1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
|
//===- InstrSelection.cpp - Machine Independent Inst Selection Driver -----===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Machine-independent driver file for instruction selection. This file
// constructs a forest of BURG instruction trees and then uses the
// BURG-generated tree grammar (BURM) to find the optimal instruction sequences
// for a given machine.
//
//===----------------------------------------------------------------------===//
#include "llvm/Function.h"
#include "llvm/iPHINode.h"
#include "llvm/Pass.h"
#include "llvm/CodeGen/InstrForest.h"
#include "llvm/CodeGen/InstrSelection.h"
#include "llvm/CodeGen/InstrSelectionSupport.h"
#include "llvm/CodeGen/MachineCodeForInstruction.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegInfo.h"
#include "Support/CommandLine.h"
#include "Support/LeakDetector.h"
#include <vector>
std::vector<MachineInstr*>
FixConstantOperandsForInstr(Instruction* vmInstr, MachineInstr* minstr,
TargetMachine& target);
namespace {
//===--------------------------------------------------------------------===//
// SelectDebugLevel - Allow command line control over debugging.
//
enum SelectDebugLevel_t {
Select_NoDebugInfo,
Select_PrintMachineCode,
Select_DebugInstTrees,
Select_DebugBurgTrees,
};
// Enable Debug Options to be specified on the command line
cl::opt<SelectDebugLevel_t>
SelectDebugLevel("dselect", cl::Hidden,
cl::desc("enable instruction selection debug information"),
cl::values(
clEnumValN(Select_NoDebugInfo, "n", "disable debug output"),
clEnumValN(Select_PrintMachineCode, "y", "print generated machine code"),
clEnumValN(Select_DebugInstTrees, "i",
"print debugging info for instruction selection"),
clEnumValN(Select_DebugBurgTrees, "b", "print burg trees"),
0));
//===--------------------------------------------------------------------===//
// InstructionSelection Pass
//
// This is the actual pass object that drives the instruction selection
// process.
//
class InstructionSelection : public FunctionPass {
TargetMachine &Target;
void InsertCodeForPhis(Function &F);
void InsertPhiElimInstructions(BasicBlock *BB,
const std::vector<MachineInstr*>& CpVec);
void SelectInstructionsForTree(InstrTreeNode* treeRoot, int goalnt);
void PostprocessMachineCodeForTree(InstructionNode* instrNode,
int ruleForNode, short* nts);
public:
InstructionSelection(TargetMachine &T) : Target(T) {}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
}
bool runOnFunction(Function &F);
virtual const char *getPassName() const { return "Instruction Selection"; }
};
}
TmpInstruction::TmpInstruction(MachineCodeForInstruction& mcfi,
Value *s1, Value *s2, const std::string &name)
: Instruction(s1->getType(), Instruction::UserOp1, name)
{
mcfi.addTemp(this);
Operands.push_back(Use(s1, this)); // s1 must be non-null
if (s2)
Operands.push_back(Use(s2, this));
// TmpInstructions should not be garbage checked.
LeakDetector::removeGarbageObject(this);
}
// Constructor that requires the type of the temporary to be specified.
// Both S1 and S2 may be NULL.(
TmpInstruction::TmpInstruction(MachineCodeForInstruction& mcfi,
const Type *Ty, Value *s1, Value* s2,
const std::string &name)
: Instruction(Ty, Instruction::UserOp1, name)
{
mcfi.addTemp(this);
if (s1)
Operands.push_back(Use(s1, this));
if (s2)
Operands.push_back(Use(s2, this));
// TmpInstructions should not be garbage checked.
LeakDetector::removeGarbageObject(this);
}
bool InstructionSelection::runOnFunction(Function &F)
{
//
// Build the instruction trees to be given as inputs to BURG.
