aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/Hexagon/HexagonInstrInfoV4.td
blob: cd0e4758968ccab1f976c38afeded4cce5796e5e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
//=- HexagonInstrInfoV4.td - Target Desc. for Hexagon Target -*- tablegen -*-=//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the Hexagon V4 instructions in TableGen format.
//
//===----------------------------------------------------------------------===//

let neverHasSideEffects = 1 in
class T_Immext<dag ins> :
  EXTENDERInst<(outs), ins, "immext(#$imm)", []>,
  Requires<[HasV4T]>;

def IMMEXT_b : T_Immext<(ins brtarget:$imm)>;
def IMMEXT_c : T_Immext<(ins calltarget:$imm)>;
def IMMEXT_g : T_Immext<(ins globaladdress:$imm)>;
def IMMEXT_i : T_Immext<(ins u26_6Imm:$imm)>;

// Fold (add (CONST32 tglobaladdr:$addr) <offset>) into a global address.
def FoldGlobalAddr : ComplexPattern<i32, 1, "foldGlobalAddress", [], []>;

// Fold (add (CONST32_GP tglobaladdr:$addr) <offset>) into a global address.
def FoldGlobalAddrGP : ComplexPattern<i32, 1, "foldGlobalAddressGP", [], []>;

def NumUsesBelowThresCONST32 : PatFrag<(ops node:$addr),
                                       (HexagonCONST32 node:$addr), [{
  return hasNumUsesBelowThresGA(N->getOperand(0).getNode());
}]>;

// Hexagon V4 Architecture spec defines 8 instruction classes:
// LD ST ALU32 XTYPE J JR MEMOP NV CR SYSTEM(system is not implemented in the
// compiler)

// LD Instructions:
// ========================================
// Loads (8/16/32/64 bit)
// Deallocframe

// ST Instructions:
// ========================================
// Stores (8/16/32/64 bit)
// Allocframe

// ALU32 Instructions:
// ========================================
// Arithmetic / Logical (32 bit)
// Vector Halfword

// XTYPE Instructions (32/64 bit):
// ========================================
// Arithmetic, Logical, Bit Manipulation
// Multiply (Integer, Fractional, Complex)
// Permute / Vector Permute Operations
// Predicate Operations
// Shift / Shift with Add/Sub/Logical
// Vector Byte ALU
// Vector Halfword (ALU, Shift, Multiply)
// Vector Word (ALU, Shift)

// J Instructions:
// ========================================
// Jump/Call PC-relative

// JR Instructions:
// ========================================
// Jump/Call Register

// MEMOP Instructions:
// ========================================
// Operation on memory (8/16/32 bit)

// NV Instructions:
// ========================================
// New-value Jumps
// New-value Stores

// CR Instructions:
// ========================================
// Control-Register Transfers
// Hardware Loop Setup
// Predicate Logicals & Reductions

// SYSTEM Instructions (not implemented in the compiler):
// ========================================
// Prefetch
// Cache Maintenance
// Bus Operations


//===----------------------------------------------------------------------===//
// ALU32 +
//===----------------------------------------------------------------------===//
// Generate frame index addresses.
let neverHasSideEffects = 1, isReMaterializable = 1,
isExtended = 1, opExtendable = 2, validSubTargets = HasV4SubT in
def TFR_FI_immext_V4 : ALU32_ri<(outs IntRegs:$dst),
            (ins IntRegs:$src1, s32Imm:$offset),
            "$dst = add($src1, ##$offset)",
            []>,
            Requires<[HasV4T]>;

// Rd=cmp.eq(Rs,#s8)
let validSubTargets = HasV4SubT, isExtendable = 1, opExtendable = 2,
isExtentSigned = 1, opExtentBits = 8 in
def V4_A4_rcmpeqi : ALU32_ri<(outs IntRegs:$Rd),
                    (ins IntRegs:$Rs, s8Ext:$s8),
                    "$Rd = cmp.eq($Rs, #$s8)",
                    [(set (i32 IntRegs:$Rd),
                          (i32 (zext (i1 (seteq (i32 IntRegs:$Rs),
                                                s8ExtPred:$s8)))))]>,
                    Requires<[HasV4T]>;

// Preserve the TSTBIT generation
def : Pat <(i32 (zext (i1 (setne (i32 (and (i32 (shl 1, (i32 IntRegs:$src2))),
                                           (i32 IntRegs:$src1))), 0)))),
      (i32 (MUX_ii (i1 (TSTBIT_rr (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
                   1, 0))>;

// Interfered with tstbit generation, above pattern preserves, see : tstbit.ll
// Rd=cmp.ne(Rs,#s8)
let validSubTargets = HasV4SubT, isExtendable = 1, opExtendable = 2,
isExtentSigned = 1, opExtentBits = 8 in
def V4_A4_rcmpneqi : ALU32_ri<(outs IntRegs:$Rd),
                     (ins IntRegs:$Rs, s8Ext:$s8),
                     "$Rd = !cmp.eq($Rs, #$s8)",
                     [(set (i32 IntRegs:$Rd),
                           (i32 (zext (i1 (setne (i32 IntRegs:$Rs),
                                                 s8ExtPred:$s8)))))]>,
                     Requires<[HasV4T]>;

// Rd=cmp.eq(Rs,Rt)
let validSubTargets = HasV4SubT in
def V4_A4_rcmpeq : ALU32_ri<(outs IntRegs:$Rd),
                   (ins IntRegs:$Rs, IntRegs:$Rt),
                   "$Rd = cmp.eq($Rs, $Rt)",
                   [(set (i32 IntRegs:$Rd),
                         (i32 (zext (i1 (seteq (i32 IntRegs:$Rs),
                                               IntRegs:$Rt)))))]>,
                   Requires<[HasV4T]>;

// Rd=cmp.ne(Rs,Rt)
let validSubTargets = HasV4SubT in
def V4_A4_rcmpneq : ALU32_ri<(outs IntRegs:$Rd),
                    (ins IntRegs:$Rs, IntRegs:$Rt),
                    "$Rd = !cmp.eq($Rs, $Rt)",
                    [(set (i32 IntRegs:$Rd),
                          (i32 (zext (i1 (setne (i32 IntRegs:$Rs),
                                               IntRegs:$Rt)))))]>,
                    Requires<[HasV4T]>;

//===----------------------------------------------------------------------===//
// ALU32 -
//===----------------------------------------------------------------------===//


//===----------------------------------------------------------------------===//
// ALU32/PERM +
//===----------------------------------------------------------------------===//

// Combine
// Rdd=combine(Rs, #s8)
let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 8,
    neverHasSideEffects = 1, validSubTargets = HasV4SubT in
def COMBINE_rI_V4 : ALU32_ri<(outs DoubleRegs:$dst),
            (ins IntRegs:$src1, s8Ext:$src2),
            "$dst = combine($src1, #$src2)",
            []>,
            Requires<[HasV4T]>;

// Rdd=combine(#s8, Rs)
let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 8,
    neverHasSideEffects = 1, validSubTargets = HasV4SubT in
def COMBINE_Ir_V4 : ALU32_ir<(outs DoubleRegs:$dst),
            (ins s8Ext:$src1, IntRegs:$src2),
            "$dst = combine(#$src1, $src2)",
            []>,
            Requires<[HasV4T]>;

def HexagonWrapperCombineRI_V4 :
  SDNode<"HexagonISD::WrapperCombineRI_V4", SDTHexagonI64I32I32>;
def HexagonWrapperCombineIR_V4 :
  SDNode<"HexagonISD::WrapperCombineIR_V4", SDTHexagonI64I32I32>;

def : Pat <(HexagonWrapperCombineRI_V4 IntRegs:$r, s8ExtPred:$i),
           (COMBINE_rI_V4 IntRegs:$r, s8ExtPred:$i)>,
          Requires<[HasV4T]>;

def : Pat <(HexagonWrapperCombineIR_V4 s8ExtPred:$i, IntRegs:$r),
           (COMBINE_Ir_V4 s8ExtPred:$i, IntRegs:$r)>,
          Requires<[HasV4T]>;

let isExtendable = 1, opExtendable = 2, isExtentSigned = 0, opExtentBits = 6,
    neverHasSideEffects = 1, validSubTargets = HasV4SubT in
def COMBINE_iI_V4 : ALU32_ii<(outs DoubleRegs:$dst),
            (ins s8Imm:$src1, u6Ext:$src2),
            "$dst = combine(#$src1, #$src2)",
            []>,
            Requires<[HasV4T]>;

//===----------------------------------------------------------------------===//
// ALU32/PERM +
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// LD +
//===----------------------------------------------------------------------===//
//
// These absolute set addressing mode instructions accept immediate as
// an operand. We have duplicated these patterns to take global address.

let isExtended = 1, opExtendable = 2, neverHasSideEffects = 1,
validSubTargets = HasV4SubT in {
def LDrid_abs_setimm_V4 : LDInst2<(outs DoubleRegs:$dst1, IntRegs:$dst2),
            (ins u0AlwaysExt:$addr),
            "$dst1 = memd($dst2=##$addr)",
            []>,
            Requires<[HasV4T]>;

// Rd=memb(Re=#U6)
def LDrib_abs_setimm_V4 : LDInst2<(outs IntRegs:$dst1, IntRegs:$dst2),
            (ins u0AlwaysExt:$addr),
            "$dst1 = memb($dst2=##$addr)",
            []>,
            Requires<[HasV4T]>;

// Rd=memh(Re=#U6)
def LDrih_abs_setimm_V4 : LDInst2<(outs IntRegs:$dst1, IntRegs:$dst2),
            (ins u0AlwaysExt:$addr),
            "$dst1 = memh($dst2=##$addr)",
            []>,
            Requires<[HasV4T]>;

// Rd=memub(Re=#U6)
def LDriub_abs_setimm_V4 : LDInst2<(outs IntRegs:$dst1, IntRegs:$dst2),
            (ins u0AlwaysExt:$addr),
            "$dst1 = memub($dst2=##$addr)",
            []>,
            Requires<[HasV4T]>;

// Rd=memuh(Re=#U6)
def LDriuh_abs_setimm_V4 : LDInst2<(outs IntRegs:$dst1, IntRegs:$dst2),
            (ins u0AlwaysExt:$addr),
            "$dst1 = memuh($dst2=##$addr)",
            []>,
            Requires<[HasV4T]>;

// Rd=memw(Re=#U6)
def LDriw_abs_setimm_V4 : LDInst2<(outs IntRegs:$dst1, IntRegs:$dst2),
            (ins u0AlwaysExt:$addr),
            "$dst1 = memw($dst2=##$addr)",
            []>,
            Requires<[HasV4T]>;
}

// Following patterns are defined for absolute set addressing mode
// instruction which take global address as operand.
let isExtended = 1, opExtendable = 2, neverHasSideEffects = 1,
validSubTargets = HasV4SubT in {
def LDrid_abs_set_V4 : LDInst2<(outs DoubleRegs:$dst1, IntRegs:$dst2),
            (ins globaladdressExt:$addr),
            "$dst1 = memd($dst2=##$addr)",
            []>,
            Requires<[HasV4T]>;

// Rd=memb(Re=#U6)
def LDrib_abs_set_V4 : LDInst2<(outs IntRegs:$dst1, IntRegs:$dst2),
            (ins globaladdressExt:$addr),
            "$dst1 = memb($dst2=##$addr)",
            []>,
            Requires<[HasV4T]>;

// Rd=memh(Re=#U6)
def LDrih_abs_set_V4 : LDInst2<(outs IntRegs:$dst1, IntRegs:$dst2),
            (ins globaladdressExt:$addr),
            "$dst1 = memh($dst2=##$addr)",
            []>,
            Requires<[HasV4T]>;

// Rd=memub(Re=#U6)
def LDriub_abs_set_V4 : LDInst2<(outs IntRegs:$dst1, IntRegs:$dst2),
            (ins globaladdressExt:$addr),
            "$dst1 = memub($dst2=##$addr)",
            []>,
            Requires<[HasV4T]>;

// Rd=memuh(Re=#U6)
def LDriuh_abs_set_V4 : LDInst2<(outs IntRegs:$dst1, IntRegs:$dst2),
            (ins globaladdressExt:$addr),
            "$dst1 = memuh($dst2=##$addr)",
            []>,
            Requires<[HasV4T]>;

// Rd=memw(Re=#U6)
def LDriw_abs_set_V4 : LDInst2<(outs IntRegs:$dst1, IntRegs:$dst2),
            (ins globaladdressExt:$addr),
            "$dst1 = memw($dst2=##$addr)",
            []>,
            Requires<[HasV4T]>;
}

// multiclass for load instructions with base + register offset
// addressing mode
multiclass ld_idxd_shl_pbase<string mnemonic, RegisterClass RC, bit isNot,
                             bit isPredNew> {
  let PNewValue = !if(isPredNew, "new", "") in
  def NAME : LDInst2<(outs RC:$dst),
            (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3, u2Imm:$offset),
            !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
            ") ")#"$dst = "#mnemonic#"($src2+$src3<<#$offset)",
            []>, Requires<[HasV4T]>;
}

multiclass ld_idxd_shl_pred<string mnemonic, RegisterClass RC, bit PredNot> {
  let PredSense = !if(PredNot, "false", "true") in {
    defm _c#NAME : ld_idxd_shl_pbase<mnemonic, RC, PredNot, 0>;
    // Predicate new
    defm _cdn#NAME : ld_idxd_shl_pbase<mnemonic, RC, PredNot, 1>;
  }
}

let neverHasSideEffects  = 1 in
multiclass ld_idxd_shl<string mnemonic, string CextOp, RegisterClass RC> {
  let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed_shl in {
    let isPredicable = 1 in
    def NAME#_V4 : LDInst2<(outs RC:$dst),
            (ins IntRegs:$src1, IntRegs:$src2, u2Imm:$offset),
            "$dst = "#mnemonic#"($src1+$src2<<#$offset)",
            []>, Requires<[HasV4T]>;

    let isPredicated = 1 in {
      defm Pt_V4 : ld_idxd_shl_pred<mnemonic, RC, 0 >;
      defm NotPt_V4 : ld_idxd_shl_pred<mnemonic, RC, 1>;
    }
  }
}

let addrMode = BaseRegOffset in {
  defm LDrib_indexed_shl: ld_idxd_shl<"memb", "LDrib", IntRegs>, AddrModeRel;
  defm LDriub_indexed_shl: ld_idxd_shl<"memub", "LDriub", IntRegs>, AddrModeRel;
  defm LDrih_indexed_shl: ld_idxd_shl<"memh", "LDrih", IntRegs>, AddrModeRel;
  defm LDriuh_indexed_shl: ld_idxd_shl<"memuh", "LDriuh", IntRegs>, AddrModeRel;
  defm LDriw_indexed_shl: ld_idxd_shl<"memw", "LDriw", IntRegs>, AddrModeRel;
  defm LDrid_indexed_shl: ld_idxd_shl<"memd", "LDrid", DoubleRegs>, AddrModeRel;
}

// 'def pats' for load instructions with base + register offset and non-zero
// immediate value. Immediate value is used to left-shift the second
// register operand.
let AddedComplexity = 40 in {
def : Pat <(i32 (sextloadi8 (add IntRegs:$src1,
                                 (shl IntRegs:$src2, u2ImmPred:$offset)))),
           (LDrib_indexed_shl_V4 IntRegs:$src1,
            IntRegs:$src2, u2ImmPred:$offset)>,
            Requires<[HasV4T]>;

def : Pat <(i32 (zextloadi8 (add IntRegs:$src1,
                                 (shl IntRegs:$src2, u2ImmPred:$offset)))),
           (LDriub_indexed_shl_V4 IntRegs:$src1,
            IntRegs:$src2, u2ImmPred:$offset)>,
            Requires<[HasV4T]>;

def : Pat <(i32 (extloadi8 (add IntRegs:$src1,
                                (shl IntRegs:$src2, u2ImmPred:$offset)))),
           (LDriub_indexed_shl_V4 IntRegs:$src1,
            IntRegs:$src2, u2ImmPred:$offset)>,
            Requires<[HasV4T]>;

def : Pat <(i32 (sextloadi16 (add IntRegs:$src1,
                                  (shl IntRegs:$src2, u2ImmPred:$offset)))),
           (LDrih_indexed_shl_V4 IntRegs:$src1,
            IntRegs:$src2, u2ImmPred:$offset)>,
            Requires<[HasV4T]>;

def : Pat <(i32 (zextloadi16 (add IntRegs:$src1,
                                  (shl IntRegs:$src2, u2ImmPred:$offset)))),
           (LDriuh_indexed_shl_V4 IntRegs:$src1,
            IntRegs:$src2, u2ImmPred:$offset)>,
            Requires<[HasV4T]>;

def : Pat <(i32 (extloadi16 (add IntRegs:$src1,
                                 (shl IntRegs:$src2, u2ImmPred:$offset)))),
           (LDriuh_indexed_shl_V4 IntRegs:$src1,
            IntRegs:$src2, u2ImmPred:$offset)>,
            Requires<[HasV4T]>;

def : Pat <(i32 (load (add IntRegs:$src1,
                           (shl IntRegs:$src2, u2ImmPred:$offset)))),
           (LDriw_indexed_shl_V4 IntRegs:$src1,
            IntRegs:$src2, u2ImmPred:$offset)>,
            Requires<[HasV4T]>;

def : Pat <(i64 (load (add IntRegs:$src1,
                           (shl IntRegs:$src2, u2ImmPred:$offset)))),
           (LDrid_indexed_shl_V4 IntRegs:$src1,
            IntRegs:$src2, u2ImmPred:$offset)>,
            Requires<[HasV4T]>;
}


// 'def pats' for load instruction base + register offset and
// zero immediate value.
let AddedComplexity = 10 in {
def : Pat <(i64 (load (add IntRegs:$src1, IntRegs:$src2))),
           (LDrid_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2, 0)>,
            Requires<[HasV4T]>;

def : Pat <(i32 (sextloadi8 (add IntRegs:$src1, IntRegs:$src2))),
           (LDrib_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2, 0)>,
            Requires<[HasV4T]>;

def : Pat <(i32 (zextloadi8 (add IntRegs:$src1, IntRegs:$src2))),
           (LDriub_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2, 0)>,
            Requires<[HasV4T]>;

def : Pat <(i32 (extloadi8 (add IntRegs:$src1, IntRegs:$src2))),
           (LDriub_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2, 0)>,
            Requires<[HasV4T]>;

def : Pat <(i32 (sextloadi16 (add IntRegs:$src1, IntRegs:$src2))),
           (LDrih_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2, 0)>,
            Requires<[HasV4T]>;

def : Pat <(i32 (zextloadi16 (add IntRegs:$src1, IntRegs:$src2))),
           (LDriuh_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2, 0)>,
            Requires<[HasV4T]>;

def : Pat <(i32 (extloadi16 (add IntRegs:$src1, IntRegs:$src2))),
           (LDriuh_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2, 0)>,
            Requires<[HasV4T]>;

def : Pat <(i32 (load (add IntRegs:$src1, IntRegs:$src2))),
           (LDriw_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2, 0)>,
            Requires<[HasV4T]>;
}

// zext i1->i64
def : Pat <(i64 (zext (i1 PredRegs:$src1))),
      (i64 (COMBINE_Ir_V4 0, (MUX_ii (i1 PredRegs:$src1), 1, 0)))>,
      Requires<[HasV4T]>;

// zext i32->i64
def : Pat <(i64 (zext (i32 IntRegs:$src1))),
      (i64 (COMBINE_Ir_V4 0, (i32 IntRegs:$src1)))>,
      Requires<[HasV4T]>;
// zext i8->i64
def:  Pat <(i64 (zextloadi8 ADDRriS11_0:$src1)),
      (i64 (COMBINE_Ir_V4 0, (LDriub ADDRriS11_0:$src1)))>,
      Requires<[HasV4T]>;

let AddedComplexity = 20 in
def:  Pat <(i64 (zextloadi8 (add (i32 IntRegs:$src1),
                                s11_0ExtPred:$offset))),
      (i64 (COMBINE_Ir_V4 0, (LDriub_indexed IntRegs:$src1,
                                  s11_0ExtPred:$offset)))>,
      Requires<[HasV4T]>;

