drop the redundant copy.
        MakeNewInstruction = true;
      }

      // If this is a catch-all then there is no point in keeping any following
      // clauses or marking the landingpad as having a cleanup.
      if (isCatchAll(Personality, TypeInfo)) {
        if (!isLastClause)
          MakeNewInstruction = true;
        CleanupFlag = false;
        break;
      }
    } else {
      // A filter clause.  If any of the filter elements were already caught
      // then they can be dropped from the filter.  It is tempting to try to
      // exploit the filter further by saying that any typeinfo that does not
      // occur in the filter can't be caught later (and thus can be dropped).
      // However this would be wrong, since typeinfos can match without being
      // equal (for example if one represents a C++ class, and the other some
      // class derived from it).
      assert(LI.isFilter(i) && "Unsupported landingpad clause!");
      Value *FilterClause = LI.getClause(i);
      ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
      unsigned NumTypeInfos = FilterType->getNumElements();

      // An empty filter catches everything, so there is no point in keeping any
      // following clauses or marking the landingpad as having a cleanup.  By
      // dealing with this case here the following code is made a bit simpler.
      if (!NumTypeInfos) {
        NewClauses.push_back(FilterClause);
        if (!isLastClause)
          MakeNewInstruction = true;
        CleanupFlag = false;
        break;
      }

      bool MakeNewFilter = false; // If true, make a new filter.
      SmallVector<Constant *, 16> NewFilterElts; // New elements.
      if (isa<ConstantAggregateZero>(FilterClause)) {
        // Not an empty filter - it contains at least one null typeinfo.
        assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
        Constant *TypeInfo =
          Constant::getNullValue(FilterType->getElementType());
        // If this typeinfo is a catch-all then the filter can never match.
        if (isCatchAll(Personality, TypeInfo)) {
          // Throw the filter away.
          MakeNewInstruction = true;
          continue;
        }

        // There is no point in having multiple copies of this typeinfo, so
        // discard all but the first copy if there is more than one.
        NewFilterElts.push_back(TypeInfo);
        if (NumTypeInfos > 1)
          MakeNewFilter = true;
      } else {
        ConstantArray *Filter = cast<ConstantArray>(FilterClause);
        SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
        NewFilterElts.reserve(NumTypeInfos);

        // Remove any filter elements that were already caught or that already
        // occurred in the filter.  While there, see if any of the elements are
        // catch-alls.  If so, the filter can be discarded.
        bool SawCatchAll = false;
        for (unsigned j = 0; j != NumTypeInfos; ++j) {
          Value *Elt = Filter->getOperand(j);
          Constant *TypeInfo = cast<Constant>(Elt->stripPointerCasts());
          if (isCatchAll(Personality, TypeInfo)) {
            // This element is a catch-all.  Bail out, noting this fact.
            SawCatchAll = true;
            break;
          }
          if (AlreadyCaught.count(TypeInfo))
            // Already caught by an earlier clause, so having it in the filter
            // is pointless.
            continue;
          // There is no point in having multiple copies of the same typeinfo in
          // a filter, so only add it if we didn't already.
          if (SeenInFilter.insert(TypeInfo))
            NewFilterElts.push_back(cast<Constant>(Elt));
        }
        // A filter containing a catch-all cannot match anything by definition.
        if (SawCatchAll) {
          // Throw the filter away.
          MakeNewInstruction = true;
          continue;
        }

        // If we dropped something from the filter, make a new one.
        if (NewFilterElts.size() < NumTypeInfos)
          MakeNewFilter = true;
      }
      if (MakeNewFilter) {
        FilterType = ArrayType::get(FilterType->getElementType(),
                                    NewFilterElts.size());
        FilterClause = ConstantArray::get(FilterType, NewFilterElts);
        MakeNewInstruction = true;
      }

      NewClauses.push_back(FilterClause);

      // If the new filter is empty then it will catch everything so there is
      // no point in keeping any following clauses or marking the landingpad
      // as having a cleanup.  The case of the original filter being empty was
      // already handled above.
      if (MakeNewFilter && !NewFilterElts.size()) {
        assert(MakeNewInstruction && "New filter but not a new instruction!");
        CleanupFlag = false;
        break;
      }
    }
  }