//
InstrForest instrForest(&F);
if (SelectDebugLevel >= Select_DebugInstTrees) {
std::cerr << "\n\n*** Input to instruction selection for function "
<< F.getName() << "\n\n" << F
<< "\n\n*** Instruction trees for function "
<< F.getName() << "\n\n";
instrForest.dump();
}
//
// Invoke BURG instruction selection for each tree
//
for (InstrForest::const_root_iterator RI = instrForest.roots_begin();
RI != instrForest.roots_end(); ++RI) {
InstructionNode* basicNode = *RI;
assert(basicNode->parent() == NULL && "A `root' node has a parent?");
// Invoke BURM to label each tree node with a state
burm_label(basicNode);
if (SelectDebugLevel >= Select_DebugBurgTrees) {
printcover(basicNode, 1, 0);
std::cerr << "\nCover cost == " << treecost(basicNode, 1, 0) <<"\n\n";
printMatches(basicNode);
}
// Then recursively walk the tree to select instructions
SelectInstructionsForTree(basicNode, /*goalnt*/1);
}
//
// Create the MachineBasicBlock records and add all of the MachineInstrs
// defined in the MachineCodeForInstruction objects to also live in the
// MachineBasicBlock objects.
//
MachineFunction &MF = MachineFunction::get(&F);
for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
MachineBasicBlock *MCBB = new MachineBasicBlock(BI);
MF.getBasicBlockList().push_back(MCBB);
for (BasicBlock::iterator II = BI->begin(); II != BI->end(); ++II) {
MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(II);
MCBB->insert(MCBB->end(), mvec.begin(), mvec.end());
}
}
// Insert phi elimination code
InsertCodeForPhis(F);
if (SelectDebugLevel >= Select_PrintMachineCode) {
std::cerr << "\n*** Machine instructions after INSTRUCTION SELECTION\n";
MachineFunction::get(&F).dump();
}
return true;
}
//-------------------------------------------------------------------------
// This method inserts phi elimination code for all BBs in a method
//-------------------------------------------------------------------------
void
InstructionSelection::InsertCodeForPhis(Function &F) {
// for all basic blocks in function
//
MachineFunction &MF = MachineFunction::get(&F);
for (MachineFunction::iterator BB = MF.begin(); BB != MF.end(); ++BB) {
for (BasicBlock::const_iterator IIt = BB->getBasicBlock()->begin();
const PHINode *PN = dyn_cast<PHINode>(IIt); ++IIt) {
// FIXME: This is probably wrong...
Value *PhiCpRes = new PHINode(PN->getType(), "PhiCp:");
// The leak detector shouldn't track these nodes. They are not garbage,
// even though their parent field is never filled in.
//
LeakDetector::removeGarbageObject(PhiCpRes);
// for each incoming value of the phi, insert phi elimination
//
for (unsigned i = 0; i < PN->getNumIncomingValues(); ++i) {
// insert the copy instruction to the predecessor BB
std::vector<MachineInstr*> mvec, CpVec;
Target.getRegInfo().cpValue2Value(PN->getIncomingValue(i), PhiCpRes,
mvec);
for (std::vector<MachineInstr*>::iterator MI=mvec.begin();
MI != mvec.end(); ++MI) {
std::vector<MachineInstr*> CpVec2 =
FixConstantOperandsForInstr(const_cast<PHINode*>(PN), *MI, Target);
CpVec2.push_back(*MI);
CpVec.insert(CpVec.end(), CpVec2.begin(), CpVec2.end());
}
InsertPhiElimInstructions(PN->getIncomingBlock(i), CpVec);
}
std::vector<MachineInstr*> mvec;
Target.getRegInfo().cpValue2Value(PhiCpRes, const_cast<PHINode*>(PN),
mvec);
BB->insert(BB->begin(), mvec.begin(), mvec.end());
} // for each Phi Instr in BB
} // for all BBs in function
}
//-------------------------------------------------------------------------
// Thid method inserts a copy instruction to a predecessor BB as a result
// of phi elimination.
//-------------------------------------------------------------------------
void
InstructionSelection::InsertPhiElimInstructions(BasicBlock *BB,
const std::vector<MachineInstr*>& CpVec)
{
Instruction *TermInst = (Instruction*)BB->getTerminator();
MachineCodeForInstruction &MC4Term = MachineCodeForInstruction::get(TermInst);
MachineInstr *FirstMIOfTerm = MC4Term.front();
assert (FirstMIOfTerm && "No Machine Instrs for terminator");
MachineFunction &MF = MachineFunction::get(BB->getParent());
// FIXME: if PHI instructions existed in the machine code, this would be
// unnecessary.
