1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
|
//===- InstCombineCasts.cpp -----------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the visit functions for cast operations.
//
//===----------------------------------------------------------------------===//
#include "InstCombine.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/PatternMatch.h"
using namespace llvm;
using namespace PatternMatch;
/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
/// expression. If so, decompose it, returning some value X, such that Val is
/// X*Scale+Offset.
///
static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
int &Offset) {
assert(Val->getType()->isInteger(32) && "Unexpected allocation size type!");
if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
Offset = CI->getZExtValue();
Scale = 0;
return ConstantInt::get(Type::getInt32Ty(Val->getContext()), 0);
}
if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
if (I->getOpcode() == Instruction::Shl) {
// This is a value scaled by '1 << the shift amt'.
Scale = 1U << RHS->getZExtValue();
Offset = 0;
return I->getOperand(0);
}
if (I->getOpcode() == Instruction::Mul) {
// This value is scaled by 'RHS'.
Scale = RHS->getZExtValue();
Offset = 0;
return I->getOperand(0);
}
if (I->getOpcode() == Instruction::Add) {
// We have X+C. Check to see if we really have (X*C2)+C1,
// where C1 is divisible by C2.
unsigned SubScale;
Value *SubVal =
DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
Offset += RHS->getZExtValue();
Scale = SubScale;
return SubVal;
}
}
}
// Otherwise, we can't look past this.
Scale = 1;
Offset = 0;
return Val;
}
/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
/// try to eliminate the cast by moving the type information into the alloc.
Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
AllocaInst &AI) {
// This requires TargetData to get the alloca alignment and size information.
if (!TD) return 0;
const PointerType *PTy = cast<PointerType>(CI.getType());
BuilderTy AllocaBuilder(*Builder);
AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
// Get the type really allocated and the type casted to.
const Type *AllocElTy = AI.getAllocatedType();
const Type *CastElTy = PTy->getElementType();
if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
if (CastElTyAlign < AllocElTyAlign) return 0;
// If the allocation has multiple uses, only promote it if we are strictly
// increasing the alignment of the resultant allocation. If we keep it the
// same, we open the door to infinite loops of various kinds. (A reference
// from a dbg.declare doesn't count as a use for this purpose.)
if (!AI.hasOneUse() && !hasOneUsePlusDeclare(&AI) &&
CastElTyAlign == AllocElTyAlign) return 0;
uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy);
uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
if (CastElTySize == 0 || AllocElTySize == 0) return 0;
// See if we can satisfy the modulus by pulling a scale out of the array
// size argument.
unsigned ArraySizeScale;
int ArrayOffset;
Value *NumElements = // See if the array size is a decomposable linear expr.
DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
// If we can now satisfy the modulus, by using a non-1 scale, we really can
// do the xform.
if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
(AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
Value *Amt = 0;
if (Scale == 1) {
Amt = NumElements;
} else {
Amt = ConstantInt::get(Type::getInt32Ty(CI.getContext()), Scale);
// Insert before the alloca, not before the cast.
Amt = AllocaBuilder.CreateMul(Amt, NumElements, "tmp");
}
if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
Value *Off = ConstantInt::get(Type::getInt32Ty(CI.getContext()),
Offset, true);
Amt = AllocaBuilder.CreateAdd(Amt, Off, "tmp");
}
AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
New->setAlignment(AI.getAlignment());
New->takeName(&AI);
// If the allocation has one real use plus a dbg.declare, just remove the
// declare.
if (DbgDeclareInst *DI = hasOneUsePlusDeclare(&AI)) {
EraseInstFromFunction(*(Instruction*)DI);
}
// If the allocation has multiple real uses, insert a cast and change all
// things that used it to use the new cast. This will also hack on CI, but it
// will die soon.
else if (!AI.hasOneUse()) {
// New is the allocation instruction, pointer typed. AI is the original
// allocation instruction, also pointer typed. Thus, cast to use is BitCast.
Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
AI.replaceAllUsesWith(NewCast);
}
return ReplaceInstUsesWith(CI, New);
}
/// CanEvaluateInDifferentType - Return true if we can take the specified value
/// and return it as type Ty without inserting any new casts and without
/// changing the computed value. This is used by code that tries to decide
/// whether promoting or shrinking integer operations to wider or smaller types
/// will allow us to eliminate a truncate or extend.
///
/// This is a truncation operation if Ty is smaller than V->getType(), or an
/// extension operation if Ty is larger.
///
/// If CastOpc is a truncation, then Ty will be a type smaller than V. We
/// should return true if trunc(V) can be computed by computing V in the smaller
/// type. If V is an instruction, then trunc(inst(x,y)) can be computed as
/// inst(trunc(x),trunc(y)), which only makes sense if x and y can be
/// efficiently truncated.