  // If several filters occur in a row then reorder them so that the shortest
  // filters come first (those with the smallest number of elements).  This is
  // advantageous because shorter filters are more likely to match, speeding up
  // unwinding, but mostly because it increases the effectiveness of the other
  // filter optimizations below.
  for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
    unsigned j;
    // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
    for (j = i; j != e; ++j)
      if (!isa<ArrayType>(NewClauses[j]->getType()))
        break;

    // Check whether the filters are already sorted by length.  We need to know
    // if sorting them is actually going to do anything so that we only make a
    // new landingpad instruction if it does.
    for (unsigned k = i; k + 1 < j; ++k)
      if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
        // Not sorted, so sort the filters now.  Doing an unstable sort would be
        // correct too but reordering filters pointlessly might confuse users.
        std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
                         shorter_filter);
        MakeNewInstruction = true;
        break;
      }

    // Look for the next batch of filters.
    i = j + 1;
  }

  // If typeinfos matched if and only if equal, then the elements of a filter L
  // that occurs later than a filter F could be replaced by the intersection of
  // the elements of F and L.  In reality two typeinfos can match without being
  // equal (for example if one represents a C++ class, and the other some class
  // derived from it) so it would be wrong to perform this transform in general.
  // However the transform is correct and useful if F is a subset of L.  In that
  // case L can be replaced by F, and thus removed altogether since repeating a
  // filter is pointless.  So here we look at all pairs of filters F and L where
  // L follows F in the list of clauses, and remove L if every element of F is
  // an element of L.  This can occur when inlining C++ functions with exception
  // specifications.
  for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
    // Examine each filter in turn.
    Value *Filter = NewClauses[i];
    ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
    if (!FTy)
      // Not a filter - skip it.
      continue;
    unsigned FElts = FTy->getNumElements();
    // Examine each filter following this one.  Doing this backwards means that
    // we don't have to worry about filters disappearing under us when removed.
    for (unsigned j = NewClauses.size() - 1; j != i; --j) {
      Value *LFilter = NewClauses[j];
      ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
      if (!LTy)
        // Not a filter - skip it.
        continue;
      // If Filter is a subset of LFilter, i.e. every element of Filter is also
      // an element of LFilter, then discard LFilter.
      SmallVector<Value *, 16>::iterator J = NewClauses.begin() + j;
      // If Filter is empty then it is a subset of LFilter.
      if (!FElts) {
        // Discard LFilter.
        NewClauses.erase(J);
        MakeNewInstruction = true;
        // Move on to the next filter.
        continue;
      }
      unsigned LElts = LTy->getNumElements();
      // If Filter is longer than LFilter then it cannot be a subset of it.
      if (FElts > LElts)
        // Move on to the next filter.
        continue;
      // At this point we know that LFilter has at least one element.
      if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
        // Filter is a subset of LFilter iff Filter contains only zeros (as we
        // already know that Filter is not longer than LFilter).
        if (isa<ConstantAggregateZero>(Filter)) {
          assert(FElts <= LElts && "Should have handled this case earlier!");
          // Discard LFilter.
          NewClauses.erase(J);
          MakeNewInstruction = true;
        }
        // Move on to the next filter.
        continue;
      }
      ConstantArray *LArray = cast<ConstantArray>(LFilter);
      if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
        // Since Filter is non-empty and contains only zeros, it is a subset of
        // LFilter iff LFilter contains a zero.
        assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
        for (unsigned l = 0; l != LElts; ++l)
          if (LArray->getOperand(l)->isNullValue()) {
            // LFilter contains a zero - discard it.
            NewClauses.erase(J);
            MakeNewInstruction = true;
            break;
          }
        // Move on to the next filter.
        continue;
      }
      // At this point we know that both filters are ConstantArrays.  Loop over
      // operands to see whether every element of Filter is also an element of
      // LFilter.  Since filters tend to be short this is probably faster than
      // using a method that scales nicely.
      ConstantArray *FArray = cast<ConstantArray>(Filter);
      bool AllFound = true;
      for (unsigned f = 0; f != FElts; ++f) {
        Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
        AllFound = false;
        for (unsigned l = 0; l != LElts; ++l) {
          Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
          if (LTypeInfo == FTypeInfo) {
            AllFound = true;
            break;
          }
        }
        if (!AllFound)
          break;
      }
      if (AllFound) {
        // Discard LFilter.
        NewClauses.erase(J);
        MakeNewInstruction = true;
      }
      // Move on to the next filter.
    }
  }