// zext i1->i64
def:  Pat <(i64 (zextloadi1 ADDRriS11_0:$src1)),
      (i64 (COMBINE_Ir_V4 0, (LDriub ADDRriS11_0:$src1)))>,
      Requires<[HasV4T]>;

let AddedComplexity = 20 in
def:  Pat <(i64 (zextloadi1 (add (i32 IntRegs:$src1),
                                s11_0ExtPred:$offset))),
      (i64 (COMBINE_Ir_V4 0, (LDriub_indexed IntRegs:$src1,
                                  s11_0ExtPred:$offset)))>,
      Requires<[HasV4T]>;

// zext i16->i64
def:  Pat <(i64 (zextloadi16 ADDRriS11_1:$src1)),
      (i64 (COMBINE_Ir_V4 0, (LDriuh ADDRriS11_1:$src1)))>,
      Requires<[HasV4T]>;

let AddedComplexity = 20 in
def:  Pat <(i64 (zextloadi16 (add (i32 IntRegs:$src1),
                                  s11_1ExtPred:$offset))),
      (i64 (COMBINE_Ir_V4 0, (LDriuh_indexed IntRegs:$src1,
                                  s11_1ExtPred:$offset)))>,
      Requires<[HasV4T]>;

// anyext i16->i64
def:  Pat <(i64 (extloadi16 ADDRriS11_2:$src1)),
      (i64 (COMBINE_Ir_V4 0, (LDrih ADDRriS11_2:$src1)))>,
      Requires<[HasV4T]>;

let AddedComplexity = 20 in
def:  Pat <(i64 (extloadi16 (add (i32 IntRegs:$src1),
                                  s11_1ExtPred:$offset))),
      (i64 (COMBINE_Ir_V4 0, (LDrih_indexed IntRegs:$src1,
                                  s11_1ExtPred:$offset)))>,
      Requires<[HasV4T]>;

// zext i32->i64
def:  Pat <(i64 (zextloadi32 ADDRriS11_2:$src1)),
      (i64 (COMBINE_Ir_V4 0, (LDriw ADDRriS11_2:$src1)))>,
      Requires<[HasV4T]>;

let AddedComplexity = 100 in
def:  Pat <(i64 (zextloadi32 (i32 (add IntRegs:$src1, s11_2ExtPred:$offset)))),
      (i64 (COMBINE_Ir_V4 0, (LDriw_indexed IntRegs:$src1,
                                  s11_2ExtPred:$offset)))>,
      Requires<[HasV4T]>;

// anyext i32->i64
def:  Pat <(i64 (extloadi32 ADDRriS11_2:$src1)),
      (i64 (COMBINE_Ir_V4 0, (LDriw ADDRriS11_2:$src1)))>,
      Requires<[HasV4T]>;

let AddedComplexity = 100 in
def:  Pat <(i64 (extloadi32 (i32 (add IntRegs:$src1, s11_2ExtPred:$offset)))),
      (i64 (COMBINE_Ir_V4 0, (LDriw_indexed IntRegs:$src1,
                                  s11_2ExtPred:$offset)))>,
      Requires<[HasV4T]>;



//===----------------------------------------------------------------------===//
// LD -
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// ST +
//===----------------------------------------------------------------------===//
///
/// Assumptions::: ****** DO NOT IGNORE ********
/// 1. Make sure that in post increment store, the zero'th operand is always the
///    post increment operand.
/// 2. Make sure that the store value operand(Rt/Rtt) in a store is always the
///    last operand.
///

// memd(Re=#U)=Rtt
let isExtended = 1, opExtendable = 2, validSubTargets = HasV4SubT in {
def STrid_abs_setimm_V4 : STInst2<(outs IntRegs:$dst1),
            (ins DoubleRegs:$src1, u0AlwaysExt:$src2),
            "memd($dst1=##$src2) = $src1",
            []>,
            Requires<[HasV4T]>;

// memb(Re=#U)=Rs
def STrib_abs_setimm_V4 : STInst2<(outs IntRegs:$dst1),
            (ins IntRegs:$src1, u0AlwaysExt:$src2),
            "memb($dst1=##$src2) = $src1",
            []>,
            Requires<[HasV4T]>;

// memh(Re=#U)=Rs
def STrih_abs_setimm_V4 : STInst2<(outs IntRegs:$dst1),
            (ins IntRegs:$src1, u0AlwaysExt:$src2),
            "memh($dst1=##$src2) = $src1",
            []>,
            Requires<[HasV4T]>;

// memw(Re=#U)=Rs
def STriw_abs_setimm_V4 : STInst2<(outs IntRegs:$dst1),
            (ins IntRegs:$src1, u0AlwaysExt:$src2),
            "memw($dst1=##$src2) = $src1",
            []>,
            Requires<[HasV4T]>;
}

// memd(Re=#U)=Rtt
let isExtended = 1, opExtendable = 2, validSubTargets = HasV4SubT in {
def STrid_abs_set_V4 : STInst2<(outs IntRegs:$dst1),
            (ins DoubleRegs:$src1, globaladdressExt:$src2),
            "memd($dst1=##$src2) = $src1",
            []>,
            Requires<[HasV4T]>;

// memb(Re=#U)=Rs
def STrib_abs_set_V4 : STInst2<(outs IntRegs:$dst1),
            (ins IntRegs:$src1, globaladdressExt:$src2),
            "memb($dst1=##$src2) = $src1",
            []>,
            Requires<[HasV4T]>;

// memh(Re=#U)=Rs
def STrih_abs_set_V4 : STInst2<(outs IntRegs:$dst1),
            (ins IntRegs:$src1, globaladdressExt:$src2),
            "memh($dst1=##$src2) = $src1",
            []>,
            Requires<[HasV4T]>;

// memw(Re=#U)=Rs
def STriw_abs_set_V4 : STInst2<(outs IntRegs:$dst1),
            (ins IntRegs:$src1, globaladdressExt:$src2),
            "memw($dst1=##$src2) = $src1",
            []>,
            Requires<[HasV4T]>;
}

// multiclass for store instructions with base + register offset addressing
// mode
multiclass ST_Idxd_shl_Pbase<string mnemonic, RegisterClass RC, bit isNot,
                             bit isPredNew> {
  let PNewValue = !if(isPredNew, "new", "") in
  def NAME : STInst2<(outs),
            (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3, u2Imm:$src4,
                 RC:$src5),
            !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
            ") ")#mnemonic#"($src2+$src3<<#$src4) = $src5",
            []>,
            Requires<[HasV4T]>;
}

multiclass ST_Idxd_shl_Pred<string mnemonic, RegisterClass RC, bit PredNot> {
  let PredSense = !if(PredNot, "false", "true") in {
    defm _c#NAME : ST_Idxd_shl_Pbase<mnemonic, RC, PredNot, 0>;
    // Predicate new
    defm _cdn#NAME : ST_Idxd_shl_Pbase<mnemonic, RC, PredNot, 1>;
  }
}

let isNVStorable = 1 in
multiclass ST_Idxd_shl<string mnemonic, string CextOp, RegisterClass RC> {
  let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed_shl in {
    let isPredicable = 1 in
    def NAME#_V4 : STInst2<(outs),
            (ins IntRegs:$src1, IntRegs:$src2, u2Imm:$src3, RC:$src4),
            mnemonic#"($src1+$src2<<#$src3) = $src4",
            []>,
            Requires<[HasV4T]>;

    let isPredicated = 1 in {
      defm Pt_V4 : ST_Idxd_shl_Pred<mnemonic, RC, 0 >;
      defm NotPt_V4 : ST_Idxd_shl_Pred<mnemonic, RC, 1>;
    }
  }
}

// multiclass for new-value store instructions with base + register offset
// addressing mode.
multiclass ST_Idxd_shl_Pbase_nv<string mnemonic, RegisterClass RC, bit isNot,
                             bit isPredNew> {
  let PNewValue = !if(isPredNew, "new", "") in
  def NAME#_nv_V4 : NVInst_V4<(outs),
            (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3, u2Imm:$src4,
                 RC:$src5),
            !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
            ") ")#mnemonic#"($src2+$src3<<#$src4) = $src5.new",
            []>,
            Requires<[HasV4T]>;
}

multiclass ST_Idxd_shl_Pred_nv<string mnemonic, RegisterClass RC, bit PredNot> {
  let PredSense = !if(PredNot, "false", "true") in {
    defm _c#NAME : ST_Idxd_shl_Pbase_nv<mnemonic, RC, PredNot, 0>;
    // Predicate new
    defm _cdn#NAME : ST_Idxd_shl_Pbase_nv<mnemonic, RC, PredNot, 1>;
  }
}

let mayStore = 1, isNVStore = 1 in
multiclass ST_Idxd_shl_nv<string mnemonic, string CextOp, RegisterClass RC> {
  let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed_shl in {
    let isPredicable = 1 in
    def NAME#_nv_V4 : NVInst_V4<(outs),
            (ins IntRegs:$src1, IntRegs:$src2, u2Imm:$src3, RC:$src4),
            mnemonic#"($src1+$src2<<#$src3) = $src4.new",
            []>,
            Requires<[HasV4T]>;

    let isPredicated = 1 in {
      defm Pt : ST_Idxd_shl_Pred_nv<mnemonic, RC, 0 >;
      defm NotPt : ST_Idxd_shl_Pred_nv<mnemonic, RC, 1>;
    }
  }
}

let addrMode = BaseRegOffset, neverHasSideEffects = 1,
validSubTargets = HasV4SubT in {
  defm STrib_indexed_shl: ST_Idxd_shl<"memb", "STrib", IntRegs>,
                          ST_Idxd_shl_nv<"memb", "STrib", IntRegs>, AddrModeRel;

  defm STrih_indexed_shl: ST_Idxd_shl<"memh", "STrih", IntRegs>,
                          ST_Idxd_shl_nv<"memh", "STrih", IntRegs>, AddrModeRel;

  defm STriw_indexed_shl: ST_Idxd_shl<"memw", "STriw", IntRegs>,
                          ST_Idxd_shl_nv<"memw", "STriw", IntRegs>, AddrModeRel;

  let isNVStorable = 0 in
  defm STrid_indexed_shl: ST_Idxd_shl<"memd", "STrid", DoubleRegs>, AddrModeRel;
}

let Predicates = [HasV4T], AddedComplexity = 10 in {
def : Pat<(truncstorei8 (i32 IntRegs:$src4),
                       (add IntRegs:$src1, (shl IntRegs:$src2,
                                                u2ImmPred:$src3))),
          (STrib_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2,
                                u2ImmPred:$src3, IntRegs:$src4)>;

def : Pat<(truncstorei16 (i32 IntRegs:$src4),
                        (add IntRegs:$src1, (shl IntRegs:$src2,
                                                 u2ImmPred:$src3))),
          (STrih_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2,
                                u2ImmPred:$src3, IntRegs:$src4)>;

def : Pat<(store (i32 IntRegs:$src4),
                 (add IntRegs:$src1, (shl IntRegs:$src2, u2ImmPred:$src3))),
          (STriw_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2,
                                u2ImmPred:$src3, IntRegs:$src4)>;

def : Pat<(store (i64 DoubleRegs:$src4),
                (add IntRegs:$src1, (shl IntRegs:$src2, u2ImmPred:$src3))),
          (STrid_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2,
                                u2ImmPred:$src3, DoubleRegs:$src4)>;
}

// memd(Ru<<#u2+#U6)=Rtt
let isExtended = 1, opExtendable = 2, AddedComplexity = 10,
validSubTargets = HasV4SubT in
def STrid_shl_V4 : STInst<(outs),
            (ins IntRegs:$src1, u2Imm:$src2, u0AlwaysExt:$src3, DoubleRegs:$src4),
            "memd($src1<<#$src2+#$src3) = $src4",
            [(store (i64 DoubleRegs:$src4),
                    (add (shl (i32 IntRegs:$src1), u2ImmPred:$src2),
                         u0AlwaysExtPred:$src3))]>,
            Requires<[HasV4T]>;

// memd(Rx++#s4:3)=Rtt
// memd(Rx++#s4:3:circ(Mu))=Rtt
// memd(Rx++I:circ(Mu))=Rtt
// memd(Rx++Mu)=Rtt
// memd(Rx++Mu:brev)=Rtt
// memd(gp+#u16:3)=Rtt

// Store doubleword conditionally.
// if ([!]Pv[.new]) memd(#u6)=Rtt
// TODO: needs to be implemented.

//===----------------------------------------------------------------------===//
// multiclass for store instructions with base + immediate offset
// addressing mode and immediate stored value.
// mem[bhw](Rx++#s4:3)=#s8
// if ([!]Pv[.new]) mem[bhw](Rx++#s4:3)=#s6
//===----------------------------------------------------------------------===//
multiclass ST_Imm_Pbase<string mnemonic, Operand OffsetOp, bit isNot,
                        bit isPredNew> {
  let PNewValue = !if(isPredNew, "new", "") in
  def NAME : STInst2<(outs),
            (ins PredRegs:$src1, IntRegs:$src2, OffsetOp:$src3, s6Ext:$src4),
            !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
            ") ")#mnemonic#"($src2+#$src3) = #$src4",
            []>,
            Requires<[HasV4T]>;
}

multiclass ST_Imm_Pred<string mnemonic, Operand OffsetOp, bit PredNot> {
  let PredSense = !if(PredNot, "false", "true") in {
    defm _c#NAME : ST_Imm_Pbase<mnemonic, OffsetOp, PredNot, 0>;
    // Predicate new
    defm _cdn#NAME : ST_Imm_Pbase<mnemonic, OffsetOp, PredNot, 1>;
  }
}

let isExtendable = 1, isExtentSigned = 1, neverHasSideEffects = 1 in
multiclass ST_Imm<string mnemonic, string CextOp, Operand OffsetOp> {
  let CextOpcode = CextOp, BaseOpcode = CextOp#_imm in {
    let opExtendable = 2, opExtentBits = 8, isPredicable = 1 in
    def NAME#_V4 : STInst2<(outs),
            (ins IntRegs:$src1, OffsetOp:$src2, s8Ext:$src3),
            mnemonic#"($src1+#$src2) = #$src3",
            []>,
            Requires<[HasV4T]>;

    let opExtendable = 3, opExtentBits = 6, isPredicated = 1 in {
      defm Pt_V4 : ST_Imm_Pred<mnemonic, OffsetOp, 0>;
      defm NotPt_V4 : ST_Imm_Pred<mnemonic, OffsetOp, 1 >;
    }
  }
}

let addrMode = BaseImmOffset, InputType = "imm",
    validSubTargets = HasV4SubT in {
  defm STrib_imm : ST_Imm<"memb", "STrib", u6_0Imm>, ImmRegRel, PredNewRel;
  defm STrih_imm : ST_Imm<"memh", "STrih", u6_1Imm>, ImmRegRel, PredNewRel;
  defm STriw_imm : ST_Imm<"memw", "STriw", u6_2Imm>, ImmRegRel, PredNewRel;
}

let Predicates = [HasV4T], AddedComplexity = 10 in {
def: Pat<(truncstorei8 s8ExtPred:$src3, (add IntRegs:$src1, u6_0ImmPred:$src2)),
            (STrib_imm_V4 IntRegs:$src1, u6_0ImmPred:$src2, s8ExtPred:$src3)>;

def: Pat<(truncstorei16 s8ExtPred:$src3, (add IntRegs:$src1,
                                              u6_1ImmPred:$src2)),
            (STrih_imm_V4 IntRegs:$src1, u6_1ImmPred:$src2, s8ExtPred:$src3)>;

def: Pat<(store s8ExtPred:$src3, (add IntRegs:$src1, u6_2ImmPred:$src2)),
            (STriw_imm_V4 IntRegs:$src1, u6_2ImmPred:$src2, s8ExtPred:$src3)>;
}

let AddedComplexity = 6 in
def : Pat <(truncstorei8 s8ExtPred:$src2, (i32 IntRegs:$src1)),
           (STrib_imm_V4 IntRegs:$src1, 0, s8ExtPred:$src2)>,
           Requires<[HasV4T]>;

// memb(Ru<<#u2+#U6)=Rt
let isExtended = 1, opExtendable = 2, AddedComplexity = 10, isNVStorable = 1,
validSubTargets = HasV4SubT in
def STrib_shl_V4 : STInst<(outs),
            (ins IntRegs:$src1, u2Imm:$src2, u0AlwaysExt:$src3, IntRegs:$src4),
            "memb($src1<<#$src2+#$src3) = $src4",
            [(truncstorei8 (i32 IntRegs:$src4),
                           (add (shl (i32 IntRegs:$src1), u2ImmPred:$src2),
                                u0AlwaysExtPred:$src3))]>,
            Requires<[HasV4T]>;

// memb(Rx++#s4:0:circ(Mu))=Rt
// memb(Rx++I:circ(Mu))=Rt
// memb(Rx++Mu)=Rt
// memb(Rx++Mu:brev)=Rt
// memb(gp+#u16:0)=Rt


// Store halfword.
// TODO: needs to be implemented
// memh(Re=#U6)=Rt.H
// memh(Rs+#s11:1)=Rt.H
let AddedComplexity = 6 in
def : Pat <(truncstorei16 s8ExtPred:$src2, (i32 IntRegs:$src1)),
           (STrih_imm_V4 IntRegs:$src1, 0, s8ExtPred:$src2)>,
           Requires<[HasV4T]>;

// memh(Rs+Ru<<#u2)=Rt.H
// TODO: needs to be implemented.

// memh(Ru<<#u2+#U6)=Rt.H
// memh(Ru<<#u2+#U6)=Rt
let isExtended = 1, opExtendable = 2, AddedComplexity = 10, isNVStorable = 1,
validSubTargets = HasV4SubT in
def STrih_shl_V4 : STInst<(outs),
            (ins IntRegs:$src1, u2Imm:$src2, u0AlwaysExt:$src3, IntRegs:$src4),
            "memh($src1<<#$src2+#$src3) = $src4",
            [(truncstorei16 (i32 IntRegs:$src4),
                            (add (shl (i32 IntRegs:$src1), u2ImmPred:$src2),
                                 u0AlwaysExtPred:$src3))]>,
            Requires<[HasV4T]>;

// memh(Rx++#s4:1:circ(Mu))=Rt.H
// memh(Rx++#s4:1:circ(Mu))=Rt
// memh(Rx++I:circ(Mu))=Rt.H
// memh(Rx++I:circ(Mu))=Rt
// memh(Rx++Mu)=Rt.H
// memh(Rx++Mu)=Rt
// memh(Rx++Mu:brev)=Rt.H
// memh(Rx++Mu:brev)=Rt
// memh(gp+#u16:1)=Rt
// if ([!]Pv[.new]) memh(#u6)=Rt.H
// if ([!]Pv[.new]) memh(#u6)=Rt


// if ([!]Pv[.new]) memh(Rs+#u6:1)=Rt.H
// TODO: needs to be implemented.

// if ([!]Pv[.new]) memh(Rx++#s4:1)=Rt.H
// TODO: Needs to be implemented.

// Store word.
// memw(Re=#U6)=Rt
// TODO: Needs to be implemented.

