1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
|
//===- Mips16InstrInfo.td - Target Description for Mips16 -*- tablegen -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes Mips16 instructions.
//
//===----------------------------------------------------------------------===//
//
//
// Mips Address
//
def addr16 :
ComplexPattern<iPTR, 3, "selectAddr16", [frameindex], [SDNPWantParent]>;
//
// Address operand
def mem16 : Operand<i32> {
let PrintMethod = "printMemOperand";
let MIOperandInfo = (ops CPU16Regs, simm16, CPU16Regs);
let EncoderMethod = "getMemEncoding";
}
def mem16_ea : Operand<i32> {
let PrintMethod = "printMemOperandEA";
let MIOperandInfo = (ops CPU16Regs, simm16);
let EncoderMethod = "getMemEncoding";
}
//
//
// I8 instruction format
//
class FI816_ins_base<bits<3> _func, string asmstr,
string asmstr2, InstrItinClass itin>:
FI816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
[], itin>;
class FI816_SP_ins<bits<3> _func, string asmstr,
InstrItinClass itin>:
FI816_ins_base<_func, asmstr, "\t$$sp, $imm # 16 bit inst", itin>;
//
// RI instruction format
//
class FRI16_ins_base<bits<5> op, string asmstr, string asmstr2,
InstrItinClass itin>:
FRI16<op, (outs CPU16Regs:$rx), (ins simm16:$imm),
!strconcat(asmstr, asmstr2), [], itin>;
class FRI16_ins<bits<5> op, string asmstr,
InstrItinClass itin>:
FRI16_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>;
class FRI16R_ins_base<bits<5> op, string asmstr, string asmstr2,
InstrItinClass itin>:
FRI16<op, (outs), (ins CPU16Regs:$rx, simm16:$imm),
!strconcat(asmstr, asmstr2), [], itin>;
class FRI16R_ins<bits<5> op, string asmstr,
InstrItinClass itin>:
FRI16R_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>;
class F2RI16_ins<bits<5> _op, string asmstr,
InstrItinClass itin>:
FRI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
!strconcat(asmstr, "\t$rx, $imm\t# 16 bit inst"), [], itin> {
let Constraints = "$rx_ = $rx";
}
class FRI16_B_ins<bits<5> _op, string asmstr,
InstrItinClass itin>:
FRI16<_op, (outs), (ins CPU16Regs:$rx, brtarget:$imm),
!strconcat(asmstr, "\t$rx, $imm # 16 bit inst"), [], itin>;
//
// Compare a register and immediate and place result in CC
// Implicit use of T8
//
// EXT-CCRR Instruction format
//
class FEXT_CCRXI16_ins<string asmstr>:
MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, simm16:$imm),
!strconcat(asmstr, "\t$rx, $imm\n\tmove\t$cc, $$t8"), []> {
let isCodeGenOnly=1;
let usesCustomInserter = 1;
}
// JAL and JALX instruction format
//
class FJAL16_ins<bits<1> _X, string asmstr,
InstrItinClass itin>:
FJAL16<_X, (outs), (ins simm20:$imm),
!strconcat(asmstr, "\t$imm\n\tnop"),[],
itin> {
let isCodeGenOnly=1;
}
//
// EXT-I instruction format
//
class FEXT_I16_ins<bits<5> eop, string asmstr, InstrItinClass itin> :
FEXT_I16<eop, (outs), (ins brtarget:$imm16),
!strconcat(asmstr, "\t$imm16"),[], itin>;
//
// EXT-I8 instruction format
//
class FEXT_I816_ins_base<bits<3> _func, string asmstr,
string asmstr2, InstrItinClass itin>:
FEXT_I816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
[], itin>;
class FEXT_I816_ins<bits<3> _func, string asmstr,
InstrItinClass itin>:
FEXT_I816_ins_base<_func, asmstr, "\t$imm", itin>;
class FEXT_I816_SP_ins<bits<3> _func, string asmstr,
InstrItinClass itin>:
FEXT_I816_ins_base<_func, asmstr, "\t$$sp, $imm", itin>;
//
// Assembler formats in alphabetical order.
// Natural and pseudos are mixed together.
//
// Compare two registers and place result in CC
// Implicit use of T8
//
// CC-RR Instruction format
//
class FCCRR16_ins<string asmstr> :
MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, CPU16Regs:$ry),
!strconcat(asmstr, "\t$rx, $ry\n\tmove\t$cc, $$t8"), []> {
let isCodeGenOnly=1;
let usesCustomInserter = 1;
}
//
// EXT-RI instruction format
//
class FEXT_RI16_ins_base<bits<5> _op, string asmstr, string asmstr2,
InstrItinClass itin>:
FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins simm16:$imm),
!strconcat(asmstr, asmstr2), [], itin>;
class FEXT_RI16_ins<bits<5> _op, string asmstr,
InstrItinClass itin>:
FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $imm", itin>;
class FEXT_RI16R_ins_base<bits<5> _op, string asmstr, string asmstr2,
InstrItinClass itin>:
FEXT_RI16<_op, (outs ), (ins CPU16Regs:$rx, simm16:$imm),
!strconcat(asmstr, asmstr2), [], itin>;
class FEXT_RI16R_ins<bits<5> _op, string asmstr,
InstrItinClass itin>:
FEXT_RI16R_ins_base<_op, asmstr, "\t$rx, $imm", itin>;
class FEXT_RI16_PC_ins<bits<5> _op, string asmstr, InstrItinClass itin>:
FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $$pc, $imm", itin>;
class FEXT_RI16_B_ins<bits<5> _op, string asmstr,
InstrItinClass itin>:
FEXT_RI16<_op, (outs), (ins CPU16Regs:$rx, brtarget:$imm),
!strconcat(asmstr, "\t$rx, $imm"), [], itin>;
class FEXT_2RI16_ins<bits<5> _op, string asmstr,
InstrItinClass itin>:
FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
!strconcat(asmstr, "\t$rx, $imm"), [], itin> {
let Constraints = "$rx_ = $rx";
}
// this has an explicit sp argument that we ignore to work around a problem
// in the compiler
class FEXT_RI16_SP_explicit_ins<bits<5> _op, string asmstr,
InstrItinClass itin>:
FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPUSPReg:$ry, simm16:$imm),
!strconcat(asmstr, "\t$rx, $imm ( $ry ); "), [], itin>;
//
// EXT-RRI instruction format
//
class FEXT_RRI16_mem_ins<bits<5> op, string asmstr, Operand MemOpnd,
InstrItinClass itin>:
FEXT_RRI16<op, (outs CPU16Regs:$ry), (ins MemOpnd:$addr),
!strconcat(asmstr, "\t$ry, $addr"), [], itin>;
class FEXT_RRI16_mem2_ins<bits<5> op, string asmstr, Operand MemOpnd,
InstrItinClass itin>:
FEXT_RRI16<op, (outs ), (ins CPU16Regs:$ry, MemOpnd:$addr),
!strconcat(asmstr, "\t$ry, $addr"), [], itin>;
//
//
// EXT-RRI-A instruction format
//
class FEXT_RRI_A16_mem_ins<bits<1> op, string asmstr, Operand MemOpnd,
InstrItinClass itin>:
FEXT_RRI_A16<op, (outs CPU16Regs:$ry), (ins MemOpnd:$addr),
!strconcat(asmstr, "\t$ry, $addr"), [], itin>;
//
// EXT-SHIFT instruction format
//
class FEXT_SHIFT16_ins<bits<2> _f, string asmstr, InstrItinClass itin>:
FEXT_SHIFT16<_f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry, shamt:$sa),
!strconcat(asmstr, "\t$rx, $ry, $sa"), [], itin>;
//
// EXT-T8I8
//
class FEXT_T8I816_ins<string asmstr, string asmstr2>:
MipsPseudo16<(outs),
(ins CPU16Regs:$rx, CPU16Regs:$ry, brtarget:$imm),
!strconcat(asmstr2, !strconcat("\t$rx, $ry\n\t",
!strconcat(asmstr, "\t$imm"))),[]> {
let isCodeGenOnly=1;
let usesCustomInserter = 1;
}
//
// EXT-T8I8I
//
class FEXT_T8I8I16_ins<string asmstr, string asmstr2>:
MipsPseudo16<(outs),
(ins CPU16Regs:$rx, simm16:$imm, brtarget:$targ),
!strconcat(asmstr2, !strconcat("\t$rx, $imm\n\t",
!strconcat(asmstr, "\t$targ"))), []> {
let isCodeGenOnly=1;
let usesCustomInserter = 1;
}
//
//
// I8_MOVR32 instruction format (used only by the MOVR32 instructio
//
class FI8_MOVR3216_ins<string asmstr, InstrItinClass itin>:
FI8_MOVR3216<(outs CPU16Regs:$rz), (ins CPURegs:$r32),
!strconcat(asmstr, "\t$rz, $r32"), [], itin>;
//
// I8_MOV32R instruction format (used only by MOV32R instruction)
//
class FI8_MOV32R16_ins<string asmstr, InstrItinClass itin>:
FI8_MOV32R16<(outs CPURegs:$r32), (ins CPU16Regs:$rz),
!strconcat(asmstr, "\t$r32, $rz"), [], itin>;
//
// This are pseudo formats for multiply
// This first one can be changed to non pseudo now.