///
/// If CastOpc is a sext or zext, we are asking if the low bits of the value can
/// bit computed in a larger type, which is then and'd or sext_in_reg'd to get
/// the final result.
bool InstCombiner::CanEvaluateInDifferentType(Value *V, const Type *Ty,
unsigned CastOpc,
int &NumCastsRemoved){
// We can always evaluate constants in another type.
if (isa<Constant>(V))
return true;
Instruction *I = dyn_cast<Instruction>(V);
if (!I) return false;
const Type *OrigTy = V->getType();
// If this is an extension or truncate, we can often eliminate it.
if (isa<TruncInst>(I) || isa<ZExtInst>(I) || isa<SExtInst>(I)) {
// If this is a cast from the destination type, we can trivially eliminate
// it, and this will remove a cast overall.
if (I->getOperand(0)->getType() == Ty) {
// If the first operand is itself a cast, and is eliminable, do not count
// this as an eliminable cast. We would prefer to eliminate those two
// casts first.
if (!isa<CastInst>(I->getOperand(0)) && I->hasOneUse())
++NumCastsRemoved;
return true;
}
}
// We can't extend or shrink something that has multiple uses: doing so would
// require duplicating the instruction in general, which isn't profitable.
if (!I->hasOneUse()) return false;
unsigned Opc = I->getOpcode();
switch (Opc) {
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
// These operators can all arbitrarily be extended or truncated.
return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
NumCastsRemoved) &&
CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
NumCastsRemoved);
case Instruction::UDiv:
case Instruction::URem: {
// UDiv and URem can be truncated if all the truncated bits are zero.
uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
uint32_t BitWidth = Ty->getScalarSizeInBits();
if (BitWidth < OrigBitWidth) {
APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
if (MaskedValueIsZero(I->getOperand(0), Mask) &&
MaskedValueIsZero(I->getOperand(1), Mask)) {
return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
NumCastsRemoved) &&
CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
NumCastsRemoved);
}
}
break;
}
case Instruction::Shl:
// If we are truncating the result of this SHL, and if it's a shift of a
// constant amount, we can always perform a SHL in a smaller type.
if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
uint32_t BitWidth = Ty->getScalarSizeInBits();
if (BitWidth < OrigTy->getScalarSizeInBits() &&
CI->getLimitedValue(BitWidth) < BitWidth)
return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
NumCastsRemoved);
}
break;
case Instruction::LShr:
// If this is a truncate of a logical shr, we can truncate it to a smaller
// lshr iff we know that the bits we would otherwise be shifting in are
// already zeros.
if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
uint32_t BitWidth = Ty->getScalarSizeInBits();
if (BitWidth < OrigBitWidth &&
MaskedValueIsZero(I->getOperand(0),
APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
CI->getLimitedValue(BitWidth) < BitWidth) {
return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
NumCastsRemoved);
}
}
break;
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::Trunc:
// If this is the same kind of case as our original (e.g. zext+zext), we
// can safely replace it. Note that replacing it does not reduce the number
// of casts in the input.
if (Opc == CastOpc)
return true;
// sext (zext ty1), ty2 -> zext ty2
if (CastOpc == Instruction::SExt && Opc == Instruction::ZExt)
return true;
break;
case Instruction::Select: {
SelectInst *SI = cast<SelectInst>(I);
return CanEvaluateInDifferentType(SI->getTrueValue(), Ty, CastOpc,
NumCastsRemoved) &&
CanEvaluateInDifferentType(SI->getFalseValue(), Ty, CastOpc,
NumCastsRemoved);
}
case Instruction::PHI: {
// We can change a phi if we can change all operands.
PHINode *PN = cast<PHINode>(I);
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (!CanEvaluateInDifferentType(PN->getIncomingValue(i), Ty, CastOpc,
NumCastsRemoved))
return false;
return true;
}
default:
// TODO: Can handle more cases here.
break;
}
return false;
}
/// EvaluateInDifferentType - Given an expression that
/// CanEvaluateInDifferentType returns true for, actually insert the code to
/// evaluate the expression.
Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
bool isSigned) {
if (Constant *C = dyn_cast<Constant>(V))
return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
// Otherwise, it must be an instruction.
Instruction *I = cast<Instruction>(V);
Instruction *Res = 0;
unsigned Opc = I->getOpcode();
switch (Opc) {
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::AShr:
case Instruction::LShr:
case Instruction::Shl:
case Instruction::UDiv:
case Instruction::URem: {
Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
break;
}
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
// If the source type of the cast is the type we're trying for then we can
// just return the source. There's no need to insert it because it is not
// new.
if (I->getOperand(0)->getType() == Ty)
return I->getOperand(0);
// Otherwise, must be the same type of cast, so just reinsert a new one.
