1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
|
//===-- MipsSEISelLowering.cpp - MipsSE DAG Lowering Interface --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Subclass of MipsTargetLowering specialized for mips32/64.
//
//===----------------------------------------------------------------------===//
#include "MipsSEISelLowering.h"
#include "MipsRegisterInfo.h"
#include "MipsTargetMachine.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetInstrInfo.h"
using namespace llvm;
static cl::opt<bool>
EnableMipsTailCalls("enable-mips-tail-calls", cl::Hidden,
cl::desc("MIPS: Enable tail calls."), cl::init(false));
MipsSETargetLowering::MipsSETargetLowering(MipsTargetMachine &TM)
: MipsTargetLowering(TM) {
// Set up the register classes
addRegisterClass(MVT::i32, &Mips::CPURegsRegClass);
if (HasMips64)
addRegisterClass(MVT::i64, &Mips::CPU64RegsRegClass);
if (Subtarget->hasDSP()) {
MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8};
for (unsigned i = 0; i < array_lengthof(VecTys); ++i) {
addRegisterClass(VecTys[i], &Mips::DSPRegsRegClass);
// Expand all builtin opcodes.
for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
setOperationAction(Opc, VecTys[i], Expand);
setOperationAction(ISD::LOAD, VecTys[i], Legal);
setOperationAction(ISD::STORE, VecTys[i], Legal);
setOperationAction(ISD::BITCAST, VecTys[i], Legal);
}
}
if (!TM.Options.UseSoftFloat) {
addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
// When dealing with single precision only, use libcalls
if (!Subtarget->isSingleFloat()) {
if (HasMips64)
addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
else
addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
}
}
setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
setOperationAction(ISD::MULHS, MVT::i32, Custom);
setOperationAction(ISD::MULHU, MVT::i32, Custom);
if (HasMips64)
setOperationAction(ISD::MUL, MVT::i64, Custom);
setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
setOperationAction(ISD::LOAD, MVT::i32, Custom);
setOperationAction(ISD::STORE, MVT::i32, Custom);
setTargetDAGCombine(ISD::ADDE);
setTargetDAGCombine(ISD::SUBE);
computeRegisterProperties();
}
const MipsTargetLowering *
llvm::createMipsSETargetLowering(MipsTargetMachine &TM) {
return new MipsSETargetLowering(TM);
}
bool
MipsSETargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
switch (SVT) {
case MVT::i64:
case MVT::i32:
if (Fast)
*Fast = true;
return true;
default:
return false;
}
}
SDValue MipsSETargetLowering::LowerOperation(SDValue Op,
SelectionDAG &DAG) const {
switch(Op.getOpcode()) {
case ISD::SMUL_LOHI: return lowerMulDiv(Op, MipsISD::Mult, true, true, DAG);
case ISD::UMUL_LOHI: return lowerMulDiv(Op, MipsISD::Multu, true, true, DAG);
case ISD::MULHS: return lowerMulDiv(Op, MipsISD::Mult, false, true, DAG);
case ISD::MULHU: return lowerMulDiv(Op, MipsISD::Multu, false, true, DAG);
case ISD::MUL: return lowerMulDiv(Op, MipsISD::Mult, true, false, DAG);
case ISD::SDIVREM: return lowerMulDiv(Op, MipsISD::DivRem, true, true, DAG);
case ISD::UDIVREM: return lowerMulDiv(Op, MipsISD::DivRemU, true, true, DAG);
}
return MipsTargetLowering::LowerOperation(Op, DAG);
}
// selectMADD -
// Transforms a subgraph in CurDAG if the following pattern is found:
// (addc multLo, Lo0), (adde multHi, Hi0),
// where,
// multHi/Lo: product of multiplication
// Lo0: initial value of Lo register
// Hi0: initial value of Hi register
// Return true if pattern matching was successful.
static bool selectMADD(SDNode *ADDENode, SelectionDAG *CurDAG) {
// ADDENode's second operand must be a flag output of an ADDC node in order
// for the matching to be successful.
SDNode *ADDCNode = ADDENode->getOperand(2).getNode();
if (ADDCNode->getOpcode() != ISD::ADDC)
return false;
SDValue MultHi = ADDENode->getOperand(0);
SDValue MultLo = ADDCNode->getOperand(0);
SDNode *MultNode = MultHi.getNode();
unsigned MultOpc = MultHi.getOpcode();
// MultHi and MultLo must be generated by the same node,
if (MultLo.getNode() != MultNode)
return false;
// and it must be a multiplication.
if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
return false;
// MultLo amd MultHi must be the first and second output of MultNode
// respectively.
if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
return false;
// Transform this to a MADD only if ADDENode and ADDCNode are the only users
// of the values of MultNode, in which case MultNode will be removed in later
// phases.