//
// MULT
//
class FMULT16_ins<string asmstr, InstrItinClass itin> :
MipsPseudo16<(outs), (ins CPU16Regs:$rx, CPU16Regs:$ry),
!strconcat(asmstr, "\t$rx, $ry"), []>;
//
// MULT-LO
//
class FMULT16_LO_ins<string asmstr, InstrItinClass itin> :
MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
!strconcat(asmstr, "\t$rx, $ry\n\tmflo\t$rz"), []> {
let isCodeGenOnly=1;
}
//
// RR-type instruction format
//
class FRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
!strconcat(asmstr, "\t$rx, $ry"), [], itin> {
}
class FRR16R_ins<bits<5> f, string asmstr, InstrItinClass itin> :
FRR16<f, (outs), (ins CPU16Regs:$rx, CPU16Regs:$ry),
!strconcat(asmstr, "\t$rx, $ry"), [], itin> {
}
class FRRTR16_ins<string asmstr> :
MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
!strconcat(asmstr, "\t$rx, $ry\n\tmove\t$rz, $$t8"), []> ;
//
// maybe refactor but need a $zero as a dummy first parameter
//
class FRR16_div_ins<bits<5> f, string asmstr, InstrItinClass itin> :
FRR16<f, (outs ), (ins CPU16Regs:$rx, CPU16Regs:$ry),
!strconcat(asmstr, "\t$$zero, $rx, $ry"), [], itin> ;
class FUnaryRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
!strconcat(asmstr, "\t$rx, $ry"), [], itin> ;
class FRR16_M_ins<bits<5> f, string asmstr,
InstrItinClass itin> :
FRR16<f, (outs CPU16Regs:$rx), (ins),
!strconcat(asmstr, "\t$rx"), [], itin>;
class FRxRxRy16_ins<bits<5> f, string asmstr,
InstrItinClass itin> :
FRR16<f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
!strconcat(asmstr, "\t$rz, $ry"),
[], itin> {
let Constraints = "$rx = $rz";
}
let rx=0 in
class FRR16_JALRC_RA_only_ins<bits<1> nd_, bits<1> l_,
string asmstr, InstrItinClass itin>:
FRR16_JALRC<nd_, l_, 1, (outs), (ins), !strconcat(asmstr, "\t $$ra"),
[], itin> ;
class FRR16_JALRC_ins<bits<1> nd, bits<1> l, bits<1> ra,
string asmstr, InstrItinClass itin>:
FRR16_JALRC<nd, l, ra, (outs), (ins CPU16Regs:$rx),
!strconcat(asmstr, "\t $rx"), [], itin> ;
//
// RRR-type instruction format
//
class FRRR16_ins<bits<2> _f, string asmstr, InstrItinClass itin> :
FRRR16<_f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
!strconcat(asmstr, "\t$rz, $rx, $ry"), [], itin>;
//
// These Sel patterns support the generation of conditional move
// pseudo instructions.
//
// The nomenclature uses the components making up the pseudo and may
// be a bit counter intuitive when compared with the end result we seek.
// For example using a bqez in the example directly below results in the
// conditional move being done if the tested register is not zero.
// I considered in easier to check by keeping the pseudo consistent with
// it's components but it could have been done differently.
//
// The simplest case is when can test and operand directly and do the
// conditional move based on a simple mips16 conditional
// branch instruction.
// for example:
// if $op == beqz or bnez:
//
// $op1 $rt, .+4
// move $rd, $rs
//
// if $op == beqz, then if $rt != 0, then the conditional assignment
// $rd = $rs is done.
// if $op == bnez, then if $rt == 0, then the conditional assignment
// $rd = $rs is done.
//
// So this pseudo class only has one operand, i.e. op
//
class Sel<string op>:
MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
CPU16Regs:$rt),
!strconcat(op, "\t$rt, .+4\n\t\n\tmove $rd, $rs"), []> {
//let isCodeGenOnly=1;
let Constraints = "$rd = $rd_";
let usesCustomInserter = 1;
}
//
// The next two instruction classes allow for an operand which tests
// two operands and returns a value in register T8 and
//then does a conditional branch based on the value of T8
//
// op2 can be cmpi or slti/sltiu
// op1 can bteqz or btnez
// the operands for op2 are a register and a signed constant
//
// $op2 $t, $imm ;test register t and branch conditionally
// $op1 .+4 ;op1 is a conditional branch
// move $rd, $rs
//
//
class SeliT<string op1, string op2>:
MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
CPU16Regs:$rl, simm16:$imm),
!strconcat(op2,
!strconcat("\t$rl, $imm\n\t",
!strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
let isCodeGenOnly=1;
let Constraints = "$rd = $rd_";
let usesCustomInserter = 1;
}
//
// op2 can be cmp or slt/sltu
// op1 can be bteqz or btnez
// the operands for op2 are two registers
// op1 is a conditional branch
//
//
// $op2 $rl, $rr ;test registers rl,rr
// $op1 .+4 ;op2 is a conditional branch
// move $rd, $rs
//
//
class SelT<string op1, string op2>:
MipsPseudo16<(outs CPU16Regs:$rd_),
(ins CPU16Regs:$rd, CPU16Regs:$rs,
CPU16Regs:$rl, CPU16Regs:$rr),
!strconcat(op2,
!strconcat("\t$rl, $rr\n\t",
!strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
let isCodeGenOnly=1;
let Constraints = "$rd = $rd_";
let usesCustomInserter = 1;
}
//
// 32 bit constant
//
def imm32: Operand<i32>;
def Constant32:
MipsPseudo16<(outs), (ins imm32:$imm), "\t.word $imm", []>;
def LwConstant32:
MipsPseudo16<(outs), (ins CPU16Regs:$rx, imm32:$imm),
"lw\t$rx, 1f\n\tb\t2f\n\t.align\t2\n1: \t.word\t$imm\n2:", []>;
//
// Some general instruction class info
//
//
class ArithLogic16Defs<bit isCom=0> {
bits<5> shamt = 0;
bit isCommutable = isCom;
bit isReMaterializable = 1;
bit neverHasSideEffects = 1;
}
class branch16 {
bit isBranch = 1;
bit isTerminator = 1;
bit isBarrier = 1;
}
class cbranch16 {
bit isBranch = 1;
bit isTerminator = 1;
}
class MayLoad {
bit mayLoad = 1;
}
class MayStore {
bit mayStore = 1;
}
//
// Format: ADDIU rx, immediate MIPS16e
// Purpose: Add Immediate Unsigned Word (2-Operand, Extended)
// To add a constant to a 32-bit integer.