MachineBasicBlock *MBB = 0;
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
if (I->getBasicBlock() == BB) {
MBB = I;
break;
}
// find the position of first machine instruction generated by the
// terminator of this BB
MachineBasicBlock::iterator MCIt =
std::find(MBB->begin(), MBB->end(), FirstMIOfTerm);
assert(MCIt != MBB->end() && "Start inst of terminator not found");
// insert the copy instructions just before the first machine instruction
// generated for the terminator
MBB->insert(MCIt, CpVec.begin(), CpVec.end());
}
//---------------------------------------------------------------------------
// Function SelectInstructionsForTree
//
// Recursively walk the tree to select instructions.
// Do this top-down so that child instructions can exploit decisions
// made at the child instructions.
//
// E.g., if br(setle(reg,const)) decides the constant is 0 and uses
// a branch-on-integer-register instruction, then the setle node
// can use that information to avoid generating the SUBcc instruction.
//
// Note that this cannot be done bottom-up because setle must do this
// only if it is a child of the branch (otherwise, the result of setle
// may be used by multiple instructions).
//---------------------------------------------------------------------------
void
InstructionSelection::SelectInstructionsForTree(InstrTreeNode* treeRoot,
int goalnt)
{
// Get the rule that matches this node.
//
int ruleForNode = burm_rule(treeRoot->state, goalnt);
if (ruleForNode == 0) {
std::cerr << "Could not match instruction tree for instr selection\n";
abort();
}
// Get this rule's non-terminals and the corresponding child nodes (if any)
//
short *nts = burm_nts[ruleForNode];
// First, select instructions for the current node and rule.
// (If this is a list node, not an instruction, then skip this step).
// This function is specific to the target architecture.
//
if (treeRoot->opLabel != VRegListOp) {
std::vector<MachineInstr*> minstrVec;
InstructionNode* instrNode = (InstructionNode*)treeRoot;
assert(instrNode->getNodeType() == InstrTreeNode::NTInstructionNode);
GetInstructionsByRule(instrNode, ruleForNode, nts, Target, minstrVec);
MachineCodeForInstruction &mvec =
MachineCodeForInstruction::get(instrNode->getInstruction());
mvec.insert(mvec.end(), minstrVec.begin(), minstrVec.end());
}
// Then, recursively compile the child nodes, if any.
//
if (nts[0]) {
// i.e., there is at least one kid
InstrTreeNode* kids[2];
int currentRule = ruleForNode;
burm_kids(treeRoot, currentRule, kids);
// First skip over any chain rules so that we don't visit
// the current node again.
//
while (ThisIsAChainRule(currentRule)) {
currentRule = burm_rule(treeRoot->state, nts[0]);
nts = burm_nts[currentRule];
burm_kids(treeRoot, currentRule, kids);
}
// Now we have the first non-chain rule so we have found
// the actual child nodes. Recursively compile them.
//
for (unsigned i = 0; nts[i]; i++) {
assert(i < 2);
InstrTreeNode::InstrTreeNodeType nodeType = kids[i]->getNodeType();
if (nodeType == InstrTreeNode::NTVRegListNode ||
nodeType == InstrTreeNode::NTInstructionNode)
SelectInstructionsForTree(kids[i], nts[i]);
}
}
// Finally, do any post-processing on this node after its children
// have been translated
//
if (treeRoot->opLabel != VRegListOp)
PostprocessMachineCodeForTree((InstructionNode*)treeRoot, ruleForNode, nts);
}
//---------------------------------------------------------------------------
// Function PostprocessMachineCodeForTree
//
// Apply any final cleanups to machine code for the root of a subtree
// after selection for all its children has been completed.
//
void
InstructionSelection::PostprocessMachineCodeForTree(InstructionNode* instrNode,
int ruleForNode,
short* nts)
{
// Fix up any constant operands in the machine instructions to either
// use an immediate field or to load the constant into a register
// Walk backwards and use direct indexes to allow insertion before current
//
Instruction* vmInstr = instrNode->getInstruction();
MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(vmInstr);
for (unsigned i = mvec.size(); i != 0; --i) {
std::vector<MachineInstr*> loadConstVec =
FixConstantOperandsForInstr(vmInstr, mvec[i-1], Target);
mvec.insert(mvec.begin()+i-1, loadConstVec.begin(), loadConstVec.end());
}
}
//===----------------------------------------------------------------------===//
// createInstructionSelectionPass - Public entrypoint for instruction selection
// and this file as a whole...
//
FunctionPass *createInstructionSelectionPass(TargetMachine &T) {
return new InstructionSelection(T);
}
|