// Store predicate:
let neverHasSideEffects = 1 in
def STriw_pred_V4 : STInst2<(outs),
            (ins MEMri:$addr, PredRegs:$src1),
            "Error; should not emit",
            []>,
            Requires<[HasV4T]>;

let AddedComplexity = 6 in
def : Pat <(store s8ExtPred:$src2, (i32 IntRegs:$src1)),
           (STriw_imm_V4 IntRegs:$src1, 0, s8ExtPred:$src2)>,
           Requires<[HasV4T]>;

// memw(Ru<<#u2+#U6)=Rt
let isExtended = 1, opExtendable = 2, AddedComplexity = 10, isNVStorable = 1,
validSubTargets = HasV4SubT in
def STriw_shl_V4 : STInst<(outs),
            (ins IntRegs:$src1, u2Imm:$src2, u0AlwaysExt:$src3, IntRegs:$src4),
            "memw($src1<<#$src2+#$src3) = $src4",
            [(store (i32 IntRegs:$src4),
                    (add (shl (i32 IntRegs:$src1), u2ImmPred:$src2),
                              u0AlwaysExtPred:$src3))]>,
            Requires<[HasV4T]>;

// memw(Rx++#s4:2)=Rt
// memw(Rx++#s4:2:circ(Mu))=Rt
// memw(Rx++I:circ(Mu))=Rt
// memw(Rx++Mu)=Rt
// memw(Rx++Mu:brev)=Rt

//===----------------------------------------------------------------------===
// ST -
//===----------------------------------------------------------------------===


//===----------------------------------------------------------------------===//
// NV/ST +
//===----------------------------------------------------------------------===//

// multiclass for new-value store instructions with base + immediate offset.
//
multiclass ST_Idxd_Pbase_nv<string mnemonic, RegisterClass RC,
                            Operand predImmOp, bit isNot, bit isPredNew> {
  let PNewValue = !if(isPredNew, "new", "") in
  def NAME#_nv_V4 : NVInst_V4<(outs),
            (ins PredRegs:$src1, IntRegs:$src2, predImmOp:$src3, RC: $src4),
            !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
            ") ")#mnemonic#"($src2+#$src3) = $src4.new",
            []>,
            Requires<[HasV4T]>;
}

multiclass ST_Idxd_Pred_nv<string mnemonic, RegisterClass RC, Operand predImmOp,
                           bit PredNot> {
  let PredSense = !if(PredNot, "false", "true") in {
    defm _c#NAME : ST_Idxd_Pbase_nv<mnemonic, RC, predImmOp, PredNot, 0>;
    // Predicate new
    defm _cdn#NAME : ST_Idxd_Pbase_nv<mnemonic, RC, predImmOp, PredNot, 1>;
  }
}

let mayStore = 1, isNVStore = 1, neverHasSideEffects = 1, isExtendable = 1 in
multiclass ST_Idxd_nv<string mnemonic, string CextOp, RegisterClass RC,
                   Operand ImmOp, Operand predImmOp, bits<5> ImmBits,
                   bits<5> PredImmBits> {

  let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in {
    let opExtendable = 1, isExtentSigned = 1, opExtentBits = ImmBits,
    isPredicable = 1 in
    def NAME#_nv_V4 : NVInst_V4<(outs),
            (ins IntRegs:$src1, ImmOp:$src2, RC:$src3),
            mnemonic#"($src1+#$src2) = $src3.new",
            []>,
            Requires<[HasV4T]>;

    let opExtendable = 2, isExtentSigned = 0, opExtentBits = PredImmBits,
    isPredicated = 1 in {
      defm Pt : ST_Idxd_Pred_nv<mnemonic, RC, predImmOp, 0>;
      defm NotPt : ST_Idxd_Pred_nv<mnemonic, RC, predImmOp, 1>;
    }
  }
}

let addrMode = BaseImmOffset, validSubTargets = HasV4SubT in {
  defm STrib_indexed: ST_Idxd_nv<"memb", "STrib", IntRegs, s11_0Ext,
                                 u6_0Ext, 11, 6>, AddrModeRel;
  defm STrih_indexed: ST_Idxd_nv<"memh", "STrih", IntRegs, s11_1Ext,
                                 u6_1Ext, 12, 7>, AddrModeRel;
  defm STriw_indexed: ST_Idxd_nv<"memw", "STriw", IntRegs, s11_2Ext,
                                 u6_2Ext, 13, 8>, AddrModeRel;
}

// multiclass for new-value store instructions with base + immediate offset.
// and MEMri operand.
multiclass ST_MEMri_Pbase_nv<string mnemonic, RegisterClass RC, bit isNot,
                          bit isPredNew> {
  let PNewValue = !if(isPredNew, "new", "") in
  def NAME#_nv_V4 : NVInst_V4<(outs),
            (ins PredRegs:$src1, MEMri:$addr, RC: $src2),
            !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
            ") ")#mnemonic#"($addr) = $src2.new",
            []>,
            Requires<[HasV4T]>;
}

multiclass ST_MEMri_Pred_nv<string mnemonic, RegisterClass RC, bit PredNot> {
  let PredSense = !if(PredNot, "false", "true") in {
    defm _c#NAME : ST_MEMri_Pbase_nv<mnemonic, RC, PredNot, 0>;

    // Predicate new
    defm _cdn#NAME : ST_MEMri_Pbase_nv<mnemonic, RC, PredNot, 1>;
  }
}

let mayStore = 1, isNVStore = 1, isExtendable = 1, neverHasSideEffects = 1 in
multiclass ST_MEMri_nv<string mnemonic, string CextOp, RegisterClass RC,
                    bits<5> ImmBits, bits<5> PredImmBits> {

  let CextOpcode = CextOp, BaseOpcode = CextOp in {
    let opExtendable = 1, isExtentSigned = 1, opExtentBits = ImmBits,
         isPredicable = 1 in
    def NAME#_nv_V4 : NVInst_V4<(outs),
            (ins MEMri:$addr, RC:$src),
            mnemonic#"($addr) = $src.new",
            []>,
            Requires<[HasV4T]>;

    let opExtendable = 2, isExtentSigned = 0, opExtentBits = PredImmBits,
        neverHasSideEffects = 1, isPredicated = 1 in {
      defm Pt : ST_MEMri_Pred_nv<mnemonic, RC, 0>;
      defm NotPt : ST_MEMri_Pred_nv<mnemonic, RC, 1>;
    }
  }
}

let addrMode = BaseImmOffset, isMEMri = "true", validSubTargets = HasV4SubT,
mayStore = 1 in {
  defm STrib: ST_MEMri_nv<"memb", "STrib", IntRegs, 11, 6>, AddrModeRel;
  defm STrih: ST_MEMri_nv<"memh", "STrih", IntRegs, 12, 7>, AddrModeRel;
  defm STriw: ST_MEMri_nv<"memw", "STriw", IntRegs, 13, 8>, AddrModeRel;
}

// memb(Ru<<#u2+#U6)=Nt.new
let isExtended = 1, opExtendable = 2, mayStore = 1, AddedComplexity = 10,
isNVStore = 1, validSubTargets = HasV4SubT in
def STrib_shl_nv_V4 : NVInst_V4<(outs),
            (ins IntRegs:$src1, u2Imm:$src2, u0AlwaysExt:$src3, IntRegs:$src4),
            "memb($src1<<#$src2+#$src3) = $src4.new",
            []>,
            Requires<[HasV4T]>;

//===----------------------------------------------------------------------===//
// Post increment store
// mem[bhwd](Rx++#s4:[0123])=Nt.new
//===----------------------------------------------------------------------===//

multiclass ST_PostInc_Pbase_nv<string mnemonic, RegisterClass RC, Operand ImmOp,
                            bit isNot, bit isPredNew> {
  let PNewValue = !if(isPredNew, "new", "") in
  def NAME#_nv_V4 : NVInstPI_V4<(outs IntRegs:$dst),
            (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset, RC:$src3),
            !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
            ") ")#mnemonic#"($src2++#$offset) = $src3.new",
            [],
            "$src2 = $dst">,
            Requires<[HasV4T]>;
}

multiclass ST_PostInc_Pred_nv<string mnemonic, RegisterClass RC,
                           Operand ImmOp, bit PredNot> {
  let PredSense = !if(PredNot, "false", "true") in {
    defm _c#NAME : ST_PostInc_Pbase_nv<mnemonic, RC, ImmOp, PredNot, 0>;
    // Predicate new
    let Predicates = [HasV4T], validSubTargets = HasV4SubT in
    defm _cdn#NAME : ST_PostInc_Pbase_nv<mnemonic, RC, ImmOp, PredNot, 1>;
  }
}

let hasCtrlDep = 1, isNVStore = 1, neverHasSideEffects = 1 in
multiclass ST_PostInc_nv<string mnemonic, string BaseOp, RegisterClass RC,
                      Operand ImmOp> {

  let BaseOpcode = "POST_"#BaseOp in {
    let isPredicable = 1 in
    def NAME#_nv_V4 : NVInstPI_V4<(outs IntRegs:$dst),
                (ins IntRegs:$src1, ImmOp:$offset, RC:$src2),
                mnemonic#"($src1++#$offset) = $src2.new",
                [],
                "$src1 = $dst">,
                Requires<[HasV4T]>;

    let isPredicated = 1 in {
      defm Pt : ST_PostInc_Pred_nv<mnemonic, RC, ImmOp, 0 >;
      defm NotPt : ST_PostInc_Pred_nv<mnemonic, RC, ImmOp, 1 >;
    }
  }
}

let validSubTargets = HasV4SubT in {
defm POST_STbri: ST_PostInc_nv <"memb", "STrib", IntRegs, s4_0Imm>, AddrModeRel;
defm POST_SThri: ST_PostInc_nv <"memh", "STrih", IntRegs, s4_1Imm>, AddrModeRel;
defm POST_STwri: ST_PostInc_nv <"memw", "STriw", IntRegs, s4_2Imm>, AddrModeRel;
}

// memb(Rx++#s4:0:circ(Mu))=Nt.new
// memb(Rx++I:circ(Mu))=Nt.new
// memb(Rx++Mu)=Nt.new
// memb(Rx++Mu:brev)=Nt.new
// memh(Ru<<#u2+#U6)=Nt.new
let isExtended = 1, opExtendable = 2, mayStore = 1, AddedComplexity = 10,
isNVStore = 1, validSubTargets = HasV4SubT in
def STrih_shl_nv_V4 : NVInst_V4<(outs),
            (ins IntRegs:$src1, u2Imm:$src2, u0AlwaysExt:$src3, IntRegs:$src4),
            "memh($src1<<#$src2+#$src3) = $src4.new",
            []>,
            Requires<[HasV4T]>;

// memh(Rx++#s4:1:circ(Mu))=Nt.new
// memh(Rx++I:circ(Mu))=Nt.new
// memh(Rx++Mu)=Nt.new
// memh(Rx++Mu:brev)=Nt.new

// memw(Ru<<#u2+#U6)=Nt.new
let isExtended = 1, opExtendable = 2, mayStore = 1, AddedComplexity = 10,
isNVStore = 1, validSubTargets = HasV4SubT in
def STriw_shl_nv_V4 : NVInst_V4<(outs),
            (ins IntRegs:$src1, u2Imm:$src2, u0AlwaysExt:$src3, IntRegs:$src4),
            "memw($src1<<#$src2+#$src3) = $src4.new",
            []>,
            Requires<[HasV4T]>;

// memw(Rx++#s4:2:circ(Mu))=Nt.new
// memw(Rx++I:circ(Mu))=Nt.new
// memw(Rx++Mu)=Nt.new
// memw(Rx++Mu:brev)=Nt.new

//===----------------------------------------------------------------------===//
// NV/ST -
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// NV/J +
//===----------------------------------------------------------------------===//

multiclass NVJ_type_basic_reg<string NotStr, string OpcStr, string TakenStr> {
  def _ie_nv_V4 : NVInst_V4<(outs),
            (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset),
            !strconcat("if (", !strconcat(NotStr, !strconcat(OpcStr,
            !strconcat("($src1.new, $src2)) jump:",
            !strconcat(TakenStr, " $offset"))))),
            []>,
            Requires<[HasV4T]>;

  def _nv_V4 : NVInst_V4<(outs),
            (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset),
            !strconcat("if (", !strconcat(NotStr, !strconcat(OpcStr,
            !strconcat("($src1.new, $src2)) jump:",
            !strconcat(TakenStr, " $offset"))))),
            []>,
            Requires<[HasV4T]>;
}

multiclass NVJ_type_basic_2ndDotNew<string NotStr, string OpcStr,
                                                   string TakenStr> {
  def _ie_nv_V4 : NVInst_V4<(outs),
            (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset),
            !strconcat("if (", !strconcat(NotStr, !strconcat(OpcStr,
            !strconcat("($src1, $src2.new)) jump:",
            !strconcat(TakenStr, " $offset"))))),
            []>,
            Requires<[HasV4T]>;

  def _nv_V4 : NVInst_V4<(outs),
            (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset),
            !strconcat("if (", !strconcat(NotStr, !strconcat(OpcStr,
            !strconcat("($src1, $src2.new)) jump:",
            !strconcat(TakenStr, " $offset"))))),
            []>,
            Requires<[HasV4T]>;
}

multiclass NVJ_type_basic_imm<string NotStr, string OpcStr, string TakenStr> {
  def _ie_nv_V4 : NVInst_V4<(outs),
            (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset),
            !strconcat("if (", !strconcat(NotStr, !strconcat(OpcStr,
            !strconcat("($src1.new, #$src2)) jump:",
            !strconcat(TakenStr, " $offset"))))),
            []>,
            Requires<[HasV4T]>;

  def _nv_V4 : NVInst_V4<(outs),
            (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset),
            !strconcat("if (", !strconcat(NotStr, !strconcat(OpcStr,
            !strconcat("($src1.new, #$src2)) jump:",
            !strconcat(TakenStr, " $offset"))))),
            []>,
            Requires<[HasV4T]>;
}

multiclass NVJ_type_basic_neg<string NotStr, string OpcStr, string TakenStr> {
  def _ie_nv_V4 : NVInst_V4<(outs),
            (ins IntRegs:$src1, nOneImm:$src2, brtarget:$offset),
            !strconcat("if (", !strconcat(NotStr, !strconcat(OpcStr,
            !strconcat("($src1.new, #$src2)) jump:",
            !strconcat(TakenStr, " $offset"))))),
            []>,
            Requires<[HasV4T]>;

  def _nv_V4 : NVInst_V4<(outs),
            (ins IntRegs:$src1, nOneImm:$src2, brtarget:$offset),
            !strconcat("if (", !strconcat(NotStr, !strconcat(OpcStr,
            !strconcat("($src1.new, #$src2)) jump:",
            !strconcat(TakenStr, " $offset"))))),
            []>,
            Requires<[HasV4T]>;
}

multiclass NVJ_type_basic_tstbit<string NotStr, string OpcStr,
                                                string TakenStr> {
  def _ie_nv_V4 : NVInst_V4<(outs),
            (ins IntRegs:$src1, u1Imm:$src2, brtarget:$offset),
            !strconcat("if (", !strconcat(NotStr, !strconcat(OpcStr,
            !strconcat("($src1.new, #$src2)) jump:",
            !strconcat(TakenStr, " $offset"))))),
            []>,
            Requires<[HasV4T]>;

  def _nv_V4 : NVInst_V4<(outs),
            (ins IntRegs:$src1, u1Imm:$src2, brtarget:$offset),
            !strconcat("if (", !strconcat(NotStr, !strconcat(OpcStr,
            !strconcat("($src1.new, #$src2)) jump:",
            !strconcat(TakenStr, " $offset"))))),
            []>,
            Requires<[HasV4T]>;
}

// Multiclass for regular dot new of Ist operand register.
multiclass NVJ_type_br_pred_reg<string NotStr, string OpcStr> {
  defm Pt  : NVJ_type_basic_reg<NotStr, OpcStr, "t">;
  defm Pnt : NVJ_type_basic_reg<NotStr, OpcStr, "nt">;
}

// Multiclass for dot new of 2nd operand register.
multiclass NVJ_type_br_pred_2ndDotNew<string NotStr, string OpcStr> {
  defm Pt  : NVJ_type_basic_2ndDotNew<NotStr, OpcStr, "t">;
  defm Pnt : NVJ_type_basic_2ndDotNew<NotStr, OpcStr, "nt">;
}

// Multiclass for 2nd operand immediate, including -1.
multiclass NVJ_type_br_pred_imm<string NotStr, string OpcStr> {
  defm Pt     : NVJ_type_basic_imm<NotStr, OpcStr, "t">;
  defm Pnt    : NVJ_type_basic_imm<NotStr, OpcStr, "nt">;
  defm Ptneg  : NVJ_type_basic_neg<NotStr, OpcStr, "t">;
  defm Pntneg : NVJ_type_basic_neg<NotStr, OpcStr, "nt">;
}

// Multiclass for 2nd operand immediate, excluding -1.
multiclass NVJ_type_br_pred_imm_only<string NotStr, string OpcStr> {
  defm Pt     : NVJ_type_basic_imm<NotStr, OpcStr, "t">;
  defm Pnt    : NVJ_type_basic_imm<NotStr, OpcStr, "nt">;
}

// Multiclass for tstbit, where 2nd operand is always #0.
multiclass NVJ_type_br_pred_tstbit<string NotStr, string OpcStr> {
  defm Pt     : NVJ_type_basic_tstbit<NotStr, OpcStr, "t">;
  defm Pnt    : NVJ_type_basic_tstbit<NotStr, OpcStr, "nt">;
}

// Multiclass for GT.
multiclass NVJ_type_rr_ri<string OpcStr> {
  defm rrNot   : NVJ_type_br_pred_reg<"!", OpcStr>;
  defm rr      : NVJ_type_br_pred_reg<"",  OpcStr>;
  defm rrdnNot : NVJ_type_br_pred_2ndDotNew<"!", OpcStr>;
  defm rrdn    : NVJ_type_br_pred_2ndDotNew<"",  OpcStr>;
  defm riNot   : NVJ_type_br_pred_imm<"!", OpcStr>;
  defm ri      : NVJ_type_br_pred_imm<"",  OpcStr>;
}

// Multiclass for EQ.
multiclass NVJ_type_rr_ri_no_2ndDotNew<string OpcStr> {
  defm rrNot   : NVJ_type_br_pred_reg<"!", OpcStr>;
  defm rr      : NVJ_type_br_pred_reg<"",  OpcStr>;
  defm riNot   : NVJ_type_br_pred_imm<"!", OpcStr>;
  defm ri      : NVJ_type_br_pred_imm<"",  OpcStr>;
}

// Multiclass for GTU.
multiclass NVJ_type_rr_ri_no_nOne<string OpcStr> {
  defm rrNot   : NVJ_type_br_pred_reg<"!", OpcStr>;
  defm rr      : NVJ_type_br_pred_reg<"",  OpcStr>;
  defm rrdnNot : NVJ_type_br_pred_2ndDotNew<"!", OpcStr>;
  defm rrdn    : NVJ_type_br_pred_2ndDotNew<"",  OpcStr>;
  defm riNot   : NVJ_type_br_pred_imm_only<"!", OpcStr>;
  defm ri      : NVJ_type_br_pred_imm_only<"",  OpcStr>;
}

// Multiclass for tstbit.
multiclass NVJ_type_r0<string OpcStr> {
  defm r0Not : NVJ_type_br_pred_tstbit<"!", OpcStr>;
  defm r0    : NVJ_type_br_pred_tstbit<"",  OpcStr>;
 }

// Base Multiclass for New Value Jump.
multiclass NVJ_type {
  defm GT     : NVJ_type_rr_ri<"cmp.gt">;
  defm EQ     : NVJ_type_rr_ri_no_2ndDotNew<"cmp.eq">;
  defm GTU    : NVJ_type_rr_ri_no_nOne<"cmp.gtu">;
  defm TSTBIT : NVJ_type_r0<"tstbit">;
}

let isBranch = 1, isTerminator=1, neverHasSideEffects = 1, Defs = [PC] in {
  defm JMP_ : NVJ_type;
}

//===----------------------------------------------------------------------===//
// NV/J -
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// XTYPE/ALU +
//===----------------------------------------------------------------------===//

//  Add and accumulate.
//  Rd=add(Rs,add(Ru,#s6))
let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 6,
validSubTargets = HasV4SubT in
def ADDr_ADDri_V4 : MInst<(outs IntRegs:$dst),
          (ins IntRegs:$src1, IntRegs:$src2, s6Ext:$src3),
          "$dst = add($src1, add($src2, #$src3))",
          [(set (i32 IntRegs:$dst),
           (add (i32 IntRegs:$src1), (add (i32 IntRegs:$src2),
                                          s6_16ExtPred:$src3)))]>,
          Requires<[HasV4T]>;

//  Rd=add(Rs,sub(#s6,Ru))
let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 6,
validSubTargets = HasV4SubT in
def ADDr_SUBri_V4 : MInst<(outs IntRegs:$dst),
          (ins IntRegs:$src1, s6Ext:$src2, IntRegs:$src3),
          "$dst = add($src1, sub(#$src2, $src3))",
          [(set (i32 IntRegs:$dst),
           (add (i32 IntRegs:$src1), (sub s6_10ExtPred:$src2,
                                          (i32 IntRegs:$src3))))]>,
          Requires<[HasV4T]>;