//
def AddiuRxImmX16: FEXT_RI16_ins<0b01001, "addiu", IIAlu>;
def AddiuRxRxImm16: F2RI16_ins<0b01001, "addiu", IIAlu>,
ArithLogic16Defs<0> {
let AddedComplexity = 5;
}
def AddiuRxRxImmX16: FEXT_2RI16_ins<0b01001, "addiu", IIAlu>,
ArithLogic16Defs<0> {
let isCodeGenOnly = 1;
}
def AddiuRxRyOffMemX16:
FEXT_RRI_A16_mem_ins<0, "addiu", mem16_ea, IIAlu>;
//
// Format: ADDIU rx, pc, immediate MIPS16e
// Purpose: Add Immediate Unsigned Word (3-Operand, PC-Relative, Extended)
// To add a constant to the program counter.
//
def AddiuRxPcImmX16: FEXT_RI16_PC_ins<0b00001, "addiu", IIAlu>;
//
// Format: ADDIU sp, immediate MIPS16e
// Purpose: Add Immediate Unsigned Word (2-Operand, SP-Relative, Extended)
// To add a constant to the stack pointer.
//
def AddiuSpImm16
: FI816_SP_ins<0b011, "addiu", IIAlu> {
let Defs = [SP];
let Uses = [SP];
let AddedComplexity = 5;
}
def AddiuSpImmX16
: FEXT_I816_SP_ins<0b011, "addiu", IIAlu> {
let Defs = [SP];
let Uses = [SP];
}
//
// Format: ADDU rz, rx, ry MIPS16e
// Purpose: Add Unsigned Word (3-Operand)
// To add 32-bit integers.
//
def AdduRxRyRz16: FRRR16_ins<01, "addu", IIAlu>, ArithLogic16Defs<1>;
//
// Format: AND rx, ry MIPS16e
// Purpose: AND
// To do a bitwise logical AND.
def AndRxRxRy16: FRxRxRy16_ins<0b01100, "and", IIAlu>, ArithLogic16Defs<1>;
//
// Format: BEQZ rx, offset MIPS16e
// Purpose: Branch on Equal to Zero
// To test a GPR then do a PC-relative conditional branch.
//
def BeqzRxImm16: FRI16_B_ins<0b00100, "beqz", IIAlu>, cbranch16;
//
// Format: BEQZ rx, offset MIPS16e
// Purpose: Branch on Equal to Zero (Extended)
// To test a GPR then do a PC-relative conditional branch.
//
def BeqzRxImmX16: FEXT_RI16_B_ins<0b00100, "beqz", IIAlu>, cbranch16;
// Format: B offset MIPS16e
// Purpose: Unconditional Branch
// To do an unconditional PC-relative branch.
//
def BimmX16: FEXT_I16_ins<0b00010, "b", IIAlu>, branch16;
//
// Format: BNEZ rx, offset MIPS16e
// Purpose: Branch on Not Equal to Zero
// To test a GPR then do a PC-relative conditional branch.
//
def BnezRxImm16: FRI16_B_ins<0b00101, "bnez", IIAlu>, cbranch16;
//
// Format: BNEZ rx, offset MIPS16e
// Purpose: Branch on Not Equal to Zero (Extended)
// To test a GPR then do a PC-relative conditional branch.
//
def BnezRxImmX16: FEXT_RI16_B_ins<0b00101, "bnez", IIAlu>, cbranch16;
//
// Format: BTEQZ offset MIPS16e
// Purpose: Branch on T Equal to Zero (Extended)
// To test special register T then do a PC-relative conditional branch.
//
def BteqzX16: FEXT_I816_ins<0b000, "bteqz", IIAlu>, cbranch16 {
let Uses = [T8];
}
def BteqzT8CmpX16: FEXT_T8I816_ins<"bteqz", "cmp">, cbranch16;
def BteqzT8CmpiX16: FEXT_T8I8I16_ins<"bteqz", "cmpi">,
cbranch16;
def BteqzT8SltX16: FEXT_T8I816_ins<"bteqz", "slt">, cbranch16;
def BteqzT8SltuX16: FEXT_T8I816_ins<"bteqz", "sltu">, cbranch16;
def BteqzT8SltiX16: FEXT_T8I8I16_ins<"bteqz", "slti">, cbranch16;
def BteqzT8SltiuX16: FEXT_T8I8I16_ins<"bteqz", "sltiu">,
cbranch16;
//
// Format: BTNEZ offset MIPS16e
// Purpose: Branch on T Not Equal to Zero (Extended)
// To test special register T then do a PC-relative conditional branch.
//
def BtnezX16: FEXT_I816_ins<0b001, "btnez", IIAlu> ,cbranch16 {
let Uses = [T8];
}
def BtnezT8CmpX16: FEXT_T8I816_ins<"btnez", "cmp">, cbranch16;
def BtnezT8CmpiX16: FEXT_T8I8I16_ins<"btnez", "cmpi">, cbranch16;
def BtnezT8SltX16: FEXT_T8I816_ins<"btnez", "slt">, cbranch16;
def BtnezT8SltuX16: FEXT_T8I816_ins<"btnez", "sltu">, cbranch16;
def BtnezT8SltiX16: FEXT_T8I8I16_ins<"btnez", "slti">, cbranch16;
def BtnezT8SltiuX16: FEXT_T8I8I16_ins<"btnez", "sltiu">,
cbranch16;
//
// Format: CMP rx, ry MIPS16e
// Purpose: Compare
// To compare the contents of two GPRs.
//
def CmpRxRy16: FRR16R_ins<0b01010, "cmp", IIAlu> {
let Defs = [T8];
}
//
// Format: CMPI rx, immediate MIPS16e
// Purpose: Compare Immediate
// To compare a constant with the contents of a GPR.
//
def CmpiRxImm16: FRI16R_ins<0b01110, "cmpi", IIAlu> {
let Defs = [T8];
}
//
// Format: CMPI rx, immediate MIPS16e
// Purpose: Compare Immediate (Extended)
// To compare a constant with the contents of a GPR.
//
def CmpiRxImmX16: FEXT_RI16R_ins<0b01110, "cmpi", IIAlu> {
let Defs = [T8];
}
//
// Format: DIV rx, ry MIPS16e
// Purpose: Divide Word
// To divide 32-bit signed integers.
//
def DivRxRy16: FRR16_div_ins<0b11010, "div", IIAlu> {
let Defs = [HI, LO];
}
//
// Format: DIVU rx, ry MIPS16e
// Purpose: Divide Unsigned Word
// To divide 32-bit unsigned integers.