Res = CastInst::Create(cast<CastInst>(I)->getOpcode(), I->getOperand(0),Ty);
break;
case Instruction::Select: {
Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
Res = SelectInst::Create(I->getOperand(0), True, False);
break;
}
case Instruction::PHI: {
PHINode *OPN = cast<PHINode>(I);
PHINode *NPN = PHINode::Create(Ty);
for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
NPN->addIncoming(V, OPN->getIncomingBlock(i));
}
Res = NPN;
break;
}
default:
// TODO: Can handle more cases here.
llvm_unreachable("Unreachable!");
break;
}
Res->takeName(I);
return InsertNewInstBefore(Res, *I);
}
/// This function is a wrapper around CastInst::isEliminableCastPair. It
/// simply extracts arguments and returns what that function returns.
static Instruction::CastOps
isEliminableCastPair(
const CastInst *CI, ///< The first cast instruction
unsigned opcode, ///< The opcode of the second cast instruction
const Type *DstTy, ///< The target type for the second cast instruction
TargetData *TD ///< The target data for pointer size
) {
const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
const Type *MidTy = CI->getType(); // B from above
// Get the opcodes of the two Cast instructions
Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
Instruction::CastOps secondOp = Instruction::CastOps(opcode);
unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
DstTy,
TD ? TD->getIntPtrType(CI->getContext()) : 0);
// We don't want to form an inttoptr or ptrtoint that converts to an integer
// type that differs from the pointer size.
if ((Res == Instruction::IntToPtr &&
(!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) ||
(Res == Instruction::PtrToInt &&
(!TD || DstTy != TD->getIntPtrType(CI->getContext()))))
Res = 0;
return Instruction::CastOps(Res);
}
/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
/// in any code being generated. It does not require codegen if V is simple
/// enough or if the cast can be folded into other casts.
bool InstCombiner::ValueRequiresCast(Instruction::CastOps opcode,const Value *V,
const Type *Ty) {
if (V->getType() == Ty || isa<Constant>(V)) return false;
// If this is another cast that can be eliminated, it isn't codegen either.
if (const CastInst *CI = dyn_cast<CastInst>(V))
if (isEliminableCastPair(CI, opcode, Ty, TD))
return false;
return true;
}
/// @brief Implement the transforms common to all CastInst visitors.
Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
Value *Src = CI.getOperand(0);
// Many cases of "cast of a cast" are eliminable. If it's eliminable we just
// eliminate it now.
if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
if (Instruction::CastOps opc =
isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
// The first cast (CSrc) is eliminable so we need to fix up or replace
// the second cast (CI). CSrc will then have a good chance of being dead.
return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
}
}
// If we are casting a select then fold the cast into the select
if (SelectInst *SI = dyn_cast<SelectInst>(Src))
if (Instruction *NV = FoldOpIntoSelect(CI, SI))
return NV;
// If we are casting a PHI then fold the cast into the PHI
if (isa<PHINode>(Src)) {
// We don't do this if this would create a PHI node with an illegal type if
// it is currently legal.
if (!isa<IntegerType>(Src->getType()) ||
!isa<IntegerType>(CI.getType()) ||
ShouldChangeType(CI.getType(), Src->getType()))
if (Instruction *NV = FoldOpIntoPhi(CI))
return NV;
}
return 0;
}
/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
Value *Src = CI.getOperand(0);
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
// If casting the result of a getelementptr instruction with no offset, turn
// this into a cast of the original pointer!
if (GEP->hasAllZeroIndices()) {
// Changing the cast operand is usually not a good idea but it is safe
// here because the pointer operand is being replaced with another
// pointer operand so the opcode doesn't need to change.
Worklist.Add(GEP);
CI.setOperand(0, GEP->getOperand(0));
return &CI;
}
// If the GEP has a single use, and the base pointer is a bitcast, and the
// GEP computes a constant offset, see if we can convert these three
// instructions into fewer. This typically happens with unions and other
// non-type-safe code.
if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) {
if (GEP->hasAllConstantIndices()) {
// We are guaranteed to get a constant from EmitGEPOffset.
ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP));
int64_t Offset = OffsetV->getSExtValue();
// Get the base pointer input of the bitcast, and the type it points to.
Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
const Type *GEPIdxTy =
cast<PointerType>(OrigBase->getType())->getElementType();
SmallVector<Value*, 8> NewIndices;
if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) {
// If we were able to index down into an element, create the GEP
// and bitcast the result. This eliminates one bitcast, potentially
// two.
Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
Builder->CreateInBoundsGEP(OrigBase,
NewIndices.begin(), NewIndices.end()) :
Builder->CreateGEP(OrigBase, NewIndices.begin(), NewIndices.end());
NGEP->takeName(GEP);
if (isa<BitCastInst>(CI))
return new BitCastInst(NGEP, CI.getType());
assert(isa<PtrToIntInst>(CI));
return new PtrToIntInst(NGEP, CI.getType());
}
}
}
}
return commonCastTransforms(CI);
}
/// commonIntCastTransforms - This function implements the common transforms
/// for trunc, zext, and sext.
Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
if (Instruction *Result = commonCastTransforms(CI))
return Result;
Value *Src = CI.getOperand(0);
const Type *SrcTy = Src->getType();
const Type *DestTy = CI.getType();
uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
uint32_t DestBitSize = DestTy->getScalarSizeInBits();
// See if we can simplify any instructions used by the LHS whose sole
// purpose is to compute bits we don't care about.
if (SimplifyDemandedInstructionBits(CI))
return &CI;
// If the source isn't an instruction or has more than one use then we
// can't do anything more.
Instruction *SrcI = dyn_cast<Instruction>(Src);
if (!SrcI || !Src->hasOneUse())
return 0;
// Attempt to propagate the cast into the instruction for int->int casts.
int NumCastsRemoved = 0;
// Only do this if the dest type is a simple type, don't convert the
// expression tree to something weird like i93 unless the source is also
// strange.
if ((isa<VectorType>(DestTy) ||
ShouldChangeType(SrcI->getType(), DestTy)) &&
CanEvaluateInDifferentType(SrcI, DestTy,
CI.getOpcode(), NumCastsRemoved)) {
// If this cast is a truncate, evaluting in a different type always
// eliminates the cast, so it is always a win. If this is a zero-extension,
// we need to do an AND to maintain the clear top-part of the computation,
// so we require that the input have eliminated at least one cast. If this
// is a sign extension, we insert two new casts (to do the extension) so we
// require that two casts have been eliminated.
bool DoXForm = false;
bool JustReplace = false;
switch (CI.getOpcode()) {
default:
// All the others use floating point so we shouldn't actually
// get here because of the check above.
llvm_unreachable("Unknown cast type");
case Instruction::Trunc:
DoXForm = true;
break;
case Instruction::ZExt: {
DoXForm = NumCastsRemoved >= 1;
if (!DoXForm && 0) {
// If it's unnecessary to issue an AND to clear the high bits, it's
// always profitable to do this xform.
Value *TryRes = EvaluateInDifferentType(SrcI, DestTy, false);
APInt Mask(APInt::getBitsSet(DestBitSize, SrcBitSize, DestBitSize));
if (MaskedValueIsZero(TryRes, Mask))
return ReplaceInstUsesWith(CI, TryRes);
if (Instruction *TryI = dyn_cast<Instruction>(TryRes))
if (TryI->use_empty())
EraseInstFromFunction(*TryI);
}
break;
}
case Instruction::SExt: {
DoXForm = NumCastsRemoved >= 2;
if (!DoXForm && !isa<TruncInst>(SrcI) && 0) {
// If we do not have to emit the truncate + sext pair, then it's always
// profitable to do this xform.
//
// It's not safe to eliminate the trunc + sext pair if one of the
// eliminated cast is a truncate. e.g.
// t2 = trunc i32 t1 to i16
// t3 = sext i16 t2 to i32
// !=
// i32 t1
Value *TryRes = EvaluateInDifferentType(SrcI, DestTy, true);
unsigned NumSignBits = ComputeNumSignBits(TryRes);
if (NumSignBits > (DestBitSize - SrcBitSize))
return ReplaceInstUsesWith(CI, TryRes);
if (Instruction *TryI = dyn_cast<Instruction>(TryRes))
if (TryI->use_empty())
EraseInstFromFunction(*TryI);
}
break;
}
}
if (DoXForm) {
DEBUG(errs() << "ICE: EvaluateInDifferentType converting expression type"
" to avoid cast: " << CI);
Value *Res = EvaluateInDifferentType(SrcI, DestTy,
CI.getOpcode() == Instruction::SExt);
if (JustReplace)
// Just replace this cast with the result.
return ReplaceInstUsesWith(CI, Res);
assert(Res->getType() == DestTy);
switch (CI.getOpcode()) {
default: llvm_unreachable("Unknown cast type!");
case Instruction::Trunc:
// Just replace this cast with the result.
return ReplaceInstUsesWith(CI, Res);
case Instruction::ZExt: {
assert(SrcBitSize < DestBitSize && "Not a zext?");
// If the high bits are already zero, just replace this cast with the
// result.
APInt Mask(APInt::getBitsSet(DestBitSize, SrcBitSize, DestBitSize));
if (MaskedValueIsZero(Res, Mask))
return ReplaceInstUsesWith(CI, Res);
// We need to emit an AND to clear the high bits.
Constant *C = ConstantInt::get(CI.getContext(),
APInt::getLowBitsSet(DestBitSize, SrcBitSize));
return BinaryOperator::CreateAnd(Res, C);
}
case Instruction::SExt: {
// If the high bits are already filled with sign bit, just replace this
// cast with the result.
unsigned NumSignBits = ComputeNumSignBits(Res);
if (NumSignBits > (DestBitSize - SrcBitSize))
return ReplaceInstUsesWith(CI, Res);
// We need to emit a cast to truncate, then a cast to sext.
return new SExtInst(Builder->CreateTrunc(Res, Src->getType()), DestTy);
}
}
}
}
return 0;
}
Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
if (Instruction *Result = commonIntCastTransforms(CI))
return Result;
Value *Src = CI.getOperand(0);
const Type *DestTy = CI.getType();
uint32_t DestBitWidth = DestTy->getScalarSizeInBits();
uint32_t SrcBitWidth = Src->getType()->getScalarSizeInBits();
// Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0)
if (DestBitWidth == 1) {
Constant *One = ConstantInt::get(Src->getType(), 1);
Src = Builder->CreateAnd(Src, One, "tmp");
Value *Zero = Constant::getNullValue(Src->getType());
return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
}
// Optimize trunc(lshr(x, c)) to pull the shift through the truncate.