// If there exist users other than ADDENode or ADDCNode, this function returns
// here, which will result in MultNode being mapped to a single MULT
// instruction node rather than a pair of MULT and MADD instructions being
// produced.
if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
return false;
DebugLoc DL = ADDENode->getDebugLoc();
// Initialize accumulator.
SDValue ACCIn = CurDAG->getNode(MipsISD::InsertLOHI, DL, MVT::Untyped,
ADDCNode->getOperand(1),
ADDENode->getOperand(1));
// create MipsMAdd(u) node
MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
SDValue MAdd = CurDAG->getNode(MultOpc, DL, MVT::Untyped,
MultNode->getOperand(0),// Factor 0
MultNode->getOperand(1),// Factor 1
ACCIn);
// replace uses of adde and addc here
if (!SDValue(ADDCNode, 0).use_empty()) {
SDValue LoIdx = CurDAG->getConstant(Mips::sub_lo, MVT::i32);
SDValue LoOut = CurDAG->getNode(MipsISD::ExtractLOHI, DL, MVT::i32, MAdd,
LoIdx);
CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), LoOut);
}
if (!SDValue(ADDENode, 0).use_empty()) {
SDValue HiIdx = CurDAG->getConstant(Mips::sub_hi, MVT::i32);
SDValue HiOut = CurDAG->getNode(MipsISD::ExtractLOHI, DL, MVT::i32, MAdd,
HiIdx);
CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), HiOut);
}
return true;
}
// selectMSUB -
// Transforms a subgraph in CurDAG if the following pattern is found:
// (addc Lo0, multLo), (sube Hi0, multHi),
// where,
// multHi/Lo: product of multiplication
// Lo0: initial value of Lo register
// Hi0: initial value of Hi register
// Return true if pattern matching was successful.
static bool selectMSUB(SDNode *SUBENode, SelectionDAG *CurDAG) {
// SUBENode's second operand must be a flag output of an SUBC node in order
// for the matching to be successful.
SDNode *SUBCNode = SUBENode->getOperand(2).getNode();
if (SUBCNode->getOpcode() != ISD::SUBC)
return false;
SDValue MultHi = SUBENode->getOperand(1);
SDValue MultLo = SUBCNode->getOperand(1);
SDNode *MultNode = MultHi.getNode();
unsigned MultOpc = MultHi.getOpcode();
// MultHi and MultLo must be generated by the same node,
if (MultLo.getNode() != MultNode)
return false;
// and it must be a multiplication.
if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
return false;
// MultLo amd MultHi must be the first and second output of MultNode
// respectively.
if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
return false;
// Transform this to a MSUB only if SUBENode and SUBCNode are the only users
// of the values of MultNode, in which case MultNode will be removed in later
// phases.
// If there exist users other than SUBENode or SUBCNode, this function returns
// here, which will result in MultNode being mapped to a single MULT
// instruction node rather than a pair of MULT and MSUB instructions being
// produced.
if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
return false;
DebugLoc DL = SUBENode->getDebugLoc();
// Initialize accumulator.
SDValue ACCIn = CurDAG->getNode(MipsISD::InsertLOHI, DL, MVT::Untyped,
SUBCNode->getOperand(0),
SUBENode->getOperand(0));
// create MipsSub(u) node
MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
SDValue MSub = CurDAG->getNode(MultOpc, DL, MVT::Glue,
MultNode->getOperand(0),// Factor 0
MultNode->getOperand(1),// Factor 1
ACCIn);
// replace uses of sube and subc here
if (!SDValue(SUBCNode, 0).use_empty()) {
SDValue LoIdx = CurDAG->getConstant(Mips::sub_lo, MVT::i32);
SDValue LoOut = CurDAG->getNode(MipsISD::ExtractLOHI, DL, MVT::i32, MSub,
LoIdx);
CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), LoOut);
}
if (!SDValue(SUBENode, 0).use_empty()) {
SDValue HiIdx = CurDAG->getConstant(Mips::sub_hi, MVT::i32);
SDValue HiOut = CurDAG->getNode(MipsISD::ExtractLOHI, DL, MVT::i32, MSub,
HiIdx);
CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), HiOut);
}
return true;
}
static SDValue performADDECombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const MipsSubtarget *Subtarget) {
if (DCI.isBeforeLegalize())
return SDValue();
if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
selectMADD(N, &DAG))
return SDValue(N, 0);
return SDValue();
}
static SDValue performSUBECombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const MipsSubtarget *Subtarget) {
if (DCI.isBeforeLegalize())
return SDValue();
if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
selectMSUB(N, &DAG))
return SDValue(N, 0);
return SDValue();
}
SDValue
MipsSETargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
switch (N->getOpcode()) {
case ISD::ADDE:
return performADDECombine(N, DAG, DCI, Subtarget);
case ISD::SUBE:
return performSUBECombine(N, DAG, DCI, Subtarget);
default:
return MipsTargetLowering::PerformDAGCombine(N, DCI);
}
}
MachineBasicBlock *
MipsSETargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *BB) const {
switch (MI->getOpcode()) {
default:
return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
case Mips::BPOSGE32_PSEUDO:
return emitBPOSGE32(MI, BB);
}
}
bool MipsSETargetLowering::
isEligibleForTailCallOptimization(const MipsCC &MipsCCInfo,
unsigned NextStackOffset,
const MipsFunctionInfo& FI) const {
if (!EnableMipsTailCalls)
return false;
// Return false if either the callee or caller has a byval argument.