//
def DivuRxRy16: FRR16_div_ins<0b11011, "divu", IIAlu> {
let Defs = [HI, LO];
}
//
// Format: JAL target MIPS16e
// Purpose: Jump and Link
// To execute a procedure call within the current 256 MB-aligned
// region and preserve the current ISA.
//
def Jal16 : FJAL16_ins<0b0, "jal", IIAlu> {
let isBranch = 1;
let hasDelaySlot = 0; // not true, but we add the nop for now
let isTerminator=1;
let isBarrier=1;
}
//
// Format: JR ra MIPS16e
// Purpose: Jump Register Through Register ra
// To execute a branch to the instruction address in the return
// address register.
//
def JrRa16: FRR16_JALRC_RA_only_ins<0, 0, "jr", IIAlu> {
let isBranch = 1;
let isIndirectBranch = 1;
let hasDelaySlot = 1;
let isTerminator=1;
let isBarrier=1;
}
def JrcRa16: FRR16_JALRC_RA_only_ins<1, 1, "jrc", IIAlu> {
let isBranch = 1;
let isIndirectBranch = 1;
let isTerminator=1;
let isBarrier=1;
}
def JrcRx16: FRR16_JALRC_ins<1, 1, 0, "jrc", IIAlu> {
let isBranch = 1;
let isIndirectBranch = 1;
let isTerminator=1;
let isBarrier=1;
}
//
// Format: LB ry, offset(rx) MIPS16e
// Purpose: Load Byte (Extended)
// To load a byte from memory as a signed value.
//
def LbRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lb", mem16, IILoad>, MayLoad{
let isCodeGenOnly = 1;
}
//
// Format: LBU ry, offset(rx) MIPS16e
// Purpose: Load Byte Unsigned (Extended)
// To load a byte from memory as a unsigned value.
//
def LbuRxRyOffMemX16:
FEXT_RRI16_mem_ins<0b10100, "lbu", mem16, IILoad>, MayLoad {
let isCodeGenOnly = 1;
}
//
// Format: LH ry, offset(rx) MIPS16e
// Purpose: Load Halfword signed (Extended)
// To load a halfword from memory as a signed value.
//
def LhRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10100, "lh", mem16, IILoad>, MayLoad{
let isCodeGenOnly = 1;
}
//
// Format: LHU ry, offset(rx) MIPS16e
// Purpose: Load Halfword unsigned (Extended)
// To load a halfword from memory as an unsigned value.
//
def LhuRxRyOffMemX16:
FEXT_RRI16_mem_ins<0b10100, "lhu", mem16, IILoad>, MayLoad {
let isCodeGenOnly = 1;
}
//
// Format: LI rx, immediate MIPS16e
// Purpose: Load Immediate
// To load a constant into a GPR.
//
def LiRxImm16: FRI16_ins<0b01101, "li", IIAlu>;
//
// Format: LI rx, immediate MIPS16e
// Purpose: Load Immediate (Extended)
// To load a constant into a GPR.
//
def LiRxImmX16: FEXT_RI16_ins<0b01101, "li", IIAlu>;
//
// Format: LW ry, offset(rx) MIPS16e
// Purpose: Load Word (Extended)
// To load a word from memory as a signed value.
//
def LwRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lw", mem16, IILoad>, MayLoad{
let isCodeGenOnly = 1;
}
// Format: LW rx, offset(sp) MIPS16e
// Purpose: Load Word (SP-Relative, Extended)
// To load an SP-relative word from memory as a signed value.
//
def LwRxSpImmX16: FEXT_RI16_SP_explicit_ins<0b10110, "lw", IILoad>, MayLoad{
let Uses = [SP];
}
//
// Format: MOVE r32, rz MIPS16e
// Purpose: Move
// To move the contents of a GPR to a GPR.
//
def Move32R16: FI8_MOV32R16_ins<"move", IIAlu>;
//
// Format: MOVE ry, r32 MIPS16e
//Purpose: Move
// To move the contents of a GPR to a GPR.
//
def MoveR3216: FI8_MOVR3216_ins<"move", IIAlu>;
//
// Format: MFHI rx MIPS16e
// Purpose: Move From HI Register
// To copy the special purpose HI register to a GPR.
//
def Mfhi16: FRR16_M_ins<0b10000, "mfhi", IIAlu> {
let Uses = [HI];
let neverHasSideEffects = 1;
}
//
// Format: MFLO rx MIPS16e
// Purpose: Move From LO Register
// To copy the special purpose LO register to a GPR.
//
def Mflo16: FRR16_M_ins<0b10010, "mflo", IIAlu> {
let Uses = [LO];
let neverHasSideEffects = 1;
}
//
// Pseudo Instruction for mult
//
def MultRxRy16: FMULT16_ins<"mult", IIAlu> {
let isCommutable = 1;
let neverHasSideEffects = 1;
let Defs = [HI, LO];
}
def MultuRxRy16: FMULT16_ins<"multu", IIAlu> {
let isCommutable = 1;
let neverHasSideEffects = 1;
let Defs = [HI, LO];
}
//
// Format: MULT rx, ry MIPS16e
// Purpose: Multiply Word
// To multiply 32-bit signed integers.
//
def MultRxRyRz16: FMULT16_LO_ins<"mult", IIAlu> {
let isCommutable = 1;
let neverHasSideEffects = 1;
let Defs = [HI, LO];
}
//
// Format: MULTU rx, ry MIPS16e
// Purpose: Multiply Unsigned Word
// To multiply 32-bit unsigned integers.
//
def MultuRxRyRz16: FMULT16_LO_ins<"multu", IIAlu> {
let isCommutable = 1;
let neverHasSideEffects = 1;
let Defs = [HI, LO];
}
//
// Format: NEG rx, ry MIPS16e
// Purpose: Negate
// To negate an integer value.
//
def NegRxRy16: FUnaryRR16_ins<0b11101, "neg", IIAlu>;
//
// Format: NOT rx, ry MIPS16e
// Purpose: Not
// To complement an integer value
//
def NotRxRy16: FUnaryRR16_ins<0b01111, "not", IIAlu>;
//
// Format: OR rx, ry MIPS16e
// Purpose: Or
// To do a bitwise logical OR.
//
def OrRxRxRy16: FRxRxRy16_ins<0b01101, "or", IIAlu>, ArithLogic16Defs<1>;
//
// Format: RESTORE {ra,}{s0/s1/s0-1,}{framesize}
// (All args are optional) MIPS16e
// Purpose: Restore Registers and Deallocate Stack Frame
// To deallocate a stack frame before exit from a subroutine,
// restoring return address and static registers, and adjusting
// stack
//
// fixed form for restoring RA and the frame
// for direct object emitter, encoding needs to be adjusted for the
// frame size
//
let ra=1, s=0,s0=1,s1=1 in
def RestoreRaF16:
FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
"restore\t$$ra, $$s0, $$s1, $frame_size", [], IILoad >, MayLoad {
let isCodeGenOnly = 1;
let Defs = [S0, S1, RA, SP];
let Uses = [SP];
}
// Use Restore to increment SP since SP is not a Mip 16 register, this
// is an easy way to do that which does not require a register.
//
let ra=0, s=0,s0=0,s1=0 in
def RestoreIncSpF16:
FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
"restore\t$frame_size", [], IILoad >, MayLoad {
let isCodeGenOnly = 1;
let Defs = [SP];
let Uses = [SP];
}
//
// Format: SAVE {ra,}{s0/s1/s0-1,}{framesize} (All arguments are optional)
// MIPS16e
// Purpose: Save Registers and Set Up Stack Frame
// To set up a stack frame on entry to a subroutine,
// saving return address and static registers, and adjusting stack
//
let ra=1, s=1,s0=1,s1=1 in
def SaveRaF16:
FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
"save\t$$ra, $$s0, $$s1, $frame_size", [], IIStore >, MayStore {
let isCodeGenOnly = 1;
let Uses = [RA, SP, S0, S1];
let Defs = [SP];
}
//
// Use Save to decrement the SP by a constant since SP is not
// a Mips16 register.