// Generates the same instruction as ADDr_SUBri_V4 but matches different
// pattern.
//  Rd=add(Rs,sub(#s6,Ru))
let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 6,
validSubTargets = HasV4SubT in
def ADDri_SUBr_V4 : MInst<(outs IntRegs:$dst),
          (ins IntRegs:$src1, s6Ext:$src2, IntRegs:$src3),
          "$dst = add($src1, sub(#$src2, $src3))",
          [(set (i32 IntRegs:$dst),
                (sub (add (i32 IntRegs:$src1), s6_10ExtPred:$src2),
                     (i32 IntRegs:$src3)))]>,
          Requires<[HasV4T]>;


//  Add or subtract doublewords with carry.
//TODO:
//  Rdd=add(Rss,Rtt,Px):carry
//TODO:
//  Rdd=sub(Rss,Rtt,Px):carry


//  Logical doublewords.
//  Rdd=and(Rtt,~Rss)
let validSubTargets = HasV4SubT in
def ANDd_NOTd_V4 : MInst<(outs DoubleRegs:$dst),
          (ins DoubleRegs:$src1, DoubleRegs:$src2),
          "$dst = and($src1, ~$src2)",
          [(set (i64 DoubleRegs:$dst), (and (i64 DoubleRegs:$src1),
                                      (not (i64 DoubleRegs:$src2))))]>,
          Requires<[HasV4T]>;

//  Rdd=or(Rtt,~Rss)
let validSubTargets = HasV4SubT in
def ORd_NOTd_V4 : MInst<(outs DoubleRegs:$dst),
          (ins DoubleRegs:$src1, DoubleRegs:$src2),
          "$dst = or($src1, ~$src2)",
          [(set (i64 DoubleRegs:$dst),
           (or (i64 DoubleRegs:$src1), (not (i64 DoubleRegs:$src2))))]>,
          Requires<[HasV4T]>;


//  Logical-logical doublewords.
//  Rxx^=xor(Rss,Rtt)
let validSubTargets = HasV4SubT in
def XORd_XORdd: MInst_acc<(outs DoubleRegs:$dst),
          (ins DoubleRegs:$src1, DoubleRegs:$src2, DoubleRegs:$src3),
          "$dst ^= xor($src2, $src3)",
          [(set (i64 DoubleRegs:$dst),
           (xor (i64 DoubleRegs:$src1), (xor (i64 DoubleRegs:$src2),
                                             (i64 DoubleRegs:$src3))))],
          "$src1 = $dst">,
          Requires<[HasV4T]>;


// Logical-logical words.
// Rx=or(Ru,and(Rx,#s10))
let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 10,
validSubTargets = HasV4SubT in
def ORr_ANDri_V4 : MInst_acc<(outs IntRegs:$dst),
            (ins IntRegs:$src1, IntRegs: $src2, s10Ext:$src3),
            "$dst = or($src1, and($src2, #$src3))",
            [(set (i32 IntRegs:$dst),
                  (or (i32 IntRegs:$src1), (and (i32 IntRegs:$src2),
                                                s10ExtPred:$src3)))],
            "$src2 = $dst">,
            Requires<[HasV4T]>;

// Rx[&|^]=and(Rs,Rt)
// Rx&=and(Rs,Rt)
let validSubTargets = HasV4SubT in
def ANDr_ANDrr_V4 : MInst_acc<(outs IntRegs:$dst),
            (ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
            "$dst &= and($src2, $src3)",
            [(set (i32 IntRegs:$dst),
                  (and (i32 IntRegs:$src1), (and (i32 IntRegs:$src2),
                                                 (i32 IntRegs:$src3))))],
            "$src1 = $dst">,
            Requires<[HasV4T]>;

// Rx|=and(Rs,Rt)
let validSubTargets = HasV4SubT, CextOpcode = "ORr_ANDr", InputType = "reg" in
def ORr_ANDrr_V4 : MInst_acc<(outs IntRegs:$dst),
            (ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
            "$dst |= and($src2, $src3)",
            [(set (i32 IntRegs:$dst),
                  (or (i32 IntRegs:$src1), (and (i32 IntRegs:$src2),
                                                (i32 IntRegs:$src3))))],
            "$src1 = $dst">,
            Requires<[HasV4T]>, ImmRegRel;

// Rx^=and(Rs,Rt)
let validSubTargets = HasV4SubT in
def XORr_ANDrr_V4 : MInst_acc<(outs IntRegs:$dst),
            (ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
            "$dst ^= and($src2, $src3)",
            [(set (i32 IntRegs:$dst),
             (xor (i32 IntRegs:$src1), (and (i32 IntRegs:$src2),
                                            (i32 IntRegs:$src3))))],
            "$src1 = $dst">,
            Requires<[HasV4T]>;

// Rx[&|^]=and(Rs,~Rt)
// Rx&=and(Rs,~Rt)
let validSubTargets = HasV4SubT in
def ANDr_ANDr_NOTr_V4 : MInst_acc<(outs IntRegs:$dst),
            (ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
            "$dst &= and($src2, ~$src3)",
            [(set (i32 IntRegs:$dst),
                  (and (i32 IntRegs:$src1), (and (i32 IntRegs:$src2),
                                                 (not (i32 IntRegs:$src3)))))],
            "$src1 = $dst">,
            Requires<[HasV4T]>;

// Rx|=and(Rs,~Rt)
let validSubTargets = HasV4SubT in
def ORr_ANDr_NOTr_V4 : MInst_acc<(outs IntRegs:$dst),
            (ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
            "$dst |= and($src2, ~$src3)",
            [(set (i32 IntRegs:$dst),
             (or (i32 IntRegs:$src1), (and (i32 IntRegs:$src2),
                                           (not (i32 IntRegs:$src3)))))],
            "$src1 = $dst">,
            Requires<[HasV4T]>;

// Rx^=and(Rs,~Rt)
let validSubTargets = HasV4SubT in
def XORr_ANDr_NOTr_V4 : MInst_acc<(outs IntRegs:$dst),
            (ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
            "$dst ^= and($src2, ~$src3)",
            [(set (i32 IntRegs:$dst),
             (xor (i32 IntRegs:$src1), (and (i32 IntRegs:$src2),
                                            (not (i32 IntRegs:$src3)))))],
            "$src1 = $dst">,
            Requires<[HasV4T]>;

// Rx[&|^]=or(Rs,Rt)
// Rx&=or(Rs,Rt)
let validSubTargets = HasV4SubT in
def ANDr_ORrr_V4 : MInst_acc<(outs IntRegs:$dst),
            (ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
            "$dst &= or($src2, $src3)",
            [(set (i32 IntRegs:$dst),
                  (and (i32 IntRegs:$src1), (or (i32 IntRegs:$src2),
                                                (i32 IntRegs:$src3))))],
            "$src1 = $dst">,
            Requires<[HasV4T]>;

// Rx|=or(Rs,Rt)
let validSubTargets = HasV4SubT, CextOpcode = "ORr_ORr", InputType = "reg" in
def ORr_ORrr_V4 : MInst_acc<(outs IntRegs:$dst),
            (ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
            "$dst |= or($src2, $src3)",
            [(set (i32 IntRegs:$dst),
                  (or (i32 IntRegs:$src1), (or (i32 IntRegs:$src2),
                                               (i32 IntRegs:$src3))))],
            "$src1 = $dst">,
            Requires<[HasV4T]>, ImmRegRel;

// Rx^=or(Rs,Rt)
let validSubTargets = HasV4SubT in
def XORr_ORrr_V4 : MInst_acc<(outs IntRegs:$dst),
            (ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
            "$dst ^= or($src2, $src3)",
            [(set (i32 IntRegs:$dst),
             (xor (i32 IntRegs:$src1), (or (i32 IntRegs:$src2),
                                           (i32 IntRegs:$src3))))],
            "$src1 = $dst">,
            Requires<[HasV4T]>;

// Rx[&|^]=xor(Rs,Rt)
// Rx&=xor(Rs,Rt)
let validSubTargets = HasV4SubT in
def ANDr_XORrr_V4 : MInst_acc<(outs IntRegs:$dst),
            (ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
            "$dst &= xor($src2, $src3)",
            [(set (i32 IntRegs:$dst),
                  (and (i32 IntRegs:$src1), (xor (i32 IntRegs:$src2),
                                                 (i32 IntRegs:$src3))))],
            "$src1 = $dst">,
            Requires<[HasV4T]>;

// Rx|=xor(Rs,Rt)
let validSubTargets = HasV4SubT in
def ORr_XORrr_V4 : MInst_acc<(outs IntRegs:$dst),
            (ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
            "$dst |= xor($src2, $src3)",
            [(set (i32 IntRegs:$dst),
                  (and (i32 IntRegs:$src1), (xor (i32 IntRegs:$src2),
                                                 (i32 IntRegs:$src3))))],
            "$src1 = $dst">,
            Requires<[HasV4T]>;

// Rx^=xor(Rs,Rt)
let validSubTargets = HasV4SubT in
def XORr_XORrr_V4 : MInst_acc<(outs IntRegs:$dst),
            (ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
            "$dst ^= xor($src2, $src3)",
            [(set (i32 IntRegs:$dst),
             (and (i32 IntRegs:$src1), (xor (i32 IntRegs:$src2),
                                            (i32 IntRegs:$src3))))],
            "$src1 = $dst">,
            Requires<[HasV4T]>;

// Rx|=and(Rs,#s10)
let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 10,
validSubTargets = HasV4SubT, CextOpcode = "ORr_ANDr", InputType = "imm" in
def ORr_ANDri2_V4 : MInst_acc<(outs IntRegs:$dst),
            (ins IntRegs:$src1, IntRegs: $src2, s10Ext:$src3),
            "$dst |= and($src2, #$src3)",
            [(set (i32 IntRegs:$dst),
                  (or (i32 IntRegs:$src1), (and (i32 IntRegs:$src2),
                                                s10ExtPred:$src3)))],
            "$src1 = $dst">,
            Requires<[HasV4T]>, ImmRegRel;

// Rx|=or(Rs,#s10)
let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 10,
validSubTargets = HasV4SubT, CextOpcode = "ORr_ORr", InputType = "imm" in
def ORr_ORri_V4 : MInst_acc<(outs IntRegs:$dst),
            (ins IntRegs:$src1, IntRegs: $src2, s10Ext:$src3),
            "$dst |= or($src2, #$src3)",
            [(set (i32 IntRegs:$dst),
                  (or (i32 IntRegs:$src1), (and (i32 IntRegs:$src2),
                                                s10ExtPred:$src3)))],
            "$src1 = $dst">,
            Requires<[HasV4T]>, ImmRegRel;


//    Modulo wrap
//        Rd=modwrap(Rs,Rt)
//    Round
//        Rd=cround(Rs,#u5)
//        Rd=cround(Rs,Rt)
//        Rd=round(Rs,#u5)[:sat]
//        Rd=round(Rs,Rt)[:sat]
//    Vector reduce add unsigned halfwords
//        Rd=vraddh(Rss,Rtt)
//    Vector add bytes
//        Rdd=vaddb(Rss,Rtt)
//    Vector conditional negate
//        Rdd=vcnegh(Rss,Rt)
//        Rxx+=vrcnegh(Rss,Rt)
//    Vector maximum bytes
//        Rdd=vmaxb(Rtt,Rss)
//    Vector reduce maximum halfwords
//        Rxx=vrmaxh(Rss,Ru)
//        Rxx=vrmaxuh(Rss,Ru)
//    Vector reduce maximum words
//        Rxx=vrmaxuw(Rss,Ru)
//        Rxx=vrmaxw(Rss,Ru)
//    Vector minimum bytes
//        Rdd=vminb(Rtt,Rss)
//    Vector reduce minimum halfwords
//        Rxx=vrminh(Rss,Ru)
//        Rxx=vrminuh(Rss,Ru)
//    Vector reduce minimum words
//        Rxx=vrminuw(Rss,Ru)
//        Rxx=vrminw(Rss,Ru)
//    Vector subtract bytes
//        Rdd=vsubb(Rss,Rtt)

//===----------------------------------------------------------------------===//
// XTYPE/ALU -
//===----------------------------------------------------------------------===//


//===----------------------------------------------------------------------===//
// XTYPE/MPY +
//===----------------------------------------------------------------------===//

// Multiply and user lower result.
// Rd=add(#u6,mpyi(Rs,#U6))
let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 6,
validSubTargets = HasV4SubT in
def ADDi_MPYri_V4 : MInst<(outs IntRegs:$dst),
            (ins u6Ext:$src1, IntRegs:$src2, u6Imm:$src3),
            "$dst = add(#$src1, mpyi($src2, #$src3))",
            [(set (i32 IntRegs:$dst),
                  (add (mul (i32 IntRegs:$src2), u6ImmPred:$src3),
                       u6ExtPred:$src1))]>,
            Requires<[HasV4T]>;

// Rd=add(##,mpyi(Rs,#U6))
def : Pat <(add (mul (i32 IntRegs:$src2), u6ImmPred:$src3),
                     (HexagonCONST32 tglobaladdr:$src1)),
           (i32 (ADDi_MPYri_V4 tglobaladdr:$src1, IntRegs:$src2,
                               u6ImmPred:$src3))>;

// Rd=add(#u6,mpyi(Rs,Rt))
let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 6,
validSubTargets = HasV4SubT, InputType = "imm", CextOpcode = "ADD_MPY" in
def ADDi_MPYrr_V4 : MInst<(outs IntRegs:$dst),
            (ins u6Ext:$src1, IntRegs:$src2, IntRegs:$src3),
            "$dst = add(#$src1, mpyi($src2, $src3))",
            [(set (i32 IntRegs:$dst),
                  (add (mul (i32 IntRegs:$src2), (i32 IntRegs:$src3)),
                       u6ExtPred:$src1))]>,
            Requires<[HasV4T]>, ImmRegRel;

// Rd=add(##,mpyi(Rs,Rt))
def : Pat <(add (mul (i32 IntRegs:$src2), (i32 IntRegs:$src3)),
                     (HexagonCONST32 tglobaladdr:$src1)),
           (i32 (ADDi_MPYrr_V4 tglobaladdr:$src1, IntRegs:$src2,
                               IntRegs:$src3))>;

// Rd=add(Ru,mpyi(#u6:2,Rs))
let validSubTargets = HasV4SubT in
def ADDr_MPYir_V4 : MInst<(outs IntRegs:$dst),
            (ins IntRegs:$src1, u6Imm:$src2, IntRegs:$src3),
            "$dst = add($src1, mpyi(#$src2, $src3))",
            [(set (i32 IntRegs:$dst),
             (add (i32 IntRegs:$src1), (mul (i32 IntRegs:$src3),
                                            u6_2ImmPred:$src2)))]>,
            Requires<[HasV4T]>;

// Rd=add(Ru,mpyi(Rs,#u6))
let isExtendable = 1, opExtendable = 3, isExtentSigned = 0, opExtentBits = 6,
validSubTargets = HasV4SubT, InputType = "imm", CextOpcode = "ADD_MPY" in
def ADDr_MPYri_V4 : MInst<(outs IntRegs:$dst),
            (ins IntRegs:$src1, IntRegs:$src2, u6Ext:$src3),
            "$dst = add($src1, mpyi($src2, #$src3))",
            [(set (i32 IntRegs:$dst),
                  (add (i32 IntRegs:$src1), (mul (i32 IntRegs:$src2),
                                                 u6ExtPred:$src3)))]>,
            Requires<[HasV4T]>, ImmRegRel;

// Rx=add(Ru,mpyi(Rx,Rs))
let validSubTargets = HasV4SubT, InputType = "reg", CextOpcode = "ADD_MPY" in
def ADDr_MPYrr_V4 : MInst_acc<(outs IntRegs:$dst),
            (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3),
            "$dst = add($src1, mpyi($src2, $src3))",
            [(set (i32 IntRegs:$dst),
             (add (i32 IntRegs:$src1), (mul (i32 IntRegs:$src2),
                                            (i32 IntRegs:$src3))))],
            "$src2 = $dst">,
            Requires<[HasV4T]>, ImmRegRel;


// Polynomial multiply words
// Rdd=pmpyw(Rs,Rt)
// Rxx^=pmpyw(Rs,Rt)

// Vector reduce multiply word by signed half (32x16)
// Rdd=vrmpyweh(Rss,Rtt)[:<<1]
// Rdd=vrmpywoh(Rss,Rtt)[:<<1]
// Rxx+=vrmpyweh(Rss,Rtt)[:<<1]
// Rxx+=vrmpywoh(Rss,Rtt)[:<<1]

// Multiply and use upper result
// Rd=mpy(Rs,Rt.H):<<1:sat
// Rd=mpy(Rs,Rt.L):<<1:sat
// Rd=mpy(Rs,Rt):<<1
// Rd=mpy(Rs,Rt):<<1:sat
// Rd=mpysu(Rs,Rt)
// Rx+=mpy(Rs,Rt):<<1:sat
// Rx-=mpy(Rs,Rt):<<1:sat

// Vector multiply bytes
// Rdd=vmpybsu(Rs,Rt)
// Rdd=vmpybu(Rs,Rt)
// Rxx+=vmpybsu(Rs,Rt)
// Rxx+=vmpybu(Rs,Rt)

// Vector polynomial multiply halfwords
// Rdd=vpmpyh(Rs,Rt)
// Rxx^=vpmpyh(Rs,Rt)

//===----------------------------------------------------------------------===//
// XTYPE/MPY -
//===----------------------------------------------------------------------===//


//===----------------------------------------------------------------------===//
// XTYPE/SHIFT +
//===----------------------------------------------------------------------===//

// Shift by immediate and accumulate.
// Rx=add(#u8,asl(Rx,#U5))
let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8,
validSubTargets = HasV4SubT in
def ADDi_ASLri_V4 : MInst_acc<(outs IntRegs:$dst),
            (ins u8Ext:$src1, IntRegs:$src2, u5Imm:$src3),
            "$dst = add(#$src1, asl($src2, #$src3))",
            [(set (i32 IntRegs:$dst),
                  (add (shl (i32 IntRegs:$src2), u5ImmPred:$src3),
                       u8ExtPred:$src1))],
            "$src2 = $dst">,
            Requires<[HasV4T]>;

// Rx=add(#u8,lsr(Rx,#U5))
let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8,
validSubTargets = HasV4SubT in
def ADDi_LSRri_V4 : MInst_acc<(outs IntRegs:$dst),
            (ins u8Ext:$src1, IntRegs:$src2, u5Imm:$src3),
            "$dst = add(#$src1, lsr($src2, #$src3))",
            [(set (i32 IntRegs:$dst),
                  (add (srl (i32 IntRegs:$src2), u5ImmPred:$src3),
                       u8ExtPred:$src1))],
            "$src2 = $dst">,
            Requires<[HasV4T]>;

// Rx=sub(#u8,asl(Rx,#U5))
let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8,
validSubTargets = HasV4SubT in
def SUBi_ASLri_V4 : MInst_acc<(outs IntRegs:$dst),
            (ins u8Ext:$src1, IntRegs:$src2, u5Imm:$src3),
            "$dst = sub(#$src1, asl($src2, #$src3))",
            [(set (i32 IntRegs:$dst),
                  (sub (shl (i32 IntRegs:$src2), u5ImmPred:$src3),
                       u8ExtPred:$src1))],
            "$src2 = $dst">,
            Requires<[HasV4T]>;

// Rx=sub(#u8,lsr(Rx,#U5))
let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8,
validSubTargets = HasV4SubT in
def SUBi_LSRri_V4 : MInst_acc<(outs IntRegs:$dst),
            (ins u8Ext:$src1, IntRegs:$src2, u5Imm:$src3),
            "$dst = sub(#$src1, lsr($src2, #$src3))",
            [(set (i32 IntRegs:$dst),
                  (sub (srl (i32 IntRegs:$src2), u5ImmPred:$src3),
                       u8ExtPred:$src1))],
            "$src2 = $dst">,
            Requires<[HasV4T]>;