  // If we changed any of the clauses, replace the old landingpad instruction
  // with a new one.
  if (MakeNewInstruction) {
    LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
                                                 LI.getPersonalityFn(),
                                                 NewClauses.size());
    for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
      NLI->addClause(NewClauses[i]);
    // A landing pad with no clauses must have the cleanup flag set.  It is
    // theoretically possible, though highly unlikely, that we eliminated all
    // clauses.  If so, force the cleanup flag to true.
    if (NewClauses.empty())
      CleanupFlag = true;
    NLI->setCleanup(CleanupFlag);
    return NLI;
  }

  // Even if none of the clauses changed, we may nonetheless have understood
  // that the cleanup flag is pointless.  Clear it if so.
  if (LI.isCleanup() != CleanupFlag) {
    assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
    LI.setCleanup(CleanupFlag);
    return &LI;
  }

  return 0;
}




/// TryToSinkInstruction - Try to move the specified instruction from its
/// current block into the beginning of DestBlock, which can only happen if it's
/// safe to move the instruction past all of the instructions between it and the
/// end of its block.
static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
  assert(I->hasOneUse() && "Invariants didn't hold!");

  // Cannot move control-flow-involving, volatile loads, vaarg, etc.
  if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() ||
      isa<TerminatorInst>(I))
    return false;

  // Do not sink alloca instructions out of the entry block.
  if (isa<AllocaInst>(I) && I->getParent() ==
        &DestBlock->getParent()->getEntryBlock())
    return false;

  // We can only sink load instructions if there is nothing between the load and
  // the end of block that could change the value.
  if (I->mayReadFromMemory()) {
    for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
         Scan != E; ++Scan)
      if (Scan->mayWriteToMemory())
        return false;
  }

  BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
  I->moveBefore(InsertPos);
  ++NumSunkInst;
  return true;
}


/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
/// all reachable code to the worklist.
///
/// This has a couple of tricks to make the code faster and more powerful.  In
/// particular, we constant fold and DCE instructions as we go, to avoid adding
/// them to the worklist (this significantly speeds up instcombine on code where
/// many instructions are dead or constant).  Additionally, if we find a branch
/// whose condition is a known constant, we only visit the reachable successors.
///
static bool AddReachableCodeToWorklist(BasicBlock *BB,
                                       SmallPtrSet<BasicBlock*, 64> &Visited,
                                       InstCombiner &IC,
                                       const DataLayout *TD,
                                       const TargetLibraryInfo *TLI) {
  bool MadeIRChange = false;
  SmallVector<BasicBlock*, 256> Worklist;
  Worklist.push_back(BB);

  SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
  DenseMap<ConstantExpr*, Constant*> FoldedConstants;

  do {
    BB = Worklist.pop_back_val();

    // We have now visited this block!  If we've already been here, ignore it.
    if (!Visited.insert(BB)) continue;

    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
      Instruction *Inst = BBI++;

      // DCE instruction if trivially dead.
      if (isInstructionTriviallyDead(Inst, TLI)) {
        ++NumDeadInst;
        DEBUG(errs() << "IC: DCE: " << *Inst << '\n');
        Inst->eraseFromParent();
        continue;
      }

      // ConstantProp instruction if trivially constant.
      if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
        if (Constant *C = ConstantFoldInstruction(Inst, TD, TLI)) {
          DEBUG(errs() << "IC: ConstFold to: " << *C << " from: "
                       << *Inst << '\n');
          Inst->replaceAllUsesWith(C);
          ++NumConstProp;
          Inst->eraseFromParent();
          continue;
        }

      if (TD) {
        // See if we can constant fold its operands.
        for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
             i != e; ++i) {
          ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
          if (CE == 0) continue;