ConstantInt *ShAmtV = 0;
Value *ShiftOp = 0;
if (Src->hasOneUse() &&
match(Src, m_LShr(m_Value(ShiftOp), m_ConstantInt(ShAmtV)))) {
uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth);
// Get a mask for the bits shifting in.
APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth));
if (MaskedValueIsZero(ShiftOp, Mask)) {
if (ShAmt >= DestBitWidth) // All zeros.
return ReplaceInstUsesWith(CI, Constant::getNullValue(DestTy));
// Okay, we can shrink this. Truncate the input, then return a new
// shift.
Value *V1 = Builder->CreateTrunc(ShiftOp, DestTy, ShiftOp->getName());
Value *V2 = ConstantExpr::getTrunc(ShAmtV, DestTy);
return BinaryOperator::CreateLShr(V1, V2);
}
}
// Transform trunc(shl(X, C)) -> shl(trunc(X), C)
if (Src->hasOneUse() &&
match(Src, m_Shl(m_Value(ShiftOp), m_ConstantInt(ShAmtV)))) {
uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth);
if (ShAmt >= DestBitWidth) // All zeros.
return ReplaceInstUsesWith(CI, Constant::getNullValue(DestTy));
// Okay, we can shrink this. Truncate the input, then return a new
// shift.
Value *V1 = Builder->CreateTrunc(ShiftOp, DestTy, ShiftOp->getName());
Value *V2 = ConstantExpr::getTrunc(ShAmtV, DestTy);
return BinaryOperator::CreateShl(V1, V2);
}
// If we are discarding information from a simple binop, rewrite.
if (Src->hasOneUse() && isa<Instruction>(Src)) {
Instruction *SrcI = cast<Instruction>(Src);
switch (SrcI->getOpcode()) {
default: break;
case Instruction::Add:
// TODO: SUB?
case Instruction::Mul:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
Value *Op0 = SrcI->getOperand(0);
Value *Op1 = SrcI->getOperand(1);
// Don't insert two casts unless at least one can be eliminated.
if (!ValueRequiresCast(Instruction::Trunc, Op1, DestTy) ||
!ValueRequiresCast(Instruction::Trunc, Op0, DestTy)) {
Op0 = Builder->CreateTrunc(Op0, DestTy, Op0->getName());
Op1 = Builder->CreateTrunc(Op1, DestTy, Op1->getName());
return BinaryOperator::Create(cast<BinaryOperator>(SrcI)->getOpcode(),
Op0, Op1);
}
}
}
return 0;
}
/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
/// in order to eliminate the icmp.
Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
bool DoXform) {
// If we are just checking for a icmp eq of a single bit and zext'ing it
// to an integer, then shift the bit to the appropriate place and then
// cast to integer to avoid the comparison.
if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
const APInt &Op1CV = Op1C->getValue();
// zext (x <s 0) to i32 --> x>>u31 true if signbit set.
// zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
(ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
if (!DoXform) return ICI;
Value *In = ICI->getOperand(0);
Value *Sh = ConstantInt::get(In->getType(),
In->getType()->getScalarSizeInBits()-1);
In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
if (In->getType() != CI.getType())
In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/, "tmp");
if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
Constant *One = ConstantInt::get(In->getType(), 1);
In = Builder->CreateXor(In, One, In->getName()+".not");
}
return ReplaceInstUsesWith(CI, In);
}
// zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
// zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
// zext (X == 1) to i32 --> X iff X has only the low bit set.
// zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
// zext (X != 0) to i32 --> X iff X has only the low bit set.
// zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
// zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
// zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
// This only works for EQ and NE
ICI->isEquality()) {
// If Op1C some other power of two, convert:
uint32_t BitWidth = Op1C->getType()->getBitWidth();
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
APInt TypeMask(APInt::getAllOnesValue(BitWidth));
ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
APInt KnownZeroMask(~KnownZero);
if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
if (!DoXform) return ICI;
bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
// (X&4) == 2 --> false
// (X&4) != 2 --> true
Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
isNE);
Res = ConstantExpr::getZExt(Res, CI.getType());
return ReplaceInstUsesWith(CI, Res);
}
uint32_t ShiftAmt = KnownZeroMask.logBase2();
Value *In = ICI->getOperand(0);
if (ShiftAmt) {
// Perform a logical shr by shiftamt.