//Shift by immediate and logical.
//Rx=and(#u8,asl(Rx,#U5))
let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8,
validSubTargets = HasV4SubT in
def ANDi_ASLri_V4 : MInst_acc<(outs IntRegs:$dst),
            (ins u8Ext:$src1, IntRegs:$src2, u5Imm:$src3),
            "$dst = and(#$src1, asl($src2, #$src3))",
            [(set (i32 IntRegs:$dst),
                  (and (shl (i32 IntRegs:$src2), u5ImmPred:$src3),
                       u8ExtPred:$src1))],
            "$src2 = $dst">,
            Requires<[HasV4T]>;

//Rx=and(#u8,lsr(Rx,#U5))
let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8,
validSubTargets = HasV4SubT in
def ANDi_LSRri_V4 : MInst_acc<(outs IntRegs:$dst),
            (ins u8Ext:$src1, IntRegs:$src2, u5Imm:$src3),
            "$dst = and(#$src1, lsr($src2, #$src3))",
            [(set (i32 IntRegs:$dst),
                  (and (srl (i32 IntRegs:$src2), u5ImmPred:$src3),
                       u8ExtPred:$src1))],
            "$src2 = $dst">,
            Requires<[HasV4T]>;

//Rx=or(#u8,asl(Rx,#U5))
let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8,
AddedComplexity = 30, validSubTargets = HasV4SubT in
def ORi_ASLri_V4 : MInst_acc<(outs IntRegs:$dst),
            (ins u8Ext:$src1, IntRegs:$src2, u5Imm:$src3),
            "$dst = or(#$src1, asl($src2, #$src3))",
            [(set (i32 IntRegs:$dst),
                  (or (shl (i32 IntRegs:$src2), u5ImmPred:$src3),
                      u8ExtPred:$src1))],
            "$src2 = $dst">,
            Requires<[HasV4T]>;

//Rx=or(#u8,lsr(Rx,#U5))
let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8,
AddedComplexity = 30, validSubTargets = HasV4SubT in
def ORi_LSRri_V4 : MInst_acc<(outs IntRegs:$dst),
            (ins u8Ext:$src1, IntRegs:$src2, u5Imm:$src3),
            "$dst = or(#$src1, lsr($src2, #$src3))",
            [(set (i32 IntRegs:$dst),
                  (or (srl (i32 IntRegs:$src2), u5ImmPred:$src3),
                      u8ExtPred:$src1))],
            "$src2 = $dst">,
            Requires<[HasV4T]>;


//Shift by register.
//Rd=lsl(#s6,Rt)
let validSubTargets = HasV4SubT in {
def LSLi_V4 : MInst<(outs IntRegs:$dst), (ins s6Imm:$src1, IntRegs:$src2),
            "$dst = lsl(#$src1, $src2)",
            [(set (i32 IntRegs:$dst), (shl s6ImmPred:$src1,
                                           (i32 IntRegs:$src2)))]>,
            Requires<[HasV4T]>;


//Shift by register and logical.
//Rxx^=asl(Rss,Rt)
def ASLd_rr_xor_V4 : MInst_acc<(outs DoubleRegs:$dst),
            (ins DoubleRegs:$src1, DoubleRegs:$src2, IntRegs:$src3),
            "$dst ^= asl($src2, $src3)",
            [(set (i64 DoubleRegs:$dst),
                  (xor (i64 DoubleRegs:$src1), (shl (i64 DoubleRegs:$src2),
                                                    (i32 IntRegs:$src3))))],
            "$src1 = $dst">,
            Requires<[HasV4T]>;

//Rxx^=asr(Rss,Rt)
def ASRd_rr_xor_V4 : MInst_acc<(outs DoubleRegs:$dst),
            (ins DoubleRegs:$src1, DoubleRegs:$src2, IntRegs:$src3),
            "$dst ^= asr($src2, $src3)",
            [(set (i64 DoubleRegs:$dst),
                  (xor (i64 DoubleRegs:$src1), (sra (i64 DoubleRegs:$src2),
                                                    (i32 IntRegs:$src3))))],
            "$src1 = $dst">,
            Requires<[HasV4T]>;

//Rxx^=lsl(Rss,Rt)
def LSLd_rr_xor_V4 : MInst_acc<(outs DoubleRegs:$dst),
            (ins DoubleRegs:$src1, DoubleRegs:$src2, IntRegs:$src3),
            "$dst ^= lsl($src2, $src3)",
            [(set (i64 DoubleRegs:$dst), (xor (i64 DoubleRegs:$src1),
                                              (shl (i64 DoubleRegs:$src2),
                                                   (i32 IntRegs:$src3))))],
            "$src1 = $dst">,
            Requires<[HasV4T]>;

//Rxx^=lsr(Rss,Rt)
def LSRd_rr_xor_V4 : MInst_acc<(outs DoubleRegs:$dst),
            (ins DoubleRegs:$src1, DoubleRegs:$src2, IntRegs:$src3),
            "$dst ^= lsr($src2, $src3)",
            [(set (i64 DoubleRegs:$dst),
                  (xor (i64 DoubleRegs:$src1), (srl (i64 DoubleRegs:$src2),
                                                    (i32 IntRegs:$src3))))],
            "$src1 = $dst">,
            Requires<[HasV4T]>;
}

//===----------------------------------------------------------------------===//
// XTYPE/SHIFT -
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// MEMOP: Word, Half, Byte
//===----------------------------------------------------------------------===//

def MEMOPIMM : SDNodeXForm<imm, [{
  // Call the transformation function XformM5ToU5Imm to get the negative
  // immediate's positive counterpart.
  int32_t imm = N->getSExtValue();
  return XformM5ToU5Imm(imm);
}]>;

def MEMOPIMM_HALF : SDNodeXForm<imm, [{
  // -1 .. -31 represented as 65535..65515
  // assigning to a short restores our desired signed value.
  // Call the transformation function XformM5ToU5Imm to get the negative
  // immediate's positive counterpart.
  int16_t imm = N->getSExtValue();
  return XformM5ToU5Imm(imm);
}]>;

def MEMOPIMM_BYTE : SDNodeXForm<imm, [{
  // -1 .. -31 represented as 255..235
  // assigning to a char restores our desired signed value.
  // Call the transformation function XformM5ToU5Imm to get the negative
  // immediate's positive counterpart.
  int8_t imm = N->getSExtValue();
  return XformM5ToU5Imm(imm);
}]>;

def SETMEMIMM : SDNodeXForm<imm, [{
   // Return the bit position we will set [0-31].
   // As an SDNode.
   int32_t imm = N->getSExtValue();
   return XformMskToBitPosU5Imm(imm);
}]>;

def CLRMEMIMM : SDNodeXForm<imm, [{
   // Return the bit position we will clear [0-31].
   // As an SDNode.
   // we bit negate the value first
   int32_t imm = ~(N->getSExtValue());
   return XformMskToBitPosU5Imm(imm);
}]>;

def SETMEMIMM_SHORT : SDNodeXForm<imm, [{
   // Return the bit position we will set [0-15].
   // As an SDNode.
   int16_t imm = N->getSExtValue();
   return XformMskToBitPosU4Imm(imm);
}]>;

def CLRMEMIMM_SHORT : SDNodeXForm<imm, [{
   // Return the bit position we will clear [0-15].
   // As an SDNode.
   // we bit negate the value first
   int16_t imm = ~(N->getSExtValue());
   return XformMskToBitPosU4Imm(imm);
}]>;

def SETMEMIMM_BYTE : SDNodeXForm<imm, [{
   // Return the bit position we will set [0-7].
   // As an SDNode.
   int8_t imm =  N->getSExtValue();
   return XformMskToBitPosU3Imm(imm);
}]>;

def CLRMEMIMM_BYTE : SDNodeXForm<imm, [{
   // Return the bit position we will clear [0-7].
   // As an SDNode.
   // we bit negate the value first
   int8_t imm = ~(N->getSExtValue());
   return XformMskToBitPosU3Imm(imm);
}]>;

//===----------------------------------------------------------------------===//
// Template class for MemOp instructions with the register value.
//===----------------------------------------------------------------------===//
class MemOp_rr_base <string opc, bits<2> opcBits, Operand ImmOp,
                     string memOp, bits<2> memOpBits> :
      MEMInst_V4<(outs),
                 (ins IntRegs:$base, ImmOp:$offset, IntRegs:$delta),
                 opc#"($base+#$offset)"#memOp#"$delta",
                 []>,
                 Requires<[HasV4T, UseMEMOP]> {

    bits<5> base;
    bits<5> delta;
    bits<32> offset;
    bits<6> offsetBits; // memb - u6:0 , memh - u6:1, memw - u6:2

    let offsetBits = !if (!eq(opcBits, 0b00), offset{5-0},
                     !if (!eq(opcBits, 0b01), offset{6-1},
                     !if (!eq(opcBits, 0b10), offset{7-2},0)));

    let IClass = 0b0011;
    let Inst{27-24} = 0b1110;
    let Inst{22-21} = opcBits;
    let Inst{20-16} = base;
    let Inst{13} = 0b0;
    let Inst{12-7} = offsetBits;
    let Inst{6-5} = memOpBits;
    let Inst{4-0} = delta;
}

//===----------------------------------------------------------------------===//
// Template class for MemOp instructions with the immediate value.
//===----------------------------------------------------------------------===//
class MemOp_ri_base <string opc, bits<2> opcBits, Operand ImmOp,
                     string memOp, bits<2> memOpBits> :
      MEMInst_V4 <(outs),
                  (ins IntRegs:$base, ImmOp:$offset, u5Imm:$delta),
                  opc#"($base+#$offset)"#memOp#"#$delta"
                  #!if(memOpBits{1},")", ""), // clrbit, setbit - include ')'
                  []>,
                  Requires<[HasV4T, UseMEMOP]> {

    bits<5> base;
    bits<5> delta;
    bits<32> offset;
    bits<6> offsetBits; // memb - u6:0 , memh - u6:1, memw - u6:2

    let offsetBits = !if (!eq(opcBits, 0b00), offset{5-0},
                     !if (!eq(opcBits, 0b01), offset{6-1},
                     !if (!eq(opcBits, 0b10), offset{7-2},0)));

    let IClass = 0b0011;
    let Inst{27-24} = 0b1111;
    let Inst{22-21} = opcBits;
    let Inst{20-16} = base;
    let Inst{13} = 0b0;
    let Inst{12-7} = offsetBits;
    let Inst{6-5} = memOpBits;
    let Inst{4-0} = delta;
}

// multiclass to define MemOp instructions with register operand.
multiclass MemOp_rr<string opc, bits<2> opcBits, Operand ImmOp> {
  def _ADD#NAME#_V4 : MemOp_rr_base <opc, opcBits, ImmOp, " += ", 0b00>; // add
  def _SUB#NAME#_V4 : MemOp_rr_base <opc, opcBits, ImmOp, " -= ", 0b01>; // sub
  def _AND#NAME#_V4 : MemOp_rr_base <opc, opcBits, ImmOp, " &= ", 0b10>; // and
  def _OR#NAME#_V4  : MemOp_rr_base <opc, opcBits, ImmOp, " |= ", 0b11>; // or
}

// multiclass to define MemOp instructions with immediate Operand.
multiclass MemOp_ri<string opc, bits<2> opcBits, Operand ImmOp> {
  def _ADD#NAME#_V4 : MemOp_ri_base <opc, opcBits, ImmOp, " += ", 0b00 >;
  def _SUB#NAME#_V4 : MemOp_ri_base <opc, opcBits, ImmOp, " -= ", 0b01 >;
  def _CLRBIT#NAME#_V4 : MemOp_ri_base<opc, opcBits, ImmOp, " =clrbit(", 0b10>;
  def _SETBIT#NAME#_V4 : MemOp_ri_base<opc, opcBits, ImmOp, " =setbit(", 0b11>;
}

multiclass MemOp_base <string opc, bits<2> opcBits, Operand ImmOp> {
  defm r : MemOp_rr <opc, opcBits, ImmOp>;
  defm i : MemOp_ri <opc, opcBits, ImmOp>;
}

// Define MemOp instructions.
let isExtendable = 1, opExtendable = 1, isExtentSigned = 0,
validSubTargets =HasV4SubT in {
  let opExtentBits = 6, accessSize = ByteAccess in
  defm MemOPb : MemOp_base <"memb", 0b00, u6_0Ext>;

  let opExtentBits = 7, accessSize = HalfWordAccess in
  defm MemOPh : MemOp_base <"memh", 0b01, u6_1Ext>;

  let opExtentBits = 8, accessSize = WordAccess in
  defm MemOPw : MemOp_base <"memw", 0b10, u6_2Ext>;
}

//===----------------------------------------------------------------------===//
// Multiclass to define 'Def Pats' for ALU operations on the memory
// Here value used for the ALU operation is an immediate value.
// mem[bh](Rs+#0) += #U5
// mem[bh](Rs+#u6) += #U5
//===----------------------------------------------------------------------===//

multiclass MemOpi_u5Pats <PatFrag ldOp, PatFrag stOp, PatLeaf ExtPred,
                          InstHexagon MI, SDNode OpNode> {
  let AddedComplexity = 180 in
  def : Pat < (stOp (OpNode (ldOp IntRegs:$addr), u5ImmPred:$addend),
                    IntRegs:$addr),
              (MI IntRegs:$addr, #0, u5ImmPred:$addend )>;

  let AddedComplexity = 190 in
  def : Pat <(stOp (OpNode (ldOp (add IntRegs:$base, ExtPred:$offset)),
                     u5ImmPred:$addend),
             (add IntRegs:$base, ExtPred:$offset)),
       (MI IntRegs:$base, ExtPred:$offset, u5ImmPred:$addend)>;
}

multiclass MemOpi_u5ALUOp<PatFrag ldOp, PatFrag stOp, PatLeaf ExtPred,
                          InstHexagon addMI, InstHexagon subMI> {
  defm : MemOpi_u5Pats<ldOp, stOp, ExtPred, addMI, add>;
  defm : MemOpi_u5Pats<ldOp, stOp, ExtPred, subMI, sub>;
}

multiclass MemOpi_u5ExtType<PatFrag ldOpByte, PatFrag ldOpHalf > {
  // Half Word
  defm : MemOpi_u5ALUOp <ldOpHalf, truncstorei16, u6_1ExtPred,
                         MemOPh_ADDi_V4, MemOPh_SUBi_V4>;
  // Byte
  defm : MemOpi_u5ALUOp <ldOpByte, truncstorei8, u6ExtPred,
                         MemOPb_ADDi_V4, MemOPb_SUBi_V4>;
}

let Predicates = [HasV4T, UseMEMOP] in {
  defm : MemOpi_u5ExtType<zextloadi8, zextloadi16>; // zero extend
  defm : MemOpi_u5ExtType<sextloadi8, sextloadi16>; // sign extend
  defm : MemOpi_u5ExtType<extloadi8,  extloadi16>;  // any extend

  // Word
  defm : MemOpi_u5ALUOp <load, store, u6_2ExtPred, MemOPw_ADDi_V4,
                         MemOPw_SUBi_V4>;
}

//===----------------------------------------------------------------------===//
// multiclass to define 'Def Pats' for ALU operations on the memory.
// Here value used for the ALU operation is a negative value.
// mem[bh](Rs+#0) += #m5
// mem[bh](Rs+#u6) += #m5
//===----------------------------------------------------------------------===//

multiclass MemOpi_m5Pats <PatFrag ldOp, PatFrag stOp, PatLeaf extPred,
                          PatLeaf immPred, ComplexPattern addrPred,
                          SDNodeXForm xformFunc, InstHexagon MI> {
  let AddedComplexity = 190 in
  def : Pat <(stOp (add (ldOp IntRegs:$addr), immPred:$subend),
                   IntRegs:$addr),
             (MI IntRegs:$addr, #0, (xformFunc immPred:$subend) )>;

  let AddedComplexity = 195 in
  def : Pat<(stOp (add (ldOp (add IntRegs:$base, extPred:$offset)),
                       immPred:$subend),
                  (add IntRegs:$base, extPred:$offset)),
            (MI IntRegs:$base, extPred:$offset, (xformFunc immPred:$subend))>;
}

multiclass MemOpi_m5ExtType<PatFrag ldOpByte, PatFrag ldOpHalf > {
  // Half Word
  defm : MemOpi_m5Pats <ldOpHalf, truncstorei16, u6_1ExtPred, m5HImmPred,
                        ADDRriU6_1, MEMOPIMM_HALF, MemOPh_SUBi_V4>;
  // Byte
  defm : MemOpi_m5Pats <ldOpByte, truncstorei8, u6ExtPred, m5BImmPred,
                        ADDRriU6_0, MEMOPIMM_BYTE, MemOPb_SUBi_V4>;
}

let Predicates = [HasV4T, UseMEMOP] in {
  defm : MemOpi_m5ExtType<zextloadi8, zextloadi16>; // zero extend
  defm : MemOpi_m5ExtType<sextloadi8, sextloadi16>; // sign extend
  defm : MemOpi_m5ExtType<extloadi8,  extloadi16>;  // any extend

  // Word
  defm : MemOpi_m5Pats <load, store, u6_2ExtPred, m5ImmPred,
                          ADDRriU6_2, MEMOPIMM, MemOPw_SUBi_V4>;
}

//===----------------------------------------------------------------------===//
// Multiclass to define 'def Pats' for bit operations on the memory.
// mem[bhw](Rs+#0) = [clrbit|setbit](#U5)
// mem[bhw](Rs+#u6) = [clrbit|setbit](#U5)
//===----------------------------------------------------------------------===//

multiclass MemOpi_bitPats <PatFrag ldOp, PatFrag stOp, PatLeaf immPred,
                     PatLeaf extPred, ComplexPattern addrPred,
                     SDNodeXForm xformFunc, InstHexagon MI, SDNode OpNode> {

  // mem[bhw](Rs+#u6:[012]) = [clrbit|setbit](#U5)
  let AddedComplexity = 250 in
  def : Pat<(stOp (OpNode (ldOp (add IntRegs:$base, extPred:$offset)),
                          immPred:$bitend),
                  (add IntRegs:$base, extPred:$offset)),
            (MI IntRegs:$base, extPred:$offset, (xformFunc immPred:$bitend))>;

  // mem[bhw](Rs+#0) = [clrbit|setbit](#U5)
  let AddedComplexity = 225 in
  def : Pat <(stOp (OpNode (ldOp addrPred:$addr), immPred:$bitend),
                   addrPred:$addr),
             (MI IntRegs:$addr, #0, (xformFunc immPred:$bitend))>;
}

multiclass MemOpi_bitExtType<PatFrag ldOpByte, PatFrag ldOpHalf > {
  // Byte - clrbit
  defm : MemOpi_bitPats<ldOpByte, truncstorei8, Clr3ImmPred, u6ExtPred,
                       ADDRriU6_0, CLRMEMIMM_BYTE, MemOPb_CLRBITi_V4, and>;
  // Byte - setbit
  defm : MemOpi_bitPats<ldOpByte, truncstorei8, Set3ImmPred,  u6ExtPred,
                       ADDRriU6_0, SETMEMIMM_BYTE, MemOPb_SETBITi_V4, or>;
  // Half Word - clrbit
  defm : MemOpi_bitPats<ldOpHalf, truncstorei16, Clr4ImmPred, u6_1ExtPred,
                       ADDRriU6_1, CLRMEMIMM_SHORT, MemOPh_CLRBITi_V4, and>;
  // Half Word - setbit
  defm : MemOpi_bitPats<ldOpHalf, truncstorei16, Set4ImmPred, u6_1ExtPred,
                       ADDRriU6_1, SETMEMIMM_SHORT, MemOPh_SETBITi_V4, or>;
}

let Predicates = [HasV4T, UseMEMOP] in {
  // mem[bh](Rs+#0) = [clrbit|setbit](#U5)
  // mem[bh](Rs+#u6:[01]) = [clrbit|setbit](#U5)
  defm : MemOpi_bitExtType<zextloadi8, zextloadi16>; // zero extend
  defm : MemOpi_bitExtType<sextloadi8, sextloadi16>; // sign extend
  defm : MemOpi_bitExtType<extloadi8,  extloadi16>;  // any extend