          Constant*& FoldRes = FoldedConstants[CE];
          if (!FoldRes)
            FoldRes = ConstantFoldConstantExpression(CE, TD, TLI);
          if (!FoldRes)
            FoldRes = CE;

          if (FoldRes != CE) {
            *i = FoldRes;
            MadeIRChange = true;
          }
        }
      }

      InstrsForInstCombineWorklist.push_back(Inst);
    }

    // Recursively visit successors.  If this is a branch or switch on a
    // constant, only visit the reachable successor.
    TerminatorInst *TI = BB->getTerminator();
    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
      if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
        bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
        BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
        Worklist.push_back(ReachableBB);
        continue;
      }
    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
      if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
        // See if this is an explicit destination.
        for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
             i != e; ++i)
          if (i.getCaseValue() == Cond) {
            BasicBlock *ReachableBB = i.getCaseSuccessor();
            Worklist.push_back(ReachableBB);
            continue;
          }

        // Otherwise it is the default destination.
        Worklist.push_back(SI->getDefaultDest());
        continue;
      }
    }

    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
      Worklist.push_back(TI->getSuccessor(i));
  } while (!Worklist.empty());

  // Once we've found all of the instructions to add to instcombine's worklist,
  // add them in reverse order.  This way instcombine will visit from the top
  // of the function down.  This jives well with the way that it adds all uses
  // of instructions to the worklist after doing a transformation, thus avoiding
  // some N^2 behavior in pathological cases.
  IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
                              InstrsForInstCombineWorklist.size());

  return MadeIRChange;
}

bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
  MadeIRChange = false;

  DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
               << F.getName() << "\n");

  {
    // Do a depth-first traversal of the function, populate the worklist with
    // the reachable instructions.  Ignore blocks that are not reachable.  Keep
    // track of which blocks we visit.
    SmallPtrSet<BasicBlock*, 64> Visited;
    MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD,
                                               TLI);

    // Do a quick scan over the function.  If we find any blocks that are
    // unreachable, remove any instructions inside of them.  This prevents
    // the instcombine code from having to deal with some bad special cases.
    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
      if (Visited.count(BB)) continue;

      // Delete the instructions backwards, as it has a reduced likelihood of
      // having to update as many def-use and use-def chains.
      Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
      while (EndInst != BB->begin()) {
        // Delete the next to last instruction.
        BasicBlock::iterator I = EndInst;
        Instruction *Inst = --I;
        if (!Inst->use_empty())
          Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
        if (isa<LandingPadInst>(Inst)) {
          EndInst = Inst;
          continue;
        }
        if (!isa<DbgInfoIntrinsic>(Inst)) {
          ++NumDeadInst;
          MadeIRChange = true;
        }
        Inst->eraseFromParent();
      }
    }
  }

  while (!Worklist.isEmpty()) {
    Instruction *I = Worklist.RemoveOne();
    if (I == 0) continue;  // skip null values.

    // Check to see if we can DCE the instruction.
    if (isInstructionTriviallyDead(I, TLI)) {
      DEBUG(errs() << "IC: DCE: " << *I << '\n');
      EraseInstFromFunction(*I);
      ++NumDeadInst;
      MadeIRChange = true;
      continue;
    }

    // Instruction isn't dead, see if we can constant propagate it.
    if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
      if (Constant *C = ConstantFoldInstruction(I, TD, TLI)) {
        DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');

        // Add operands to the worklist.
        ReplaceInstUsesWith(*I, C);
        ++NumConstProp;
        EraseInstFromFunction(*I);
        MadeIRChange = true;
        continue;
      }

    // See if we can trivially sink this instruction to a successor basic block.
    if (I->hasOneUse()) {
      BasicBlock *BB = I->getParent();
      Instruction *UserInst = cast<Instruction>(I->use_back());
      BasicBlock *UserParent;

      // Get the block the use occurs in.
      if (PHINode *PN = dyn_cast<PHINode>(UserInst))
        UserParent = PN->getIncomingBlock(I->use_begin().getUse());
      else
        UserParent = UserInst->getParent();

      if (UserParent != BB) {
        bool UserIsSuccessor = false;
        // See if the user is one of our successors.
        for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
          if (*SI == UserParent) {
            UserIsSuccessor = true;
            break;
          }