//
let ra=0, s=0,s0=0,s1=0 in
def SaveDecSpF16:
FI8_SVRS16<0b1, (outs), (ins uimm16:$frame_size),
"save\t$frame_size", [], IIStore >, MayStore {
let isCodeGenOnly = 1;
let Uses = [SP];
let Defs = [SP];
}
//
// Format: SB ry, offset(rx) MIPS16e
// Purpose: Store Byte (Extended)
// To store a byte to memory.
//
def SbRxRyOffMemX16:
FEXT_RRI16_mem2_ins<0b11000, "sb", mem16, IIStore>, MayStore;
//
// The Sel(T) instructions are pseudos
// T means that they use T8 implicitly.
//
//
// Format: SelBeqZ rd, rs, rt
// Purpose: if rt==0, do nothing
// else rs = rt
//
def SelBeqZ: Sel<"beqz">;
//
// Format: SelTBteqZCmp rd, rs, rl, rr
// Purpose: b = Cmp rl, rr.
// If b==0 then do nothing.
// if b!=0 then rd = rs
//
def SelTBteqZCmp: SelT<"bteqz", "cmp">;
//
// Format: SelTBteqZCmpi rd, rs, rl, rr
// Purpose: b = Cmpi rl, imm.
// If b==0 then do nothing.
// if b!=0 then rd = rs
//
def SelTBteqZCmpi: SeliT<"bteqz", "cmpi">;
//
// Format: SelTBteqZSlt rd, rs, rl, rr
// Purpose: b = Slt rl, rr.
// If b==0 then do nothing.
// if b!=0 then rd = rs
//
def SelTBteqZSlt: SelT<"bteqz", "slt">;
//
// Format: SelTBteqZSlti rd, rs, rl, rr
// Purpose: b = Slti rl, imm.
// If b==0 then do nothing.
// if b!=0 then rd = rs
//
def SelTBteqZSlti: SeliT<"bteqz", "slti">;
//
// Format: SelTBteqZSltu rd, rs, rl, rr
// Purpose: b = Sltu rl, rr.
// If b==0 then do nothing.
// if b!=0 then rd = rs
//
def SelTBteqZSltu: SelT<"bteqz", "sltu">;
//
// Format: SelTBteqZSltiu rd, rs, rl, rr
// Purpose: b = Sltiu rl, imm.
// If b==0 then do nothing.
// if b!=0 then rd = rs
//
def SelTBteqZSltiu: SeliT<"bteqz", "sltiu">;
//
// Format: SelBnez rd, rs, rt
// Purpose: if rt!=0, do nothing
// else rs = rt
//
def SelBneZ: Sel<"bnez">;
//
// Format: SelTBtneZCmp rd, rs, rl, rr
// Purpose: b = Cmp rl, rr.
// If b!=0 then do nothing.
// if b0=0 then rd = rs
//
def SelTBtneZCmp: SelT<"btnez", "cmp">;
//
// Format: SelTBtnezCmpi rd, rs, rl, rr
// Purpose: b = Cmpi rl, imm.
// If b!=0 then do nothing.
// if b==0 then rd = rs
//
def SelTBtneZCmpi: SeliT<"btnez", "cmpi">;
//
// Format: SelTBtneZSlt rd, rs, rl, rr
// Purpose: b = Slt rl, rr.
// If b!=0 then do nothing.
// if b==0 then rd = rs
//
def SelTBtneZSlt: SelT<"btnez", "slt">;
//
// Format: SelTBtneZSlti rd, rs, rl, rr
// Purpose: b = Slti rl, imm.
// If b!=0 then do nothing.
// if b==0 then rd = rs
//
def SelTBtneZSlti: SeliT<"btnez", "slti">;
//
// Format: SelTBtneZSltu rd, rs, rl, rr
// Purpose: b = Sltu rl, rr.
// If b!=0 then do nothing.
// if b==0 then rd = rs
//
def SelTBtneZSltu: SelT<"btnez", "sltu">;
//
// Format: SelTBtneZSltiu rd, rs, rl, rr
// Purpose: b = Slti rl, imm.
// If b!=0 then do nothing.
// if b==0 then rd = rs
//
def SelTBtneZSltiu: SeliT<"btnez", "sltiu">;
//
//
// Format: SH ry, offset(rx) MIPS16e
// Purpose: Store Halfword (Extended)
// To store a halfword to memory.
//
def ShRxRyOffMemX16:
FEXT_RRI16_mem2_ins<0b11001, "sh", mem16, IIStore>, MayStore;
//
// Format: SLL rx, ry, sa MIPS16e
// Purpose: Shift Word Left Logical (Extended)
// To execute a left-shift of a word by a fixed number of bits—0 to 31 bits.
//
def SllX16: FEXT_SHIFT16_ins<0b00, "sll", IIAlu>;
//
// Format: SLLV ry, rx MIPS16e
// Purpose: Shift Word Left Logical Variable
// To execute a left-shift of a word by a variable number of bits.
//
def SllvRxRy16 : FRxRxRy16_ins<0b00100, "sllv", IIAlu>;
// Format: SLTI rx, immediate MIPS16e
// Purpose: Set on Less Than Immediate
// To record the result of a less-than comparison with a constant.
//
//
def SltiRxImm16: FRI16R_ins<0b01010, "slti", IIAlu> {
let Defs = [T8];
}
//
// Format: SLTI rx, immediate MIPS16e
// Purpose: Set on Less Than Immediate (Extended)
// To record the result of a less-than comparison with a constant.
//
//
def SltiRxImmX16: FEXT_RI16R_ins<0b01010, "slti", IIAlu> {
let Defs = [T8];
}
def SltiCCRxImmX16: FEXT_CCRXI16_ins<"slti">;
// Format: SLTIU rx, immediate MIPS16e
// Purpose: Set on Less Than Immediate Unsigned
// To record the result of a less-than comparison with a constant.
//
//
def SltiuRxImm16: FRI16R_ins<0b01011, "sltiu", IIAlu> {
let Defs = [T8];
}
//
// Format: SLTI rx, immediate MIPS16e
// Purpose: Set on Less Than Immediate Unsigned (Extended)
// To record the result of a less-than comparison with a constant.
//
//
def SltiuRxImmX16: FEXT_RI16R_ins<0b01011, "sltiu", IIAlu> {
let Defs = [T8];
}
//
// Format: SLTIU rx, immediate MIPS16e
// Purpose: Set on Less Than Immediate Unsigned (Extended)
// To record the result of a less-than comparison with a constant.
//
def SltiuCCRxImmX16: FEXT_CCRXI16_ins<"sltiu">;
//
// Format: SLT rx, ry MIPS16e
// Purpose: Set on Less Than
// To record the result of a less-than comparison.
//
def SltRxRy16: FRR16R_ins<0b00010, "slt", IIAlu>{
let Defs = [T8];
}
def SltCCRxRy16: FCCRR16_ins<"slt">;
// Format: SLTU rx, ry MIPS16e
// Purpose: Set on Less Than Unsigned
// To record the result of an unsigned less-than comparison.