  // memw(Rs+#0) = [clrbit|setbit](#U5)
  // memw(Rs+#u6:2) = [clrbit|setbit](#U5)
  defm : MemOpi_bitPats<load, store, Clr5ImmPred, u6_2ExtPred, ADDRriU6_2,
                       CLRMEMIMM, MemOPw_CLRBITi_V4, and>;
  defm : MemOpi_bitPats<load, store, Set5ImmPred, u6_2ExtPred, ADDRriU6_2,
                       SETMEMIMM, MemOPw_SETBITi_V4, or>;
}

//===----------------------------------------------------------------------===//
// Multiclass to define 'def Pats' for ALU operations on the memory
// where addend is a register.
// mem[bhw](Rs+#0) [+-&|]= Rt
// mem[bhw](Rs+#U6:[012]) [+-&|]= Rt
//===----------------------------------------------------------------------===//

multiclass MemOpr_Pats <PatFrag ldOp, PatFrag stOp, ComplexPattern addrPred,
                     PatLeaf extPred, InstHexagon MI, SDNode OpNode> {
  let AddedComplexity = 141 in
  // mem[bhw](Rs+#0) [+-&|]= Rt
  def : Pat <(stOp (OpNode (ldOp addrPred:$addr), (i32 IntRegs:$addend)),
                   addrPred:$addr),
             (MI IntRegs:$addr, #0, (i32 IntRegs:$addend) )>;

  // mem[bhw](Rs+#U6:[012]) [+-&|]= Rt
  let AddedComplexity = 150 in
  def : Pat <(stOp (OpNode (ldOp (add IntRegs:$base, extPred:$offset)),
                           (i32 IntRegs:$orend)),
                   (add IntRegs:$base, extPred:$offset)),
             (MI IntRegs:$base, extPred:$offset, (i32 IntRegs:$orend) )>;
}

multiclass MemOPr_ALUOp<PatFrag ldOp, PatFrag stOp,
                        ComplexPattern addrPred, PatLeaf extPred,
                        InstHexagon addMI, InstHexagon subMI,
                        InstHexagon andMI, InstHexagon orMI > {

  defm : MemOpr_Pats <ldOp, stOp, addrPred, extPred, addMI, add>;
  defm : MemOpr_Pats <ldOp, stOp, addrPred, extPred, subMI, sub>;
  defm : MemOpr_Pats <ldOp, stOp, addrPred, extPred, andMI, and>;
  defm : MemOpr_Pats <ldOp, stOp, addrPred, extPred, orMI,  or>;
}

multiclass MemOPr_ExtType<PatFrag ldOpByte, PatFrag ldOpHalf > {
  // Half Word
  defm : MemOPr_ALUOp <ldOpHalf, truncstorei16, ADDRriU6_1, u6_1ExtPred,
                       MemOPh_ADDr_V4, MemOPh_SUBr_V4,
                       MemOPh_ANDr_V4, MemOPh_ORr_V4>;
  // Byte
  defm : MemOPr_ALUOp <ldOpByte, truncstorei8, ADDRriU6_0, u6ExtPred,
                       MemOPb_ADDr_V4, MemOPb_SUBr_V4,
                       MemOPb_ANDr_V4, MemOPb_ORr_V4>;
}

// Define 'def Pats' for MemOps with register addend.
let Predicates = [HasV4T, UseMEMOP] in {
  // Byte, Half Word
  defm : MemOPr_ExtType<zextloadi8, zextloadi16>; // zero extend
  defm : MemOPr_ExtType<sextloadi8, sextloadi16>; // sign extend
  defm : MemOPr_ExtType<extloadi8,  extloadi16>;  // any extend
  // Word
  defm : MemOPr_ALUOp <load, store, ADDRriU6_2, u6_2ExtPred, MemOPw_ADDr_V4,
                       MemOPw_SUBr_V4, MemOPw_ANDr_V4, MemOPw_ORr_V4 >;
}

//===----------------------------------------------------------------------===//
// XTYPE/PRED +
//===----------------------------------------------------------------------===//

// Hexagon V4 only supports these flavors of byte/half compare instructions:
// EQ/GT/GTU. Other flavors like GE/GEU/LT/LTU/LE/LEU are not supported by
// hardware. However, compiler can still implement these patterns through
// appropriate patterns combinations based on current implemented patterns.
// The implemented patterns are: EQ/GT/GTU.
// Missing patterns are: GE/GEU/LT/LTU/LE/LEU.

// Following instruction is not being extended as it results into the
// incorrect code for negative numbers.
// Pd=cmpb.eq(Rs,#u8)

// p=!cmp.eq(r1,r2)
let isCompare = 1, validSubTargets = HasV4SubT in
def CMPnotEQ_rr : ALU32_rr<(outs PredRegs:$dst),
                           (ins IntRegs:$src1, IntRegs:$src2),
      "$dst = !cmp.eq($src1, $src2)",
      [(set (i1 PredRegs:$dst),
            (setne (i32 IntRegs:$src1), (i32 IntRegs:$src2)))]>,
      Requires<[HasV4T]>;

// p=!cmp.eq(r1,#s10)
let isCompare = 1, validSubTargets = HasV4SubT in
def CMPnotEQ_ri : ALU32_ri<(outs PredRegs:$dst),
                           (ins IntRegs:$src1, s10Ext:$src2),
      "$dst = !cmp.eq($src1, #$src2)",
      [(set (i1 PredRegs:$dst),
            (setne (i32 IntRegs:$src1), s10ImmPred:$src2))]>,
      Requires<[HasV4T]>;

// p=!cmp.gt(r1,r2)
let isCompare = 1, validSubTargets = HasV4SubT in
def CMPnotGT_rr : ALU32_rr<(outs PredRegs:$dst),
                           (ins IntRegs:$src1, IntRegs:$src2),
      "$dst = !cmp.gt($src1, $src2)",
      [(set (i1 PredRegs:$dst),
            (not (setgt (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>,
      Requires<[HasV4T]>;

// p=!cmp.gt(r1,#s10)
let isCompare = 1, validSubTargets = HasV4SubT in
def CMPnotGT_ri : ALU32_ri<(outs PredRegs:$dst),
                           (ins IntRegs:$src1, s10Ext:$src2),
      "$dst = !cmp.gt($src1, #$src2)",
      [(set (i1 PredRegs:$dst),
            (not (setgt (i32 IntRegs:$src1), s10ImmPred:$src2)))]>,
      Requires<[HasV4T]>;

// p=!cmp.gtu(r1,r2)
let isCompare = 1, validSubTargets = HasV4SubT in
def CMPnotGTU_rr : ALU32_rr<(outs PredRegs:$dst),
                            (ins IntRegs:$src1, IntRegs:$src2),
      "$dst = !cmp.gtu($src1, $src2)",
      [(set (i1 PredRegs:$dst),
            (not (setugt (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>,
      Requires<[HasV4T]>;

// p=!cmp.gtu(r1,#u9)
let isCompare = 1, validSubTargets = HasV4SubT in
def CMPnotGTU_ri : ALU32_ri<(outs PredRegs:$dst),
                            (ins IntRegs:$src1, u9Ext:$src2),
      "$dst = !cmp.gtu($src1, #$src2)",
      [(set (i1 PredRegs:$dst),
            (not (setugt (i32 IntRegs:$src1), u9ImmPred:$src2)))]>,
      Requires<[HasV4T]>;

let isCompare = 1, validSubTargets = HasV4SubT in
def CMPbEQri_V4 : MInst<(outs PredRegs:$dst),
            (ins IntRegs:$src1, u8Imm:$src2),
            "$dst = cmpb.eq($src1, #$src2)",
            [(set (i1 PredRegs:$dst),
                  (seteq (and (i32 IntRegs:$src1), 255), u8ImmPred:$src2))]>,
            Requires<[HasV4T]>;

def : Pat <(brcond (i1 (setne (and (i32 IntRegs:$src1), 255), u8ImmPred:$src2)),
                       bb:$offset),
      (JMP_cNot (CMPbEQri_V4 (i32 IntRegs:$src1), u8ImmPred:$src2),
                bb:$offset)>,
      Requires<[HasV4T]>;

// Pd=cmpb.eq(Rs,Rt)
let isCompare = 1, validSubTargets = HasV4SubT in
def CMPbEQrr_ubub_V4 : MInst<(outs PredRegs:$dst),
            (ins IntRegs:$src1, IntRegs:$src2),
            "$dst = cmpb.eq($src1, $src2)",
            [(set (i1 PredRegs:$dst),
                  (seteq (and (xor (i32 IntRegs:$src1),
                                   (i32 IntRegs:$src2)), 255), 0))]>,
            Requires<[HasV4T]>;

// Pd=cmpb.eq(Rs,Rt)
let isCompare = 1, validSubTargets = HasV4SubT in
def CMPbEQrr_sbsb_V4 : MInst<(outs PredRegs:$dst),
            (ins IntRegs:$src1, IntRegs:$src2),
            "$dst = cmpb.eq($src1, $src2)",
            [(set (i1 PredRegs:$dst),
                  (seteq (shl (i32 IntRegs:$src1), (i32 24)),
                         (shl (i32 IntRegs:$src2), (i32 24))))]>,
            Requires<[HasV4T]>;

// Pd=cmpb.gt(Rs,Rt)
let isCompare = 1, validSubTargets = HasV4SubT in
def CMPbGTrr_V4 : MInst<(outs PredRegs:$dst),
            (ins IntRegs:$src1, IntRegs:$src2),
            "$dst = cmpb.gt($src1, $src2)",
            [(set (i1 PredRegs:$dst),
                  (setgt (shl (i32 IntRegs:$src1), (i32 24)),
                         (shl (i32 IntRegs:$src2), (i32 24))))]>,
            Requires<[HasV4T]>;

// Pd=cmpb.gtu(Rs,#u7)
let isExtendable = 1, opExtendable = 2, isExtentSigned = 0, opExtentBits = 7,
isCompare = 1, validSubTargets = HasV4SubT, CextOpcode = "CMPbGTU", InputType = "imm" in
def CMPbGTUri_V4 : MInst<(outs PredRegs:$dst),
            (ins IntRegs:$src1, u7Ext:$src2),
            "$dst = cmpb.gtu($src1, #$src2)",
            [(set (i1 PredRegs:$dst), (setugt (and (i32 IntRegs:$src1), 255),
                                              u7ExtPred:$src2))]>,
            Requires<[HasV4T]>, ImmRegRel;

// SDNode for converting immediate C to C-1.
def DEC_CONST_BYTE : SDNodeXForm<imm, [{
   // Return the byte immediate const-1 as an SDNode.
   int32_t imm = N->getSExtValue();
   return XformU7ToU7M1Imm(imm);
}]>;

// For the sequence
//   zext( seteq ( and(Rs, 255), u8))
// Generate
//   Pd=cmpb.eq(Rs, #u8)
//   if (Pd.new) Rd=#1
//   if (!Pd.new) Rd=#0
def : Pat <(i32 (zext (i1 (seteq (i32 (and (i32 IntRegs:$Rs), 255)),
                                           u8ExtPred:$u8)))),
           (i32 (TFR_condset_ii (i1 (CMPbEQri_V4 (i32 IntRegs:$Rs),
                                                 (u8ExtPred:$u8))),
                                1, 0))>,
           Requires<[HasV4T]>;

// For the sequence
//   zext( setne ( and(Rs, 255), u8))
// Generate
//   Pd=cmpb.eq(Rs, #u8)
//   if (Pd.new) Rd=#0
//   if (!Pd.new) Rd=#1
def : Pat <(i32 (zext (i1 (setne (i32 (and (i32 IntRegs:$Rs), 255)),
                                           u8ExtPred:$u8)))),
           (i32 (TFR_condset_ii (i1 (CMPbEQri_V4 (i32 IntRegs:$Rs),
                                                 (u8ExtPred:$u8))),
                                0, 1))>,
           Requires<[HasV4T]>;

// For the sequence
//   zext( seteq (Rs, and(Rt, 255)))
// Generate
//   Pd=cmpb.eq(Rs, Rt)
//   if (Pd.new) Rd=#1
//   if (!Pd.new) Rd=#0
def : Pat <(i32 (zext (i1 (seteq (i32 IntRegs:$Rt),
                                 (i32 (and (i32 IntRegs:$Rs), 255)))))),
           (i32 (TFR_condset_ii (i1 (CMPbEQrr_ubub_V4 (i32 IntRegs:$Rs),
                                                      (i32 IntRegs:$Rt))),
                                1, 0))>,
           Requires<[HasV4T]>;

// For the sequence
//   zext( setne (Rs, and(Rt, 255)))
// Generate
//   Pd=cmpb.eq(Rs, Rt)
//   if (Pd.new) Rd=#0
//   if (!Pd.new) Rd=#1
def : Pat <(i32 (zext (i1 (setne (i32 IntRegs:$Rt),
                                 (i32 (and (i32 IntRegs:$Rs), 255)))))),
           (i32 (TFR_condset_ii (i1 (CMPbEQrr_ubub_V4 (i32 IntRegs:$Rs),
                                                      (i32 IntRegs:$Rt))),
                                0, 1))>,
           Requires<[HasV4T]>;

// For the sequence
//   zext( setugt ( and(Rs, 255), u8))
// Generate
//   Pd=cmpb.gtu(Rs, #u8)
//   if (Pd.new) Rd=#1
//   if (!Pd.new) Rd=#0
def : Pat <(i32 (zext (i1 (setugt (i32 (and (i32 IntRegs:$Rs), 255)),
                                            u8ExtPred:$u8)))),
           (i32 (TFR_condset_ii (i1 (CMPbGTUri_V4 (i32 IntRegs:$Rs),
                                                  (u8ExtPred:$u8))),
                                1, 0))>,
           Requires<[HasV4T]>;

// For the sequence
//   zext( setugt ( and(Rs, 254), u8))
// Generate
//   Pd=cmpb.gtu(Rs, #u8)
//   if (Pd.new) Rd=#1
//   if (!Pd.new) Rd=#0
def : Pat <(i32 (zext (i1 (setugt (i32 (and (i32 IntRegs:$Rs), 254)),
                                            u8ExtPred:$u8)))),
           (i32 (TFR_condset_ii (i1 (CMPbGTUri_V4 (i32 IntRegs:$Rs),
                                                  (u8ExtPred:$u8))),
                                1, 0))>,
           Requires<[HasV4T]>;

// For the sequence
//   zext( setult ( Rs, Rt))
// Generate
//   Pd=cmp.ltu(Rs, Rt)
//   if (Pd.new) Rd=#1
//   if (!Pd.new) Rd=#0
// cmp.ltu(Rs, Rt) -> cmp.gtu(Rt, Rs)
def : Pat <(i32 (zext (i1 (setult (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
           (i32 (TFR_condset_ii (i1 (CMPGTUrr (i32 IntRegs:$Rt),
                                              (i32 IntRegs:$Rs))),
                                1, 0))>,
           Requires<[HasV4T]>;

// For the sequence
//   zext( setlt ( Rs, Rt))
// Generate
//   Pd=cmp.lt(Rs, Rt)
//   if (Pd.new) Rd=#1
//   if (!Pd.new) Rd=#0
// cmp.lt(Rs, Rt) -> cmp.gt(Rt, Rs)
def : Pat <(i32 (zext (i1 (setlt (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
           (i32 (TFR_condset_ii (i1 (CMPGTrr (i32 IntRegs:$Rt),
                                             (i32 IntRegs:$Rs))),
                                1, 0))>,
           Requires<[HasV4T]>;

// For the sequence
//   zext( setugt ( Rs, Rt))
// Generate
//   Pd=cmp.gtu(Rs, Rt)
//   if (Pd.new) Rd=#1
//   if (!Pd.new) Rd=#0
def : Pat <(i32 (zext (i1 (setugt (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
           (i32 (TFR_condset_ii (i1 (CMPGTUrr (i32 IntRegs:$Rs),
                                              (i32 IntRegs:$Rt))),
                                1, 0))>,
           Requires<[HasV4T]>;

// This pattern interefers with coremark performance, not implementing at this
// time.
// For the sequence
//   zext( setgt ( Rs, Rt))
// Generate
//   Pd=cmp.gt(Rs, Rt)
//   if (Pd.new) Rd=#1
//   if (!Pd.new) Rd=#0

// For the sequence
//   zext( setuge ( Rs, Rt))
// Generate
//   Pd=cmp.ltu(Rs, Rt)
//   if (Pd.new) Rd=#0
//   if (!Pd.new) Rd=#1
// cmp.ltu(Rs, Rt) -> cmp.gtu(Rt, Rs)
def : Pat <(i32 (zext (i1 (setuge (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
           (i32 (TFR_condset_ii (i1 (CMPGTUrr (i32 IntRegs:$Rt),
                                              (i32 IntRegs:$Rs))),
                                0, 1))>,
           Requires<[HasV4T]>;

// For the sequence
//   zext( setge ( Rs, Rt))
// Generate
//   Pd=cmp.lt(Rs, Rt)
//   if (Pd.new) Rd=#0
//   if (!Pd.new) Rd=#1
// cmp.lt(Rs, Rt) -> cmp.gt(Rt, Rs)
def : Pat <(i32 (zext (i1 (setge (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
           (i32 (TFR_condset_ii (i1 (CMPGTrr (i32 IntRegs:$Rt),
                                             (i32 IntRegs:$Rs))),
                                0, 1))>,
           Requires<[HasV4T]>;

// For the sequence
//   zext( setule ( Rs, Rt))
// Generate
//   Pd=cmp.gtu(Rs, Rt)
//   if (Pd.new) Rd=#0
//   if (!Pd.new) Rd=#1
def : Pat <(i32 (zext (i1 (setule (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
           (i32 (TFR_condset_ii (i1 (CMPGTUrr (i32 IntRegs:$Rs),
                                              (i32 IntRegs:$Rt))),
                                0, 1))>,
           Requires<[HasV4T]>;

// For the sequence
//   zext( setle ( Rs, Rt))
// Generate
//   Pd=cmp.gt(Rs, Rt)
//   if (Pd.new) Rd=#0
//   if (!Pd.new) Rd=#1
def : Pat <(i32 (zext (i1 (setle (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
           (i32 (TFR_condset_ii (i1 (CMPGTrr (i32 IntRegs:$Rs),
                                             (i32 IntRegs:$Rt))),
                                0, 1))>,
           Requires<[HasV4T]>;

// For the sequence
//   zext( setult ( and(Rs, 255), u8))
// Use the isdigit transformation below

// Generate code of the form 'mux_ii(cmpbgtu(Rdd, C-1),0,1)'
// for C code of the form r = ((c>='0') & (c<='9')) ? 1 : 0;.
// The isdigit transformation relies on two 'clever' aspects:
// 1) The data type is unsigned which allows us to eliminate a zero test after
//    biasing the expression by 48. We are depending on the representation of
//    the unsigned types, and semantics.
// 2) The front end has converted <= 9 into < 10 on entry to LLVM
//
// For the C code:
//   retval = ((c>='0') & (c<='9')) ? 1 : 0;
// The code is transformed upstream of llvm into
//   retval = (c-48) < 10 ? 1 : 0;
let AddedComplexity = 139 in
def : Pat <(i32 (zext (i1 (setult (i32 (and (i32 IntRegs:$src1), 255)),
                                  u7StrictPosImmPred:$src2)))),
  (i32 (MUX_ii (i1 (CMPbGTUri_V4 (i32 IntRegs:$src1),
                                 (DEC_CONST_BYTE u7StrictPosImmPred:$src2))),
                   0, 1))>,
                   Requires<[HasV4T]>;

// Pd=cmpb.gtu(Rs,Rt)
let isCompare = 1, validSubTargets = HasV4SubT, CextOpcode = "CMPbGTU",
InputType = "reg" in
def CMPbGTUrr_V4 : MInst<(outs PredRegs:$dst),
            (ins IntRegs:$src1, IntRegs:$src2),
            "$dst = cmpb.gtu($src1, $src2)",
            [(set (i1 PredRegs:$dst), (setugt (and (i32 IntRegs:$src1), 255),
                                             (and (i32 IntRegs:$src2), 255)))]>,
            Requires<[HasV4T]>, ImmRegRel;

// Following instruction is not being extended as it results into the incorrect
// code for negative numbers.