        // If the user is one of our immediate successors, and if that successor
        // only has us as a predecessors (we'd have to split the critical edge
        // otherwise), we can keep going.
        if (UserIsSuccessor && UserParent->getSinglePredecessor())
          // Okay, the CFG is simple enough, try to sink this instruction.
          MadeIRChange |= TryToSinkInstruction(I, UserParent);
      }
    }

    // Now that we have an instruction, try combining it to simplify it.
    Builder->SetInsertPoint(I->getParent(), I);
    Builder->SetCurrentDebugLocation(I->getDebugLoc());

#ifndef NDEBUG
    std::string OrigI;
#endif
    DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
    DEBUG(errs() << "IC: Visiting: " << OrigI << '\n');

    if (Instruction *Result = visit(*I)) {
      ++NumCombined;
      // Should we replace the old instruction with a new one?
      if (Result != I) {
        DEBUG(errs() << "IC: Old = " << *I << '\n'
                     << "    New = " << *Result << '\n');

        if (!I->getDebugLoc().isUnknown())
          Result->setDebugLoc(I->getDebugLoc());
        // Everything uses the new instruction now.
        I->replaceAllUsesWith(Result);

        // Move the name to the new instruction first.
        Result->takeName(I);

        // Push the new instruction and any users onto the worklist.
        Worklist.Add(Result);
        Worklist.AddUsersToWorkList(*Result);

        // Insert the new instruction into the basic block...
        BasicBlock *InstParent = I->getParent();
        BasicBlock::iterator InsertPos = I;

        // If we replace a PHI with something that isn't a PHI, fix up the
        // insertion point.
        if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
          InsertPos = InstParent->getFirstInsertionPt();

        InstParent->getInstList().insert(InsertPos, Result);

        EraseInstFromFunction(*I);
      } else {
#ifndef NDEBUG
        DEBUG(errs() << "IC: Mod = " << OrigI << '\n'
                     << "    New = " << *I << '\n');
#endif

        // If the instruction was modified, it's possible that it is now dead.
        // if so, remove it.
        if (isInstructionTriviallyDead(I, TLI)) {
          EraseInstFromFunction(*I);
        } else {
          Worklist.Add(I);
          Worklist.AddUsersToWorkList(*I);
        }
      }
      MadeIRChange = true;
    }
  }

  Worklist.Zap();
  return MadeIRChange;
}

namespace {
class InstCombinerLibCallSimplifier : public LibCallSimplifier {
  InstCombiner *IC;
public:
  InstCombinerLibCallSimplifier(const DataLayout *TD,
                                const TargetLibraryInfo *TLI,
                                InstCombiner *IC)
    : LibCallSimplifier(TD, TLI) {
    this->IC = IC;
  }

  /// replaceAllUsesWith - override so that instruction replacement
  /// can be defined in terms of the instruction combiner framework.
  virtual void replaceAllUsesWith(Instruction *I, Value *With) const {
    IC->ReplaceInstUsesWith(*I, With);
  }
};
}

bool InstCombiner::runOnFunction(Function &F) {
  TD = getAnalysisIfAvailable<DataLayout>();
  TLI = &getAnalysis<TargetLibraryInfo>();

  /// Builder - This is an IRBuilder that automatically inserts new
  /// instructions into the worklist when they are created.
  IRBuilder<true, TargetFolder, InstCombineIRInserter>
    TheBuilder(F.getContext(), TargetFolder(TD),
               InstCombineIRInserter(Worklist));
  Builder = &TheBuilder;

  InstCombinerLibCallSimplifier TheSimplifier(TD, TLI, this);
  Simplifier = &TheSimplifier;

  bool EverMadeChange = false;

  // Lower dbg.declare intrinsics otherwise their value may be clobbered
  // by instcombiner.
  EverMadeChange = LowerDbgDeclare(F);

  // Iterate while there is work to do.
  unsigned Iteration = 0;
  while (DoOneIteration(F, Iteration++))
    EverMadeChange = true;

  Builder = 0;
  return EverMadeChange;
}

FunctionPass *llvm::createInstructionCombiningPass() {
  return new InstCombiner();
}