//
def SltuRxRy16: FRR16R_ins<0b00011, "sltu", IIAlu>{
let Defs = [T8];
}
def SltuRxRyRz16: FRRTR16_ins<"sltu"> {
let isCodeGenOnly=1;
let Defs = [T8];
}
def SltuCCRxRy16: FCCRR16_ins<"sltu">;
//
// Format: SRAV ry, rx MIPS16e
// Purpose: Shift Word Right Arithmetic Variable
// To execute an arithmetic right-shift of a word by a variable
// number of bits.
//
def SravRxRy16: FRxRxRy16_ins<0b00111, "srav", IIAlu>;
//
// Format: SRA rx, ry, sa MIPS16e
// Purpose: Shift Word Right Arithmetic (Extended)
// To execute an arithmetic right-shift of a word by a fixed
// number of bits—1 to 8 bits.
//
def SraX16: FEXT_SHIFT16_ins<0b11, "sra", IIAlu>;
//
// Format: SRLV ry, rx MIPS16e
// Purpose: Shift Word Right Logical Variable
// To execute a logical right-shift of a word by a variable
// number of bits.
//
def SrlvRxRy16: FRxRxRy16_ins<0b00110, "srlv", IIAlu>;
//
// Format: SRL rx, ry, sa MIPS16e
// Purpose: Shift Word Right Logical (Extended)
// To execute a logical right-shift of a word by a fixed
// number of bits—1 to 31 bits.
//
def SrlX16: FEXT_SHIFT16_ins<0b10, "srl", IIAlu>;
//
// Format: SUBU rz, rx, ry MIPS16e
// Purpose: Subtract Unsigned Word
// To subtract 32-bit integers
//
def SubuRxRyRz16: FRRR16_ins<0b11, "subu", IIAlu>, ArithLogic16Defs<0>;
//
// Format: SW ry, offset(rx) MIPS16e
// Purpose: Store Word (Extended)
// To store a word to memory.
//
def SwRxRyOffMemX16:
FEXT_RRI16_mem2_ins<0b11011, "sw", mem16, IIStore>, MayStore;
//
// Format: SW rx, offset(sp) MIPS16e
// Purpose: Store Word rx (SP-Relative)
// To store an SP-relative word to memory.
//
def SwRxSpImmX16: FEXT_RI16_SP_explicit_ins<0b11010, "sw", IIStore>, MayStore;
//
//
// Format: XOR rx, ry MIPS16e
// Purpose: Xor
// To do a bitwise logical XOR.
//
def XorRxRxRy16: FRxRxRy16_ins<0b01110, "xor", IIAlu>, ArithLogic16Defs<1>;
class Mips16Pat<dag pattern, dag result> : Pat<pattern, result> {
let Predicates = [InMips16Mode];
}
// Unary Arith/Logic
//
class ArithLogicU_pat<PatFrag OpNode, Instruction I> :
Mips16Pat<(OpNode CPU16Regs:$r),
(I CPU16Regs:$r)>;
def: ArithLogicU_pat<not, NotRxRy16>;
def: ArithLogicU_pat<ineg, NegRxRy16>;
class ArithLogic16_pat<SDNode OpNode, Instruction I> :
Mips16Pat<(OpNode CPU16Regs:$l, CPU16Regs:$r),
(I CPU16Regs:$l, CPU16Regs:$r)>;
def: ArithLogic16_pat<add, AdduRxRyRz16>;
def: ArithLogic16_pat<and, AndRxRxRy16>;
def: ArithLogic16_pat<mul, MultRxRyRz16>;
def: ArithLogic16_pat<or, OrRxRxRy16>;
def: ArithLogic16_pat<sub, SubuRxRyRz16>;
def: ArithLogic16_pat<xor, XorRxRxRy16>;
// Arithmetic and logical instructions with 2 register operands.
class ArithLogicI16_pat<SDNode OpNode, PatFrag imm_type, Instruction I> :
Mips16Pat<(OpNode CPU16Regs:$in, imm_type:$imm),
(I CPU16Regs:$in, imm_type:$imm)>;
def: ArithLogicI16_pat<add, immSExt8, AddiuRxRxImm16>;
def: ArithLogicI16_pat<add, immSExt16, AddiuRxRxImmX16>;
def: ArithLogicI16_pat<shl, immZExt5, SllX16>;
def: ArithLogicI16_pat<srl, immZExt5, SrlX16>;
def: ArithLogicI16_pat<sra, immZExt5, SraX16>;
class shift_rotate_reg16_pat<SDNode OpNode, Instruction I> :
Mips16Pat<(OpNode CPU16Regs:$r, CPU16Regs:$ra),
(I CPU16Regs:$r, CPU16Regs:$ra)>;
def: shift_rotate_reg16_pat<shl, SllvRxRy16>;
def: shift_rotate_reg16_pat<sra, SravRxRy16>;
def: shift_rotate_reg16_pat<srl, SrlvRxRy16>;
class LoadM16_pat<PatFrag OpNode, Instruction I> :
Mips16Pat<(OpNode addr16:$addr), (I addr16:$addr)>;
def: LoadM16_pat<sextloadi8, LbRxRyOffMemX16>;
def: LoadM16_pat<zextloadi8, LbuRxRyOffMemX16>;
def: LoadM16_pat<sextloadi16, LhRxRyOffMemX16>;
def: LoadM16_pat<zextloadi16, LhuRxRyOffMemX16>;
def: LoadM16_pat<load, LwRxRyOffMemX16>;
class StoreM16_pat<PatFrag OpNode, Instruction I> :
Mips16Pat<(OpNode CPU16Regs:$r, addr16:$addr),
(I CPU16Regs:$r, addr16:$addr)>;
def: StoreM16_pat<truncstorei8, SbRxRyOffMemX16>;
def: StoreM16_pat<truncstorei16, ShRxRyOffMemX16>;
def: StoreM16_pat<store, SwRxRyOffMemX16>;
// Unconditional branch
class UncondBranch16_pat<SDNode OpNode, Instruction I>:
Mips16Pat<(OpNode bb:$imm16), (I bb:$imm16)> {
let Predicates = [InMips16Mode];
}
def : Mips16Pat<(MipsJmpLink (i32 tglobaladdr:$dst)),
(Jal16 tglobaladdr:$dst)>;
def : Mips16Pat<(MipsJmpLink (i32 texternalsym:$dst)),
(Jal16 texternalsym:$dst)>;
// Indirect branch
def: Mips16Pat<
(brind CPU16Regs:$rs),
(JrcRx16 CPU16Regs:$rs)>;
// Jump and Link (Call)
let isCall=1, hasDelaySlot=0 in
def JumpLinkReg16:
FRR16_JALRC<0, 0, 0, (outs), (ins CPU16Regs:$rs),
"jalrc \t$rs", [(MipsJmpLink CPU16Regs:$rs)], IIBranch>;
// Mips16 pseudos
let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1,
hasExtraSrcRegAllocReq = 1 in
def RetRA16 : MipsPseudo16<(outs), (ins), "", [(MipsRet)]>;
// setcc patterns
class SetCC_R16<PatFrag cond_op, Instruction I>:
Mips16Pat<(cond_op CPU16Regs:$rx, CPU16Regs:$ry),
(I CPU16Regs:$rx, CPU16Regs:$ry)>;
class SetCC_I16<PatFrag cond_op, PatLeaf imm_type, Instruction I>:
Mips16Pat<(cond_op CPU16Regs:$rx, imm_type:$imm16),
(I CPU16Regs:$rx, imm_type:$imm16)>;
def: Mips16Pat<(i32 addr16:$addr),
(AddiuRxRyOffMemX16 addr16:$addr)>;
// Large (>16 bit) immediate loads
def : Mips16Pat<(i32 imm:$imm),
(OrRxRxRy16 (SllX16 (LiRxImmX16 (HI16 imm:$imm)), 16),
(LiRxImmX16 (LO16 imm:$imm)))>;
// Carry MipsPatterns
def : Mips16Pat<(subc CPU16Regs:$lhs, CPU16Regs:$rhs),
(SubuRxRyRz16 CPU16Regs:$lhs, CPU16Regs:$rhs)>;
def : Mips16Pat<(addc CPU16Regs:$lhs, CPU16Regs:$rhs),
(AdduRxRyRz16 CPU16Regs:$lhs, CPU16Regs:$rhs)>;
def : Mips16Pat<(addc CPU16Regs:$src, immSExt16:$imm),
(AddiuRxRxImmX16 CPU16Regs:$src, imm:$imm)>;
//
// Some branch conditional patterns are not generated by llvm at this time.