// Signed half compare(.eq) ri.
// Pd=cmph.eq(Rs,#s8)
let isCompare = 1, validSubTargets = HasV4SubT in
def CMPhEQri_V4 : MInst<(outs PredRegs:$dst),
            (ins IntRegs:$src1, s8Imm:$src2),
            "$dst = cmph.eq($src1, #$src2)",
            [(set (i1 PredRegs:$dst), (seteq (and (i32 IntRegs:$src1), 65535),
                                             s8ImmPred:$src2))]>,
            Requires<[HasV4T]>;

// Signed half compare(.eq) rr.
// Case 1: xor + and, then compare:
//   r0=xor(r0,r1)
//   r0=and(r0,#0xffff)
//   p0=cmp.eq(r0,#0)
// Pd=cmph.eq(Rs,Rt)
let isCompare = 1, validSubTargets = HasV4SubT in
def CMPhEQrr_xor_V4 : MInst<(outs PredRegs:$dst),
            (ins IntRegs:$src1, IntRegs:$src2),
            "$dst = cmph.eq($src1, $src2)",
            [(set (i1 PredRegs:$dst), (seteq (and (xor (i32 IntRegs:$src1),
                                                       (i32 IntRegs:$src2)),
                                                  65535), 0))]>,
            Requires<[HasV4T]>;

// Signed half compare(.eq) rr.
// Case 2: shift left 16 bits then compare:
//   r0=asl(r0,16)
//   r1=asl(r1,16)
//   p0=cmp.eq(r0,r1)
// Pd=cmph.eq(Rs,Rt)
let isCompare = 1, validSubTargets = HasV4SubT in
def CMPhEQrr_shl_V4 : MInst<(outs PredRegs:$dst),
            (ins IntRegs:$src1, IntRegs:$src2),
            "$dst = cmph.eq($src1, $src2)",
            [(set (i1 PredRegs:$dst),
                  (seteq (shl (i32 IntRegs:$src1), (i32 16)),
                         (shl (i32 IntRegs:$src2), (i32 16))))]>,
            Requires<[HasV4T]>;

/* Incorrect Pattern -- immediate should be right shifted before being
used in the cmph.gt instruction.
// Signed half compare(.gt) ri.
// Pd=cmph.gt(Rs,#s8)

let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 8,
isCompare = 1, validSubTargets = HasV4SubT in
def CMPhGTri_V4 : MInst<(outs PredRegs:$dst),
            (ins IntRegs:$src1, s8Ext:$src2),
            "$dst = cmph.gt($src1, #$src2)",
            [(set (i1 PredRegs:$dst),
                  (setgt (shl (i32 IntRegs:$src1), (i32 16)),
                         s8ExtPred:$src2))]>,
            Requires<[HasV4T]>;
*/

// Signed half compare(.gt) rr.
// Pd=cmph.gt(Rs,Rt)
let isCompare = 1, validSubTargets = HasV4SubT in
def CMPhGTrr_shl_V4 : MInst<(outs PredRegs:$dst),
            (ins IntRegs:$src1, IntRegs:$src2),
            "$dst = cmph.gt($src1, $src2)",
            [(set (i1 PredRegs:$dst),
                  (setgt (shl (i32 IntRegs:$src1), (i32 16)),
                         (shl (i32 IntRegs:$src2), (i32 16))))]>,
            Requires<[HasV4T]>;

// Unsigned half compare rr (.gtu).
// Pd=cmph.gtu(Rs,Rt)
let isCompare = 1, validSubTargets = HasV4SubT, CextOpcode = "CMPhGTU",
InputType = "reg" in
def CMPhGTUrr_V4 : MInst<(outs PredRegs:$dst),
            (ins IntRegs:$src1, IntRegs:$src2),
            "$dst = cmph.gtu($src1, $src2)",
            [(set (i1 PredRegs:$dst),
                  (setugt (and (i32 IntRegs:$src1), 65535),
                          (and (i32 IntRegs:$src2), 65535)))]>,
            Requires<[HasV4T]>, ImmRegRel;

// Unsigned half compare ri (.gtu).
// Pd=cmph.gtu(Rs,#u7)
let isExtendable = 1, opExtendable = 2, isExtentSigned = 0, opExtentBits = 7,
isCompare = 1, validSubTargets = HasV4SubT, CextOpcode = "CMPhGTU",
InputType = "imm" in
def CMPhGTUri_V4 : MInst<(outs PredRegs:$dst),
            (ins IntRegs:$src1, u7Ext:$src2),
            "$dst = cmph.gtu($src1, #$src2)",
            [(set (i1 PredRegs:$dst), (setugt (and (i32 IntRegs:$src1), 65535),
                                              u7ExtPred:$src2))]>,
            Requires<[HasV4T]>, ImmRegRel;

let validSubTargets = HasV4SubT in
def NTSTBIT_rr : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
    "$dst = !tstbit($src1, $src2)",
    [(set (i1 PredRegs:$dst),
          (seteq (and (shl 1, (i32 IntRegs:$src2)), (i32 IntRegs:$src1)), 0))]>,
    Requires<[HasV4T]>;

let validSubTargets = HasV4SubT in
def NTSTBIT_ri : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
    "$dst = !tstbit($src1, $src2)",
    [(set (i1 PredRegs:$dst),
          (seteq (and (shl 1, u5ImmPred:$src2), (i32 IntRegs:$src1)), 0))]>,
    Requires<[HasV4T]>;

//===----------------------------------------------------------------------===//
// XTYPE/PRED -
//===----------------------------------------------------------------------===//

//Deallocate frame and return.
//    dealloc_return
let isReturn = 1, isTerminator = 1, isBarrier = 1, isPredicable = 1,
  Defs = [R29, R30, R31, PC], Uses = [R29, R31], neverHasSideEffects = 1 in {
  def DEALLOC_RET_V4 : NVInst_V4<(outs), (ins i32imm:$amt1),
            "dealloc_return",
            []>,
            Requires<[HasV4T]>;
}

// Restore registers and dealloc return function call.
let isCall = 1, isBarrier = 1, isReturn = 1, isTerminator = 1,
  Defs = [R29, R30, R31, PC] in {
  def RESTORE_DEALLOC_RET_JMP_V4 : JInst<(outs),
                                   (ins calltarget:$dst),
             "jump $dst // Restore_and_dealloc_return",
             []>,
             Requires<[HasV4T]>;
}

// Restore registers and dealloc frame before a tail call.
let isCall = 1, isBarrier = 1,
  Defs = [R29, R30, R31, PC] in {
  def RESTORE_DEALLOC_BEFORE_TAILCALL_V4 : JInst<(outs),
                                           (ins calltarget:$dst),
             "call $dst // Restore_and_dealloc_before_tailcall",
             []>,
             Requires<[HasV4T]>;
}

// Save registers function call.
let isCall = 1, isBarrier = 1,
  Uses = [R29, R31] in {
  def SAVE_REGISTERS_CALL_V4 : JInst<(outs),
                               (ins calltarget:$dst),
             "call $dst // Save_calle_saved_registers",
             []>,
             Requires<[HasV4T]>;
}

//    if (Ps) dealloc_return
let isReturn = 1, isTerminator = 1,
    Defs = [R29, R30, R31, PC], Uses = [R29, R31], neverHasSideEffects = 1,
    isPredicated = 1 in {
  def DEALLOC_RET_cPt_V4 : NVInst_V4<(outs),
                           (ins PredRegs:$src1, i32imm:$amt1),
            "if ($src1) dealloc_return",
            []>,
            Requires<[HasV4T]>;
}

//    if (!Ps) dealloc_return
let isReturn = 1, isTerminator = 1,
    Defs = [R29, R30, R31, PC], Uses = [R29, R31], neverHasSideEffects = 1,
    isPredicated = 1 in {
  def DEALLOC_RET_cNotPt_V4 : NVInst_V4<(outs), (ins PredRegs:$src1,
                                                     i32imm:$amt1),
            "if (!$src1) dealloc_return",
            []>,
            Requires<[HasV4T]>;
}

//    if (Ps.new) dealloc_return:nt
let isReturn = 1, isTerminator = 1,
    Defs = [R29, R30, R31, PC], Uses = [R29, R31], neverHasSideEffects = 1,
    isPredicated = 1 in {
  def DEALLOC_RET_cdnPnt_V4 : NVInst_V4<(outs), (ins PredRegs:$src1,
                                                     i32imm:$amt1),
            "if ($src1.new) dealloc_return:nt",
            []>,
            Requires<[HasV4T]>;
}

//    if (!Ps.new) dealloc_return:nt
let isReturn = 1, isTerminator = 1,
    Defs = [R29, R30, R31, PC], Uses = [R29, R31], neverHasSideEffects = 1,
    isPredicated = 1 in {
  def DEALLOC_RET_cNotdnPnt_V4 : NVInst_V4<(outs), (ins PredRegs:$src1,
                                                        i32imm:$amt1),
            "if (!$src1.new) dealloc_return:nt",
            []>,
            Requires<[HasV4T]>;
}

//    if (Ps.new) dealloc_return:t
let isReturn = 1, isTerminator = 1,
    Defs = [R29, R30, R31, PC], Uses = [R29, R31], neverHasSideEffects = 1,
    isPredicated = 1 in {
  def DEALLOC_RET_cdnPt_V4 : NVInst_V4<(outs), (ins PredRegs:$src1,
                                                    i32imm:$amt1),
            "if ($src1.new) dealloc_return:t",
            []>,
            Requires<[HasV4T]>;
}

//    if (!Ps.new) dealloc_return:nt
let isReturn = 1, isTerminator = 1,
    Defs = [R29, R30, R31, PC], Uses = [R29, R31], neverHasSideEffects = 1,
    isPredicated = 1 in {
  def DEALLOC_RET_cNotdnPt_V4 : NVInst_V4<(outs), (ins PredRegs:$src1,
                                                       i32imm:$amt1),
            "if (!$src1.new) dealloc_return:t",
            []>,
            Requires<[HasV4T]>;
}

// Load/Store with absolute addressing mode
// memw(#u6)=Rt

multiclass ST_Abs_Predbase<string mnemonic, RegisterClass RC, bit isNot,
                           bit isPredNew> {
  let PNewValue = !if(isPredNew, "new", "") in
  def NAME#_V4 : STInst2<(outs),
            (ins PredRegs:$src1, globaladdressExt:$absaddr, RC: $src2),
            !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
            ") ")#mnemonic#"(##$absaddr) = $src2",
            []>,
            Requires<[HasV4T]>;
}

multiclass ST_Abs_Pred<string mnemonic, RegisterClass RC, bit PredNot> {
  let PredSense = !if(PredNot, "false", "true") in {
    defm _c#NAME : ST_Abs_Predbase<mnemonic, RC, PredNot, 0>;
    // Predicate new
    defm _cdn#NAME : ST_Abs_Predbase<mnemonic, RC, PredNot, 1>;
  }
}

let isNVStorable = 1, isExtended = 1, neverHasSideEffects = 1 in
multiclass ST_Abs<string mnemonic, string CextOp, RegisterClass RC> {
  let CextOpcode = CextOp, BaseOpcode = CextOp#_abs in {
    let opExtendable = 0, isPredicable = 1 in
    def NAME#_V4 : STInst2<(outs),
            (ins globaladdressExt:$absaddr, RC:$src),
            mnemonic#"(##$absaddr) = $src",
            []>,
            Requires<[HasV4T]>;

    let opExtendable = 1, isPredicated = 1 in {
      defm Pt : ST_Abs_Pred<mnemonic, RC, 0>;
      defm NotPt : ST_Abs_Pred<mnemonic, RC, 1>;
    }
  }
}

multiclass ST_Abs_Predbase_nv<string mnemonic, RegisterClass RC, bit isNot,
                           bit isPredNew> {
  let PNewValue = !if(isPredNew, "new", "") in
  def NAME#_nv_V4 : NVInst_V4<(outs),
            (ins PredRegs:$src1, globaladdressExt:$absaddr, RC: $src2),
            !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
            ") ")#mnemonic#"(##$absaddr) = $src2.new",
            []>,
            Requires<[HasV4T]>;
}

multiclass ST_Abs_Pred_nv<string mnemonic, RegisterClass RC, bit PredNot> {
  let PredSense = !if(PredNot, "false", "true") in {
    defm _c#NAME : ST_Abs_Predbase_nv<mnemonic, RC, PredNot, 0>;
    // Predicate new
    defm _cdn#NAME : ST_Abs_Predbase_nv<mnemonic, RC, PredNot, 1>;
  }
}

let mayStore = 1, isNVStore = 1, isExtended = 1, neverHasSideEffects = 1 in
multiclass ST_Abs_nv<string mnemonic, string CextOp, RegisterClass RC> {
  let CextOpcode = CextOp, BaseOpcode = CextOp#_abs in {
    let opExtendable = 0, isPredicable = 1 in
    def NAME#_nv_V4 : NVInst_V4<(outs),
            (ins globaladdressExt:$absaddr, RC:$src),
            mnemonic#"(##$absaddr) = $src.new",
            []>,
            Requires<[HasV4T]>;

    let opExtendable = 1, isPredicated = 1 in {
      defm Pt : ST_Abs_Pred_nv<mnemonic, RC, 0>;
      defm NotPt : ST_Abs_Pred_nv<mnemonic, RC, 1>;
    }
  }
}

let addrMode = Absolute in {
    defm STrib_abs : ST_Abs<"memb", "STrib", IntRegs>,
                     ST_Abs_nv<"memb", "STrib", IntRegs>, AddrModeRel;

    defm STrih_abs : ST_Abs<"memh", "STrih", IntRegs>,
                     ST_Abs_nv<"memh", "STrih", IntRegs>, AddrModeRel;

    defm STriw_abs : ST_Abs<"memw", "STriw", IntRegs>,
                     ST_Abs_nv<"memw", "STriw", IntRegs>, AddrModeRel;

  let isNVStorable = 0 in
    defm STrid_abs : ST_Abs<"memd", "STrid", DoubleRegs>, AddrModeRel;
}

let Predicates = [HasV4T], AddedComplexity = 30 in {
def : Pat<(truncstorei8 (i32 IntRegs:$src1),
                        (HexagonCONST32 tglobaladdr:$absaddr)),
          (STrib_abs_V4 tglobaladdr: $absaddr, IntRegs: $src1)>;

def : Pat<(truncstorei16 (i32 IntRegs:$src1),
                          (HexagonCONST32 tglobaladdr:$absaddr)),
          (STrih_abs_V4 tglobaladdr: $absaddr, IntRegs: $src1)>;

def : Pat<(store (i32 IntRegs:$src1), (HexagonCONST32 tglobaladdr:$absaddr)),
          (STriw_abs_V4 tglobaladdr: $absaddr, IntRegs: $src1)>;

def : Pat<(store (i64 DoubleRegs:$src1),
                 (HexagonCONST32 tglobaladdr:$absaddr)),
          (STrid_abs_V4 tglobaladdr: $absaddr, DoubleRegs: $src1)>;
}

//===----------------------------------------------------------------------===//
// multiclass for store instructions with GP-relative addressing mode.
// mem[bhwd](#global)=Rt
// if ([!]Pv[.new]) mem[bhwd](##global) = Rt
//===----------------------------------------------------------------------===//
multiclass ST_GP<string mnemonic, string BaseOp, RegisterClass RC> {
  let BaseOpcode = BaseOp, isPredicable = 1 in
  def NAME#_V4 : STInst2<(outs),
          (ins globaladdress:$global, RC:$src),
          mnemonic#"(#$global) = $src",
          []>;

  // When GP-relative instructions are predicated, their addressing mode is
  // changed to absolute and they are always constant extended.
  let BaseOpcode = BaseOp, isExtended = 1, opExtendable = 1,
  isPredicated = 1 in {
    defm Pt : ST_Abs_Pred <mnemonic, RC, 0>;
    defm NotPt : ST_Abs_Pred <mnemonic, RC, 1>;
  }
}

let mayStore = 1, isNVStore = 1 in
multiclass ST_GP_nv<string mnemonic, string BaseOp, RegisterClass RC> {
  let BaseOpcode = BaseOp, isPredicable = 1 in
  def NAME#_nv_V4 : NVInst_V4<(outs),
          (ins u0AlwaysExt:$global, RC:$src),
          mnemonic#"(#$global) = $src.new",
          []>,
          Requires<[HasV4T]>;

  // When GP-relative instructions are predicated, their addressing mode is
  // changed to absolute and they are always constant extended.
  let BaseOpcode = BaseOp, isExtended = 1, opExtendable = 1,
  isPredicated = 1 in {
    defm Pt : ST_Abs_Pred_nv<mnemonic, RC, 0>;
    defm NotPt : ST_Abs_Pred_nv<mnemonic, RC, 1>;
  }
}

let validSubTargets = HasV4SubT,  validSubTargets = HasV4SubT in {
defm STd_GP : ST_GP <"memd", "STd_GP", DoubleRegs>,
              ST_GP_nv<"memd", "STd_GP", DoubleRegs>, NewValueRel ;
defm STb_GP : ST_GP<"memb",  "STb_GP", IntRegs>,
              ST_GP_nv<"memb", "STb_GP", IntRegs>, NewValueRel ;
defm STh_GP : ST_GP<"memh",  "STh_GP", IntRegs>,
              ST_GP_nv<"memh", "STh_GP", IntRegs>, NewValueRel ;
defm STw_GP : ST_GP<"memw",  "STw_GP", IntRegs>,
              ST_GP_nv<"memw", "STw_GP", IntRegs>, NewValueRel ;
}

// 64 bit atomic store
def : Pat <(atomic_store_64 (HexagonCONST32_GP tglobaladdr:$global),
                            (i64 DoubleRegs:$src1)),
           (STd_GP_V4 tglobaladdr:$global, (i64 DoubleRegs:$src1))>,
           Requires<[HasV4T]>;

// Map from store(globaladdress) -> memd(#foo)
let AddedComplexity = 100 in
def : Pat <(store (i64 DoubleRegs:$src1),
                  (HexagonCONST32_GP tglobaladdr:$global)),
           (STd_GP_V4 tglobaladdr:$global, (i64 DoubleRegs:$src1))>;

// 8 bit atomic store
def : Pat < (atomic_store_8 (HexagonCONST32_GP tglobaladdr:$global),
                            (i32 IntRegs:$src1)),
            (STb_GP_V4 tglobaladdr:$global, (i32 IntRegs:$src1))>;

// Map from store(globaladdress) -> memb(#foo)
let AddedComplexity = 100 in
def : Pat<(truncstorei8 (i32 IntRegs:$src1),
          (HexagonCONST32_GP tglobaladdr:$global)),
          (STb_GP_V4 tglobaladdr:$global, (i32 IntRegs:$src1))>;

// Map from "i1 = constant<-1>; memw(CONST32(#foo)) = i1"
//       to "r0 = 1; memw(#foo) = r0"
let AddedComplexity = 100 in
def : Pat<(store (i1 -1), (HexagonCONST32_GP tglobaladdr:$global)),
          (STb_GP_V4 tglobaladdr:$global, (TFRI 1))>;

def : Pat<(atomic_store_16 (HexagonCONST32_GP tglobaladdr:$global),
                           (i32 IntRegs:$src1)),
          (STh_GP_V4 tglobaladdr:$global, (i32 IntRegs:$src1))>;

// Map from store(globaladdress) -> memh(#foo)
let AddedComplexity = 100 in
def : Pat<(truncstorei16 (i32 IntRegs:$src1),
                         (HexagonCONST32_GP tglobaladdr:$global)),
          (STh_GP_V4 tglobaladdr:$global, (i32 IntRegs:$src1))>;

// 32 bit atomic store
def : Pat<(atomic_store_32 (HexagonCONST32_GP tglobaladdr:$global),
                           (i32 IntRegs:$src1)),
          (STw_GP_V4 tglobaladdr:$global, (i32 IntRegs:$src1))>;