if (MipsCCInfo.hasByValArg() || FI.hasByvalArg())
return false;
// Return true if the callee's argument area is no larger than the
// caller's.
return NextStackOffset <= FI.getIncomingArgSize();
}
void MipsSETargetLowering::
getOpndList(SmallVectorImpl<SDValue> &Ops,
std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
// T9 should contain the address of the callee function if
// -reloction-model=pic or it is an indirect call.
if (IsPICCall || !GlobalOrExternal) {
unsigned T9Reg = IsN64 ? Mips::T9_64 : Mips::T9;
RegsToPass.push_front(std::make_pair(T9Reg, Callee));
} else
Ops.push_back(Callee);
MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
InternalLinkage, CLI, Callee, Chain);
}
SDValue MipsSETargetLowering::lowerMulDiv(SDValue Op, unsigned NewOpc,
bool HasLo, bool HasHi,
SelectionDAG &DAG) const {
EVT Ty = Op.getOperand(0).getValueType();
DebugLoc DL = Op.getDebugLoc();
SDValue Mult = DAG.getNode(NewOpc, DL, MVT::Untyped,
Op.getOperand(0), Op.getOperand(1));
SDValue Lo, Hi;
if (HasLo)
Lo = DAG.getNode(MipsISD::ExtractLOHI, DL, Ty, Mult,
DAG.getConstant(Mips::sub_lo, MVT::i32));
if (HasHi)
Hi = DAG.getNode(MipsISD::ExtractLOHI, DL, Ty, Mult,
DAG.getConstant(Mips::sub_hi, MVT::i32));
if (!HasLo || !HasHi)
return HasLo ? Lo : Hi;
SDValue Vals[] = { Lo, Hi };
return DAG.getMergeValues(Vals, 2, DL);
}
MachineBasicBlock * MipsSETargetLowering::
emitBPOSGE32(MachineInstr *MI, MachineBasicBlock *BB) const{
// $bb:
// bposge32_pseudo $vr0
// =>
// $bb:
// bposge32 $tbb
// $fbb:
// li $vr2, 0
// b $sink
// $tbb:
// li $vr1, 1
// $sink:
// $vr0 = phi($vr2, $fbb, $vr1, $tbb)
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
const TargetRegisterClass *RC = &Mips::CPURegsRegClass;
DebugLoc DL = MI->getDebugLoc();
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = llvm::next(MachineFunction::iterator(BB));
MachineFunction *F = BB->getParent();
MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *Sink = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, FBB);
F->insert(It, TBB);
F->insert(It, Sink);
// Transfer the remainder of BB and its successor edges to Sink.
Sink->splice(Sink->begin(), BB, llvm::next(MachineBasicBlock::iterator(MI)),
BB->end());
Sink->transferSuccessorsAndUpdatePHIs(BB);
// Add successors.
BB->addSuccessor(FBB);
BB->addSuccessor(TBB);
FBB->addSuccessor(Sink);
TBB->addSuccessor(Sink);
// Insert the real bposge32 instruction to $BB.
BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB);
// Fill $FBB.
unsigned VR2 = RegInfo.createVirtualRegister(RC);
BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2)
.addReg(Mips::ZERO).addImm(0);
BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
// Fill $TBB.
unsigned VR1 = RegInfo.createVirtualRegister(RC);
BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1)
.addReg(Mips::ZERO).addImm(1);
// Insert phi function to $Sink.
BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
MI->getOperand(0).getReg())
.addReg(VR2).addMBB(FBB).addReg(VR1).addMBB(TBB);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return Sink;
}
|