// Insert the shift to put the result in the low bit.
In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
In->getName()+".lobit");
}
if ((Op1CV != 0) == isNE) { // Toggle the low bit.
Constant *One = ConstantInt::get(In->getType(), 1);
In = Builder->CreateXor(In, One, "tmp");
}
if (CI.getType() == In->getType())
return ReplaceInstUsesWith(CI, In);
else
return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
}
}
}
// icmp ne A, B is equal to xor A, B when A and B only really have one bit.
// It is also profitable to transform icmp eq into not(xor(A, B)) because that
// may lead to additional simplifications.
if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
if (const IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
uint32_t BitWidth = ITy->getBitWidth();
Value *LHS = ICI->getOperand(0);
Value *RHS = ICI->getOperand(1);
APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
APInt TypeMask(APInt::getAllOnesValue(BitWidth));
ComputeMaskedBits(LHS, TypeMask, KnownZeroLHS, KnownOneLHS);
ComputeMaskedBits(RHS, TypeMask, KnownZeroRHS, KnownOneRHS);
if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
APInt KnownBits = KnownZeroLHS | KnownOneLHS;
APInt UnknownBit = ~KnownBits;
if (UnknownBit.countPopulation() == 1) {
if (!DoXform) return ICI;
Value *Result = Builder->CreateXor(LHS, RHS);
// Mask off any bits that are set and won't be shifted away.
if (KnownOneLHS.uge(UnknownBit))
Result = Builder->CreateAnd(Result,
ConstantInt::get(ITy, UnknownBit));
// Shift the bit we're testing down to the lsb.
Result = Builder->CreateLShr(
Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
Result->takeName(ICI);
return ReplaceInstUsesWith(CI, Result);
}
}
}
}
return 0;
}
Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
// If one of the common conversion will work, do it.
if (Instruction *Result = commonIntCastTransforms(CI))
return Result;
Value *Src = CI.getOperand(0);
// If this is a TRUNC followed by a ZEXT then we are dealing with integral
// types and if the sizes are just right we can convert this into a logical
// 'and' which will be much cheaper than the pair of casts.
if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast
// Get the sizes of the types involved. We know that the intermediate type
// will be smaller than A or C, but don't know the relation between A and C.
Value *A = CSrc->getOperand(0);
unsigned SrcSize = A->getType()->getScalarSizeInBits();
unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
unsigned DstSize = CI.getType()->getScalarSizeInBits();
// If we're actually extending zero bits, then if
// SrcSize < DstSize: zext(a & mask)
// SrcSize == DstSize: a & mask
// SrcSize > DstSize: trunc(a) & mask
if (SrcSize < DstSize) {
APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
return new ZExtInst(And, CI.getType());
}
if (SrcSize == DstSize) {
APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
AndValue));
}
if (SrcSize > DstSize) {
Value *Trunc = Builder->CreateTrunc(A, CI.getType(), "tmp");
APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
return BinaryOperator::CreateAnd(Trunc,
ConstantInt::get(Trunc->getType(),
AndValue));
}
}
if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
return transformZExtICmp(ICI, CI);
BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
if (SrcI && SrcI->getOpcode() == Instruction::Or) {
// zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
// of the (zext icmp) will be transformed.
ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
(transformZExtICmp(LHS, CI, false) ||
transformZExtICmp(RHS, CI, false))) {
Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
return BinaryOperator::Create(Instruction::Or, LCast, RCast);
}
}
// zext(trunc(t) & C) -> (t & zext(C)).
if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse())
if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) {
Value *TI0 = TI->getOperand(0);
if (TI0->getType() == CI.getType())
return
BinaryOperator::CreateAnd(TI0,
ConstantExpr::getZExt(C, CI.getType()));
}
// zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse())
if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0)))
if (And->getOpcode() == Instruction::And && And->hasOneUse() &&
And->getOperand(1) == C)
if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
Value *TI0 = TI->getOperand(0);
if (TI0->getType() == CI.getType()) {
Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
Value *NewAnd = Builder->CreateAnd(TI0, ZC, "tmp");
return BinaryOperator::CreateXor(NewAnd, ZC);
}
}
// zext (xor i1 X, true) to i32 --> xor (zext i1 X to i32), 1
Value *X;
if (SrcI && SrcI->hasOneUse() && SrcI->getType()->isInteger(1) &&
match(SrcI, m_Not(m_Value(X))) &&
(!X->hasOneUse() || !isa<CmpInst>(X))) {
Value *New = Builder->CreateZExt(X, CI.getType());
return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
}
return 0;
}
Instruction *InstCombiner::visitSExt(SExtInst &CI) {
if (Instruction *I = commonIntCastTransforms(CI))
return I;
Value *Src = CI.getOperand(0);
// Canonicalize sign-extend from i1 to a select.