// Some are for seemingly arbitrary reasons not used: i.e. with signed number
// comparison they are used and for unsigned a different pattern is used.
// I am pushing upstream from the full mips16 port and it seemed that I needed
// these earlier and the mips32 port has these but now I cannot create test
// cases that use these patterns. While I sort this all out I will leave these
// extra patterns commented out and if I can be sure they are really not used,
// I will delete the code. I don't want to check the code in uncommented without
// a valid test case. In some cases, the compiler is generating patterns with
// setcc instead and earlier I had implemented setcc first so may have masked
// the problem. The setcc variants are suboptimal for mips16 so I may wantto
// figure out how to enable the brcond patterns or else possibly new
// combinations of of brcond and setcc.
//
//
// bcond-seteq
//
def: Mips16Pat
<(brcond (i32 (seteq CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
(BteqzT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16)
>;
def: Mips16Pat
<(brcond (i32 (seteq CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
(BteqzT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm, bb:$targ16)
>;
def: Mips16Pat
<(brcond (i32 (seteq CPU16Regs:$rx, 0)), bb:$targ16),
(BeqzRxImmX16 CPU16Regs:$rx, bb:$targ16)
>;
//
// bcond-setgt (do we need to have this pair of setlt, setgt??)
//
def: Mips16Pat
<(brcond (i32 (setgt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
(BtnezT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx, bb:$imm16)
>;
//
// bcond-setge
//
def: Mips16Pat
<(brcond (i32 (setge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
(BteqzT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16)
>;
//
// never called because compiler transforms a >= k to a > (k-1)
def: Mips16Pat
<(brcond (i32 (setge CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
(BteqzT8SltiX16 CPU16Regs:$rx, immSExt16:$imm, bb:$imm16)
>;
//
// bcond-setlt
//
def: Mips16Pat
<(brcond (i32 (setlt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
(BtnezT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16)
>;
def: Mips16Pat
<(brcond (i32 (setlt CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
(BtnezT8SltiX16 CPU16Regs:$rx, immSExt16:$imm, bb:$imm16)
>;
//
// bcond-setle
//
def: Mips16Pat
<(brcond (i32 (setle CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
(BteqzT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx, bb:$imm16)
>;
//
// bcond-setne
//
def: Mips16Pat
<(brcond (i32 (setne CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
(BtnezT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16)
>;
def: Mips16Pat
<(brcond (i32 (setne CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
(BtnezT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm, bb:$targ16)
>;
def: Mips16Pat
<(brcond (i32 (setne CPU16Regs:$rx, 0)), bb:$targ16),
(BnezRxImmX16 CPU16Regs:$rx, bb:$targ16)
>;
//
// This needs to be there but I forget which code will generate it
//
def: Mips16Pat
<(brcond CPU16Regs:$rx, bb:$targ16),
(BnezRxImmX16 CPU16Regs:$rx, bb:$targ16)
>;
//
//
// bcond-setugt
//
//def: Mips16Pat
// <(brcond (i32 (setugt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
// (BtnezT8SltuX16 CPU16Regs:$ry, CPU16Regs:$rx, bb:$imm16)
// >;
//
// bcond-setuge
//
//def: Mips16Pat
// <(brcond (i32 (setuge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
// (BteqzT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16)
// >;
//
// bcond-setult
//
//def: Mips16Pat
// <(brcond (i32 (setult CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
// (BtnezT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry, bb:$imm16)
// >;
def: UncondBranch16_pat<br, BimmX16>;
// Small immediates
def: Mips16Pat<(i32 immSExt16:$in),
(AddiuRxRxImmX16 (Move32R16 ZERO), immSExt16:$in)>;
def: Mips16Pat<(i32 immZExt16:$in), (LiRxImmX16 immZExt16:$in)>;
//
// MipsDivRem
//
def: Mips16Pat
<(MipsDivRem16 CPU16Regs:$rx, CPU16Regs:$ry),
(DivRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
//
// MipsDivRemU
//
def: Mips16Pat
<(MipsDivRemU16 CPU16Regs:$rx, CPU16Regs:$ry),
(DivuRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
// signed a,b
// x = (a>=b)?x:y
//
// if !(a < b) x = y
//
def : Mips16Pat<(select (i32 (setge CPU16Regs:$a, CPU16Regs:$b)),
CPU16Regs:$x, CPU16Regs:$y),
(SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
CPU16Regs:$a, CPU16Regs:$b)>;
// signed a,b
// x = (a>b)?x:y
//
// if (b < a) x = y
//
def : Mips16Pat<(select (i32 (setgt CPU16Regs:$a, CPU16Regs:$b)),
CPU16Regs:$x, CPU16Regs:$y),
(SelTBtneZSlt CPU16Regs:$x, CPU16Regs:$y,
CPU16Regs:$b, CPU16Regs:$a)>;
// unsigned a,b
// x = (a>=b)?x:y
//
// if !(a < b) x = y;
//
def : Mips16Pat<
(select (i32 (setuge CPU16Regs:$a, CPU16Regs:$b)),
CPU16Regs:$x, CPU16Regs:$y),
(SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
CPU16Regs:$a, CPU16Regs:$b)>;
// unsigned a,b
// x = (a>b)?x:y
//
// if (b < a) x = y
//
def : Mips16Pat<(select (i32 (setugt CPU16Regs:$a, CPU16Regs:$b)),
CPU16Regs:$x, CPU16Regs:$y),
(SelTBtneZSltu CPU16Regs:$x, CPU16Regs:$y,
CPU16Regs:$b, CPU16Regs:$a)>;
// signed
// x = (a >= k)?x:y
// due to an llvm optimization, i don't think that this will ever
// be used. This is transformed into x = (a > k-1)?x:y
//
//
//def : Mips16Pat<
// (select (i32 (setge CPU16Regs:$lhs, immSExt16:$rhs)),
// CPU16Regs:$T, CPU16Regs:$F),
// (SelTBteqZSlti CPU16Regs:$T, CPU16Regs:$F,
// CPU16Regs:$lhs, immSExt16:$rhs)>;
//def : Mips16Pat<
// (select (i32 (setuge CPU16Regs:$lhs, immSExt16:$rhs)),
// CPU16Regs:$T, CPU16Regs:$F),
// (SelTBteqZSltiu CPU16Regs:$T, CPU16Regs:$F,
// CPU16Regs:$lhs, immSExt16:$rhs)>;