if (Src->getType()->isInteger(1))
return SelectInst::Create(Src,
Constant::getAllOnesValue(CI.getType()),
Constant::getNullValue(CI.getType()));
// See if the value being truncated is already sign extended. If so, just
// eliminate the trunc/sext pair.
if (Operator::getOpcode(Src) == Instruction::Trunc) {
Value *Op = cast<User>(Src)->getOperand(0);
unsigned OpBits = Op->getType()->getScalarSizeInBits();
unsigned MidBits = Src->getType()->getScalarSizeInBits();
unsigned DestBits = CI.getType()->getScalarSizeInBits();
unsigned NumSignBits = ComputeNumSignBits(Op);
if (OpBits == DestBits) {
// Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
// bits, it is already ready.
if (NumSignBits > DestBits-MidBits)
return ReplaceInstUsesWith(CI, Op);
} else if (OpBits < DestBits) {
// Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
// bits, just sext from i32.
if (NumSignBits > OpBits-MidBits)
return new SExtInst(Op, CI.getType(), "tmp");
} else {
// Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
// bits, just truncate to i32.
if (NumSignBits > OpBits-MidBits)
return new TruncInst(Op, CI.getType(), "tmp");
}
}
// If the input is a shl/ashr pair of a same constant, then this is a sign
// extension from a smaller value. If we could trust arbitrary bitwidth
// integers, we could turn this into a truncate to the smaller bit and then
// use a sext for the whole extension. Since we don't, look deeper and check
// for a truncate. If the source and dest are the same type, eliminate the
// trunc and extend and just do shifts. For example, turn:
// %a = trunc i32 %i to i8
// %b = shl i8 %a, 6
// %c = ashr i8 %b, 6
// %d = sext i8 %c to i32
// into:
// %a = shl i32 %i, 30
// %d = ashr i32 %a, 30
Value *A = 0;
ConstantInt *BA = 0, *CA = 0;
if (match(Src, m_AShr(m_Shl(m_Value(A), m_ConstantInt(BA)),
m_ConstantInt(CA))) &&
BA == CA && isa<TruncInst>(A)) {
Value *I = cast<TruncInst>(A)->getOperand(0);
if (I->getType() == CI.getType()) {
unsigned MidSize = Src->getType()->getScalarSizeInBits();
unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
I = Builder->CreateShl(I, ShAmtV, CI.getName());
return BinaryOperator::CreateAShr(I, ShAmtV);
}
}
return 0;
}
/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
/// in the specified FP type without changing its value.
static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
bool losesInfo;
APFloat F = CFP->getValueAPF();
(void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
if (!losesInfo)
return ConstantFP::get(CFP->getContext(), F);
return 0;
}
/// LookThroughFPExtensions - If this is an fp extension instruction, look
/// through it until we get the source value.
static Value *LookThroughFPExtensions(Value *V) {
if (Instruction *I = dyn_cast<Instruction>(V))
if (I->getOpcode() == Instruction::FPExt)
return LookThroughFPExtensions(I->getOperand(0));
// If this value is a constant, return the constant in the smallest FP type
// that can accurately represent it. This allows us to turn
// (float)((double)X+2.0) into x+2.0f.
if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
return V; // No constant folding of this.
// See if the value can be truncated to float and then reextended.
if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
return V;
if (CFP->getType()->isDoubleTy())
return V; // Won't shrink.
if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
return V;
// Don't try to shrink to various long double types.
}
return V;
}
Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
if (Instruction *I = commonCastTransforms(CI))
return I;
// If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
// smaller than the destination type, we can eliminate the truncate by doing
// the add as the smaller type. This applies to fadd/fsub/fmul/fdiv as well
// as many builtins (sqrt, etc).
BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
if (OpI && OpI->hasOneUse()) {
switch (OpI->getOpcode()) {
default: break;
case Instruction::FAdd:
case Instruction::FSub:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
const Type *SrcTy = OpI->getType();
Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
if (LHSTrunc->getType() != SrcTy &&
RHSTrunc->getType() != SrcTy) {
unsigned DstSize = CI.getType()->getScalarSizeInBits();
// If the source types were both smaller than the destination type of
// the cast, do this xform.
if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
}
}
break;
}
}
return 0;
}
Instruction *InstCombiner::visitFPExt(CastInst &CI) {
return commonCastTransforms(CI);
}
Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
if (OpI == 0)
return commonCastTransforms(FI);
// fptoui(uitofp(X)) --> X
// fptoui(sitofp(X)) --> X
// This is safe if the intermediate type has enough bits in its mantissa to
// accurately represent all values of X. For example, do not do this with
// i64->float->i64. This is also safe for sitofp case, because any negative
// 'X' value would cause an undefined result for the fptoui.