// signed
// x = (a < k)?x:y
//
// if !(a < k) x = y;
//
def : Mips16Pat<
(select (i32 (setlt CPU16Regs:$a, immSExt16:$b)),
CPU16Regs:$x, CPU16Regs:$y),
(SelTBtneZSlti CPU16Regs:$x, CPU16Regs:$y,
CPU16Regs:$a, immSExt16:$b)>;
//
//
// signed
// x = (a <= b)? x : y
//
// if (b < a) x = y
//
def : Mips16Pat<(select (i32 (setle CPU16Regs:$a, CPU16Regs:$b)),
CPU16Regs:$x, CPU16Regs:$y),
(SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
CPU16Regs:$b, CPU16Regs:$a)>;
//
// unnsigned
// x = (a <= b)? x : y
//
// if (b < a) x = y
//
def : Mips16Pat<(select (i32 (setule CPU16Regs:$a, CPU16Regs:$b)),
CPU16Regs:$x, CPU16Regs:$y),
(SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
CPU16Regs:$b, CPU16Regs:$a)>;
//
// signed/unsigned
// x = (a == b)? x : y
//
// if (a != b) x = y
//
def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, CPU16Regs:$b)),
CPU16Regs:$x, CPU16Regs:$y),
(SelTBteqZCmp CPU16Regs:$x, CPU16Regs:$y,
CPU16Regs:$b, CPU16Regs:$a)>;
//
// signed/unsigned
// x = (a == 0)? x : y
//
// if (a != 0) x = y
//
def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, 0)),
CPU16Regs:$x, CPU16Regs:$y),
(SelBeqZ CPU16Regs:$x, CPU16Regs:$y,
CPU16Regs:$a)>;
//
// signed/unsigned
// x = (a == k)? x : y
//
// if (a != k) x = y
//
def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, immZExt16:$k)),
CPU16Regs:$x, CPU16Regs:$y),
(SelTBteqZCmpi CPU16Regs:$x, CPU16Regs:$y,
CPU16Regs:$a, immZExt16:$k)>;
//
// signed/unsigned
// x = (a != b)? x : y
//
// if (a == b) x = y
//
//
def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, CPU16Regs:$b)),
CPU16Regs:$x, CPU16Regs:$y),
(SelTBtneZCmp CPU16Regs:$x, CPU16Regs:$y,
CPU16Regs:$b, CPU16Regs:$a)>;
//
// signed/unsigned
// x = (a != 0)? x : y
//
// if (a == 0) x = y
//
def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, 0)),
CPU16Regs:$x, CPU16Regs:$y),
(SelBneZ CPU16Regs:$x, CPU16Regs:$y,
CPU16Regs:$a)>;
// signed/unsigned
// x = (a)? x : y
//
// if (!a) x = y
//
def : Mips16Pat<(select CPU16Regs:$a,
CPU16Regs:$x, CPU16Regs:$y),
(SelBneZ CPU16Regs:$x, CPU16Regs:$y,
CPU16Regs:$a)>;
//
// signed/unsigned
// x = (a != k)? x : y
//
// if (a == k) x = y
//
def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, immZExt16:$k)),
CPU16Regs:$x, CPU16Regs:$y),
(SelTBtneZCmpi CPU16Regs:$x, CPU16Regs:$y,
CPU16Regs:$a, immZExt16:$k)>;
//
// When writing C code to test setxx these patterns,
// some will be transformed into
// other things. So we test using C code but using -O3 and -O0
//
// seteq
//
def : Mips16Pat
<(seteq CPU16Regs:$lhs,CPU16Regs:$rhs),
(SltiuCCRxImmX16 (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), 1)>;
def : Mips16Pat
<(seteq CPU16Regs:$lhs, 0),
(SltiuCCRxImmX16 CPU16Regs:$lhs, 1)>;
//
// setge
//
def: Mips16Pat
<(setge CPU16Regs:$lhs, CPU16Regs:$rhs),
(XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
(LiRxImmX16 1))>;
//
// For constants, llvm transforms this to:
// x > (k -1) and then reverses the operands to use setlt. So this pattern
// is not used now by the compiler. (Presumably checking that k-1 does not
// overflow). The compiler never uses this at a the current time, due to
// other optimizations.
//
//def: Mips16Pat
// <(setge CPU16Regs:$lhs, immSExt16:$rhs),
// (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, immSExt16:$rhs),
// (LiRxImmX16 1))>;
// This catches the x >= -32768 case by transforming it to x > -32769
//
def: Mips16Pat
<(setgt CPU16Regs:$lhs, -32769),
(XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, -32768),
(LiRxImmX16 1))>;
//
// setgt
//
//
def: Mips16Pat
<(setgt CPU16Regs:$lhs, CPU16Regs:$rhs),
(SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
//
// setle
//
def: Mips16Pat
<(setle CPU16Regs:$lhs, CPU16Regs:$rhs),
(XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImm16 1))>;
//
// setlt
//
def: SetCC_R16<setlt, SltCCRxRy16>;
def: SetCC_I16<setlt, immSExt16, SltiCCRxImmX16>;
//
// setne
//
def : Mips16Pat
<(setne CPU16Regs:$lhs,CPU16Regs:$rhs),
(SltuCCRxRy16 (LiRxImmX16 0),
(XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs))>;
//
// setuge
//
def: Mips16Pat
<(setuge CPU16Regs:$lhs, CPU16Regs:$rhs),
(XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
(LiRxImmX16 1))>;
// this pattern will never be used because the compiler will transform
// x >= k to x > (k - 1) and then use SLT
//
//def: Mips16Pat
// <(setuge CPU16Regs:$lhs, immZExt16:$rhs),
// (XorRxRxRy16 (SltiuCCRxImmX16 CPU16Regs:$lhs, immZExt16:$rhs),
// (LiRxImmX16 1))>;
//
// setugt
//
def: Mips16Pat
<(setugt CPU16Regs:$lhs, CPU16Regs:$rhs),
(SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
//
// setule
//
def: Mips16Pat
<(setule CPU16Regs:$lhs, CPU16Regs:$rhs),
(XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImmX16 1))>;
//
// setult
//
def: SetCC_R16<setult, SltuCCRxRy16>;
def: SetCC_I16<setult, immSExt16, SltiuCCRxImmX16>;
def: Mips16Pat<(add CPU16Regs:$hi, (MipsLo tglobaladdr:$lo)),
(AddiuRxRxImmX16 CPU16Regs:$hi, tglobaladdr:$lo)>;
// hi/lo relocs
def : Mips16Pat<(MipsHi tglobaladdr:$in),
(SllX16 (LiRxImmX16 tglobaladdr:$in), 16)>;
def : Mips16Pat<(MipsHi tjumptable:$in),
(SllX16 (LiRxImmX16 tjumptable:$in), 16)>;
def : Mips16Pat<(MipsHi tglobaltlsaddr:$in),
(SllX16 (LiRxImmX16 tglobaltlsaddr:$in), 16)>;
// wrapper_pic
class Wrapper16Pat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
Mips16Pat<(MipsWrapper RC:$gp, node:$in),
(ADDiuOp RC:$gp, node:$in)>;
def : Wrapper16Pat<tglobaladdr, AddiuRxRxImmX16, CPU16Regs>;
def : Wrapper16Pat<tglobaltlsaddr, AddiuRxRxImmX16, CPU16Regs>;
def : Mips16Pat<(i32 (extloadi8 addr16:$src)),
(LbuRxRyOffMemX16 addr16:$src)>;
def : Mips16Pat<(i32 (extloadi16 addr16:$src)),
(LhuRxRyOffMemX16 addr16:$src)>;
|