if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
OpI->getOperand(0)->getType() == FI.getType() &&
(int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
OpI->getType()->getFPMantissaWidth())
return ReplaceInstUsesWith(FI, OpI->getOperand(0));
return commonCastTransforms(FI);
}
Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
if (OpI == 0)
return commonCastTransforms(FI);
// fptosi(sitofp(X)) --> X
// fptosi(uitofp(X)) --> X
// This is safe if the intermediate type has enough bits in its mantissa to
// accurately represent all values of X. For example, do not do this with
// i64->float->i64. This is also safe for sitofp case, because any negative
// 'X' value would cause an undefined result for the fptoui.
if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
OpI->getOperand(0)->getType() == FI.getType() &&
(int)FI.getType()->getScalarSizeInBits() <=
OpI->getType()->getFPMantissaWidth())
return ReplaceInstUsesWith(FI, OpI->getOperand(0));
return commonCastTransforms(FI);
}
Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
return commonCastTransforms(CI);
}
Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
return commonCastTransforms(CI);
}
Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
// If the destination integer type is smaller than the intptr_t type for
// this target, do a ptrtoint to intptr_t then do a trunc. This allows the
// trunc to be exposed to other transforms. Don't do this for extending
// ptrtoint's, because we don't know if the target sign or zero extends its
// pointers.
if (TD &&
CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
TD->getIntPtrType(CI.getContext()),
"tmp");
return new TruncInst(P, CI.getType());
}
return commonPointerCastTransforms(CI);
}
Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
// If the source integer type is larger than the intptr_t type for
// this target, do a trunc to the intptr_t type, then inttoptr of it. This
// allows the trunc to be exposed to other transforms. Don't do this for
// extending inttoptr's, because we don't know if the target sign or zero
// extends to pointers.
if (TD && CI.getOperand(0)->getType()->getScalarSizeInBits() >
TD->getPointerSizeInBits()) {
Value *P = Builder->CreateTrunc(CI.getOperand(0),
TD->getIntPtrType(CI.getContext()), "tmp");
return new IntToPtrInst(P, CI.getType());
}
if (Instruction *I = commonCastTransforms(CI))
return I;
return 0;
}
Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
// If the operands are integer typed then apply the integer transforms,
// otherwise just apply the common ones.
Value *Src = CI.getOperand(0);
const Type *SrcTy = Src->getType();
const Type *DestTy = CI.getType();
if (isa<PointerType>(SrcTy)) {
if (Instruction *I = commonPointerCastTransforms(CI))
return I;
} else {
if (Instruction *Result = commonCastTransforms(CI))
return Result;
}
// Get rid of casts from one type to the same type. These are useless and can
// be replaced by the operand.
if (DestTy == Src->getType())
return ReplaceInstUsesWith(CI, Src);
if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
const PointerType *SrcPTy = cast<PointerType>(SrcTy);
const Type *DstElTy = DstPTy->getElementType();
const Type *SrcElTy = SrcPTy->getElementType();
// If the address spaces don't match, don't eliminate the bitcast, which is
// required for changing types.
if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
return 0;
// If we are casting a alloca to a pointer to a type of the same
// size, rewrite the allocation instruction to allocate the "right" type.
// There is no need to modify malloc calls because it is their bitcast that
// needs to be cleaned up.
if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
return V;
// If the source and destination are pointers, and this cast is equivalent
// to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
// This can enhance SROA and other transforms that want type-safe pointers.
Constant *ZeroUInt =
Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
unsigned NumZeros = 0;
while (SrcElTy != DstElTy &&
isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
SrcElTy->getNumContainedTypes() /* not "{}" */) {
SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
++NumZeros;
}
// If we found a path from the src to dest, create the getelementptr now.
if (SrcElTy == DstElTy) {
SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
return GetElementPtrInst::CreateInBounds(Src, Idxs.begin(), Idxs.end(),"",
((Instruction*) NULL));
}
}
if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
if (DestVTy->getNumElements() == 1) {
if (!isa<VectorType>(SrcTy)) {
Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
}
// FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
}
}
if (const VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
if (SrcVTy->getNumElements() == 1) {
if (!isa<VectorType>(DestTy)) {
Value *Elem =
Builder->CreateExtractElement(Src,
Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
return CastInst::Create(Instruction::BitCast, Elem, DestTy);
}
}
}
if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
if (SVI->hasOneUse()) {
// Okay, we have (bitconvert (shuffle ..)). Check to see if this is
// a bitconvert to a vector with the same # elts.
if (isa<VectorType>(DestTy) &&
cast<VectorType>(DestTy)->getNumElements() ==
SVI->getType()->getNumElements() &&
SVI->getType()->getNumElements() ==
cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
CastInst *Tmp;
// If either of the operands is a cast from CI.getType(), then
// evaluating the shuffle in the casted destination's type will allow
// us to eliminate at least one cast.
if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) &&
Tmp->getOperand(0)->getType() == DestTy) ||
((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) &&
Tmp->getOperand(0)->getType() == DestTy)) {
Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
// Return a new shuffle vector. Use the same element ID's, as we
// know the vector types match #elts.
return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
}
}
}
}
return 0;
}
|