// Map from store(globaladdress) -> memw(#foo)
let AddedComplexity = 100 in
def : Pat<(store (i32 IntRegs:$src1), (HexagonCONST32_GP tglobaladdr:$global)),
          (STw_GP_V4 tglobaladdr:$global, (i32 IntRegs:$src1))>;

//===----------------------------------------------------------------------===//
// Multiclass for the load instructions with absolute addressing mode.
//===----------------------------------------------------------------------===//
multiclass LD_Abs_Predbase<string mnemonic, RegisterClass RC, bit isNot,
                           bit isPredNew> {
  let PNewValue = !if(isPredNew, "new", "") in
  def NAME : LDInst2<(outs RC:$dst),
            (ins PredRegs:$src1, globaladdressExt:$absaddr),
            !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
            ") ")#"$dst = "#mnemonic#"(##$absaddr)",
            []>,
            Requires<[HasV4T]>;
}

multiclass LD_Abs_Pred<string mnemonic, RegisterClass RC, bit PredNot> {
  let PredSense = !if(PredNot, "false", "true") in {
    defm _c#NAME : LD_Abs_Predbase<mnemonic, RC, PredNot, 0>;
    // Predicate new
    defm _cdn#NAME : LD_Abs_Predbase<mnemonic, RC, PredNot, 1>;
  }
}

let isExtended = 1, neverHasSideEffects = 1 in
multiclass LD_Abs<string mnemonic, string CextOp, RegisterClass RC> {
  let CextOpcode = CextOp, BaseOpcode = CextOp#_abs in {
    let  opExtendable = 1, isPredicable = 1 in
    def NAME#_V4 : LDInst2<(outs RC:$dst),
            (ins globaladdressExt:$absaddr),
            "$dst = "#mnemonic#"(##$absaddr)",
            []>,
            Requires<[HasV4T]>;

    let opExtendable = 2, isPredicated = 1 in {
      defm Pt_V4 : LD_Abs_Pred<mnemonic, RC, 0>;
      defm NotPt_V4 : LD_Abs_Pred<mnemonic, RC, 1>;
    }
  }
}

let addrMode = Absolute in {
    defm LDrib_abs  : LD_Abs<"memb", "LDrib", IntRegs>, AddrModeRel;
    defm LDriub_abs : LD_Abs<"memub", "LDriub", IntRegs>, AddrModeRel;
    defm LDrih_abs  : LD_Abs<"memh", "LDrih", IntRegs>, AddrModeRel;
    defm LDriuh_abs : LD_Abs<"memuh", "LDriuh", IntRegs>, AddrModeRel;
    defm LDriw_abs  : LD_Abs<"memw", "LDriw", IntRegs>, AddrModeRel;
    defm LDrid_abs : LD_Abs<"memd",  "LDrid", DoubleRegs>, AddrModeRel;
}

let Predicates = [HasV4T], AddedComplexity  = 30 in
def : Pat<(i32 (load (HexagonCONST32 tglobaladdr:$absaddr))),
          (LDriw_abs_V4 tglobaladdr: $absaddr)>;

let Predicates = [HasV4T], AddedComplexity=30 in
def : Pat<(i32 (sextloadi8 (HexagonCONST32 tglobaladdr:$absaddr))),
          (LDrib_abs_V4 tglobaladdr:$absaddr)>;

let Predicates = [HasV4T], AddedComplexity=30 in
def : Pat<(i32 (zextloadi8 (HexagonCONST32 tglobaladdr:$absaddr))),
          (LDriub_abs_V4 tglobaladdr:$absaddr)>;

let Predicates = [HasV4T], AddedComplexity=30 in
def : Pat<(i32 (sextloadi16 (HexagonCONST32 tglobaladdr:$absaddr))),
          (LDrih_abs_V4 tglobaladdr:$absaddr)>;

let Predicates = [HasV4T], AddedComplexity=30 in
def : Pat<(i32 (zextloadi16 (HexagonCONST32 tglobaladdr:$absaddr))),
          (LDriuh_abs_V4 tglobaladdr:$absaddr)>;

//===----------------------------------------------------------------------===//
// multiclass for load instructions with GP-relative addressing mode.
// Rx=mem[bhwd](##global)
// if ([!]Pv[.new]) Rx=mem[bhwd](##global)
//===----------------------------------------------------------------------===//
let neverHasSideEffects = 1, validSubTargets = HasV4SubT in
multiclass LD_GP<string mnemonic, string BaseOp, RegisterClass RC> {
  let BaseOpcode = BaseOp in {
    let isPredicable = 1 in
    def NAME#_V4 : LDInst2<(outs RC:$dst),
            (ins globaladdress:$global),
            "$dst = "#mnemonic#"(#$global)",
            []>;

    let isExtended = 1, opExtendable = 2, isPredicated = 1 in {
      defm Pt_V4 : LD_Abs_Pred<mnemonic, RC, 0>;
      defm NotPt_V4 : LD_Abs_Pred<mnemonic, RC, 1>;
    }
  }
}

defm LDd_GP  : LD_GP<"memd",  "LDd_GP",  DoubleRegs>;
defm LDb_GP  : LD_GP<"memb",  "LDb_GP",  IntRegs>;
defm LDub_GP : LD_GP<"memub", "LDub_GP", IntRegs>;
defm LDh_GP  : LD_GP<"memh",  "LDh_GP",  IntRegs>;
defm LDuh_GP : LD_GP<"memuh", "LDuh_GP", IntRegs>;
defm LDw_GP  : LD_GP<"memw",  "LDw_GP",  IntRegs>;

def : Pat <(atomic_load_64 (HexagonCONST32_GP tglobaladdr:$global)),
           (i64 (LDd_GP_V4 tglobaladdr:$global))>;

def : Pat <(atomic_load_32 (HexagonCONST32_GP tglobaladdr:$global)),
           (i32 (LDw_GP_V4 tglobaladdr:$global))>;

def : Pat <(atomic_load_16 (HexagonCONST32_GP tglobaladdr:$global)),
           (i32 (LDuh_GP_V4 tglobaladdr:$global))>;

def : Pat <(atomic_load_8 (HexagonCONST32_GP tglobaladdr:$global)),
           (i32 (LDub_GP_V4 tglobaladdr:$global))>;

// Map from load(globaladdress) -> memw(#foo + 0)
let AddedComplexity = 100 in
def : Pat <(i64 (load (HexagonCONST32_GP tglobaladdr:$global))),
           (i64 (LDd_GP_V4 tglobaladdr:$global))>;

// Map from Pd = load(globaladdress) -> Rd = memb(globaladdress), Pd = Rd
let AddedComplexity = 100 in
def : Pat <(i1 (load (HexagonCONST32_GP tglobaladdr:$global))),
           (i1 (TFR_PdRs (i32 (LDb_GP_V4 tglobaladdr:$global))))>;

// When the Interprocedural Global Variable optimizer realizes that a certain
// global variable takes only two constant values, it shrinks the global to
// a boolean. Catch those loads here in the following 3 patterns.
let AddedComplexity = 100 in
def : Pat <(i32 (extloadi1 (HexagonCONST32_GP tglobaladdr:$global))),
           (i32 (LDb_GP_V4 tglobaladdr:$global))>;

let AddedComplexity = 100 in
def : Pat <(i32 (sextloadi1 (HexagonCONST32_GP tglobaladdr:$global))),
           (i32 (LDb_GP_V4 tglobaladdr:$global))>;

// Map from load(globaladdress) -> memb(#foo)
let AddedComplexity = 100 in
def : Pat <(i32 (extloadi8 (HexagonCONST32_GP tglobaladdr:$global))),
           (i32 (LDb_GP_V4 tglobaladdr:$global))>;

// Map from load(globaladdress) -> memb(#foo)
let AddedComplexity = 100 in
def : Pat <(i32 (sextloadi8 (HexagonCONST32_GP tglobaladdr:$global))),
           (i32 (LDb_GP_V4 tglobaladdr:$global))>;

let AddedComplexity = 100 in
def : Pat <(i32 (zextloadi1 (HexagonCONST32_GP tglobaladdr:$global))),
           (i32 (LDub_GP_V4 tglobaladdr:$global))>;

// Map from load(globaladdress) -> memub(#foo)
let AddedComplexity = 100 in
def : Pat <(i32 (zextloadi8 (HexagonCONST32_GP tglobaladdr:$global))),
           (i32 (LDub_GP_V4 tglobaladdr:$global))>;

// Map from load(globaladdress) -> memh(#foo)
let AddedComplexity = 100 in
def : Pat <(i32 (extloadi16 (HexagonCONST32_GP tglobaladdr:$global))),
           (i32 (LDh_GP_V4 tglobaladdr:$global))>;

// Map from load(globaladdress) -> memh(#foo)
let AddedComplexity = 100 in
def : Pat <(i32 (sextloadi16 (HexagonCONST32_GP tglobaladdr:$global))),
           (i32 (LDh_GP_V4 tglobaladdr:$global))>;

// Map from load(globaladdress) -> memuh(#foo)
let AddedComplexity = 100 in
def : Pat <(i32 (zextloadi16 (HexagonCONST32_GP tglobaladdr:$global))),
           (i32 (LDuh_GP_V4 tglobaladdr:$global))>;

// Map from load(globaladdress) -> memw(#foo)
let AddedComplexity = 100 in
def : Pat <(i32 (load (HexagonCONST32_GP tglobaladdr:$global))),
           (i32 (LDw_GP_V4 tglobaladdr:$global))>;


// Transfer global address into a register
let AddedComplexity=50, isMoveImm = 1, isReMaterializable = 1 in
def TFRI_V4 : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$src1),
           "$dst = ##$src1",
           [(set IntRegs:$dst, (HexagonCONST32 tglobaladdr:$src1))]>,
           Requires<[HasV4T]>;

// Transfer a block address into a register
def : Pat<(HexagonCONST32_GP tblockaddress:$src1),
          (TFRI_V4 tblockaddress:$src1)>,
          Requires<[HasV4T]>;

let AddedComplexity=50, neverHasSideEffects = 1, isPredicated = 1 in
def TFRI_cPt_V4 : ALU32_ri<(outs IntRegs:$dst),
                           (ins PredRegs:$src1, globaladdress:$src2),
           "if($src1) $dst = ##$src2",
           []>,
           Requires<[HasV4T]>;

let AddedComplexity=50, neverHasSideEffects = 1, isPredicated = 1 in
def TFRI_cNotPt_V4 : ALU32_ri<(outs IntRegs:$dst),
                              (ins PredRegs:$src1, globaladdress:$src2),
           "if(!$src1) $dst = ##$src2",
           []>,
           Requires<[HasV4T]>;

let AddedComplexity=50, neverHasSideEffects = 1, isPredicated = 1 in
def TFRI_cdnPt_V4 : ALU32_ri<(outs IntRegs:$dst),
                             (ins PredRegs:$src1, globaladdress:$src2),
           "if($src1.new) $dst = ##$src2",
           []>,
           Requires<[HasV4T]>;

let AddedComplexity=50, neverHasSideEffects = 1, isPredicated = 1 in
def TFRI_cdnNotPt_V4 : ALU32_ri<(outs IntRegs:$dst),
                                (ins PredRegs:$src1, globaladdress:$src2),
           "if(!$src1.new) $dst = ##$src2",
           []>,
           Requires<[HasV4T]>;

let AddedComplexity = 50, Predicates = [HasV4T] in
def : Pat<(HexagonCONST32_GP tglobaladdr:$src1),
           (TFRI_V4 tglobaladdr:$src1)>;


// Load - Indirect with long offset: These instructions take global address
// as an operand
let AddedComplexity = 10 in
def LDrid_ind_lo_V4 : LDInst<(outs DoubleRegs:$dst),
            (ins IntRegs:$src1, u2Imm:$src2, globaladdress:$offset),
            "$dst=memd($src1<<#$src2+##$offset)",
            [(set (i64 DoubleRegs:$dst),
                  (load (add (shl IntRegs:$src1, u2ImmPred:$src2),
                        (HexagonCONST32 tglobaladdr:$offset))))]>,
            Requires<[HasV4T]>;

let AddedComplexity = 10 in
multiclass LD_indirect_lo<string OpcStr, PatFrag OpNode> {
  def _lo_V4 : LDInst<(outs IntRegs:$dst),
            (ins IntRegs:$src1, u2Imm:$src2, globaladdress:$offset),
            !strconcat("$dst = ",
            !strconcat(OpcStr, "($src1<<#$src2+##$offset)")),
            [(set IntRegs:$dst,
                  (i32 (OpNode (add (shl IntRegs:$src1, u2ImmPred:$src2),
                          (HexagonCONST32 tglobaladdr:$offset)))))]>,
            Requires<[HasV4T]>;
}

defm LDrib_ind : LD_indirect_lo<"memb", sextloadi8>;
defm LDriub_ind : LD_indirect_lo<"memub", zextloadi8>;
defm LDrih_ind : LD_indirect_lo<"memh", sextloadi16>;
defm LDriuh_ind : LD_indirect_lo<"memuh", zextloadi16>;
defm LDriw_ind : LD_indirect_lo<"memw", load>;

// Store - Indirect with long offset: These instructions take global address
// as an operand
let AddedComplexity = 10 in
def STrid_ind_lo_V4 : STInst<(outs),
            (ins IntRegs:$src1, u2Imm:$src2, globaladdress:$src3,
                 DoubleRegs:$src4),
            "memd($src1<<#$src2+#$src3) = $src4",
            [(store (i64 DoubleRegs:$src4),
                 (add (shl IntRegs:$src1, u2ImmPred:$src2),
                      (HexagonCONST32 tglobaladdr:$src3)))]>,
             Requires<[HasV4T]>;

let AddedComplexity = 10 in
multiclass ST_indirect_lo<string OpcStr, PatFrag OpNode> {
  def _lo_V4 : STInst<(outs),
            (ins IntRegs:$src1, u2Imm:$src2, globaladdress:$src3,
                 IntRegs:$src4),
            !strconcat(OpcStr, "($src1<<#$src2+##$src3) = $src4"),
            [(OpNode (i32 IntRegs:$src4),
                 (add (shl IntRegs:$src1, u2ImmPred:$src2),
                      (HexagonCONST32 tglobaladdr:$src3)))]>,
             Requires<[HasV4T]>;
}

defm STrib_ind : ST_indirect_lo<"memb", truncstorei8>;
defm STrih_ind : ST_indirect_lo<"memh", truncstorei16>;
defm STriw_ind : ST_indirect_lo<"memw", store>;

// Store - absolute addressing mode: These instruction take constant
// value as the extended operand.
multiclass ST_absimm<string OpcStr> {
let isExtended = 1, opExtendable = 0, isPredicable = 1,
validSubTargets = HasV4SubT in
  def _abs_V4 : STInst2<(outs),
            (ins u0AlwaysExt:$src1, IntRegs:$src2),
            !strconcat(OpcStr, "(##$src1) = $src2"),
            []>,
            Requires<[HasV4T]>;

let isExtended = 1, opExtendable = 1, isPredicated = 1,
validSubTargets = HasV4SubT in {
  def _abs_cPt_V4 : STInst2<(outs),
            (ins PredRegs:$src1, u0AlwaysExt:$src2, IntRegs:$src3),
            !strconcat("if ($src1)", !strconcat(OpcStr, "(##$src2) = $src3")),
            []>,
            Requires<[HasV4T]>;

  def _abs_cNotPt_V4 : STInst2<(outs),
            (ins PredRegs:$src1, u0AlwaysExt:$src2, IntRegs:$src3),
            !strconcat("if (!$src1)", !strconcat(OpcStr, "(##$src2) = $src3")),
            []>,
            Requires<[HasV4T]>;

  def _abs_cdnPt_V4 : STInst2<(outs),
            (ins PredRegs:$src1, u0AlwaysExt:$src2, IntRegs:$src3),
            !strconcat("if ($src1.new)",
            !strconcat(OpcStr, "(##$src2) = $src3")),
            []>,
            Requires<[HasV4T]>;

  def _abs_cdnNotPt_V4 : STInst2<(outs),
            (ins PredRegs:$src1, u0AlwaysExt:$src2, IntRegs:$src3),
            !strconcat("if (!$src1.new)",
            !strconcat(OpcStr, "(##$src2) = $src3")),
            []>,
            Requires<[HasV4T]>;
}

let isExtended = 1, opExtendable = 0, mayStore = 1, isNVStore = 1,
validSubTargets = HasV4SubT in
  def _abs_nv_V4 : NVInst_V4<(outs),
            (ins u0AlwaysExt:$src1, IntRegs:$src2),
            !strconcat(OpcStr, "(##$src1) = $src2.new"),
            []>,
            Requires<[HasV4T]>;

let isExtended = 1, opExtendable = 1, mayStore = 1, isPredicated = 1,
isNVStore = 1, validSubTargets = HasV4SubT in {
  def _abs_cPt_nv_V4 : NVInst_V4<(outs),
            (ins PredRegs:$src1, u0AlwaysExt:$src2, IntRegs:$src3),
            !strconcat("if ($src1)",
            !strconcat(OpcStr, "(##$src2) = $src3.new")),
            []>,
            Requires<[HasV4T]>;

  def _abs_cNotPt_nv_V4 : NVInst_V4<(outs),
            (ins PredRegs:$src1, u0AlwaysExt:$src2, IntRegs:$src3),
            !strconcat("if (!$src1)",
            !strconcat(OpcStr, "(##$src2) = $src3.new")),
            []>,
            Requires<[HasV4T]>;

  def _abs_cdnPt_nv_V4 : NVInst_V4<(outs),
            (ins PredRegs:$src1, u0AlwaysExt:$src2, IntRegs:$src3),
            !strconcat("if ($src1.new)",
            !strconcat(OpcStr, "(##$src2) = $src3.new")),
            []>,
            Requires<[HasV4T]>;

  def _abs_cdnNotPt_nv_V4 : NVInst_V4<(outs),
            (ins PredRegs:$src1, u0AlwaysExt:$src2, IntRegs:$src3),
            !strconcat("if (!$src1.new)",
            !strconcat(OpcStr, "(##$src2) = $src3.new")),
            []>,
            Requires<[HasV4T]>;
}
}

defm STrib_imm : ST_absimm<"memb">;
defm STrih_imm : ST_absimm<"memh">;
defm STriw_imm : ST_absimm<"memw">;

let Predicates = [HasV4T], AddedComplexity  = 30 in {
def : Pat<(truncstorei8 (i32 IntRegs:$src1), u0AlwaysExtPred:$src2),
          (STrib_imm_abs_V4 u0AlwaysExtPred:$src2, IntRegs: $src1)>;

def : Pat<(truncstorei16 (i32 IntRegs:$src1), u0AlwaysExtPred:$src2),
          (STrih_imm_abs_V4 u0AlwaysExtPred:$src2, IntRegs: $src1)>;

def : Pat<(store (i32 IntRegs:$src1), u0AlwaysExtPred:$src2),
          (STriw_imm_abs_V4 u0AlwaysExtPred:$src2, IntRegs: $src1)>;
}

// Load - absolute addressing mode: These instruction take constant
// value as the extended operand

multiclass LD_absimm<string OpcStr> {
let isExtended = 1, opExtendable = 1, isPredicable = 1,
validSubTargets = HasV4SubT in
  def _abs_V4 : LDInst2<(outs IntRegs:$dst),
            (ins u0AlwaysExt:$src),
            !strconcat("$dst = ",
            !strconcat(OpcStr, "(##$src)")),
            []>,
            Requires<[HasV4T]>;

let isExtended = 1, opExtendable = 2, isPredicated = 1,
validSubTargets = HasV4SubT in {
  def _abs_cPt_V4 : LDInst2<(outs IntRegs:$dst),
            (ins PredRegs:$src1, u0AlwaysExt:$src2),
            !strconcat("if ($src1) $dst = ",
            !strconcat(OpcStr, "(##$src2)")),
            []>,
            Requires<[HasV4T]>;

  def _abs_cNotPt_V4 : LDInst2<(outs IntRegs:$dst),
            (ins PredRegs:$src1, u0AlwaysExt:$src2),
            !strconcat("if (!$src1) $dst = ",
            !strconcat(OpcStr, "(##$src2)")),
            []>,
            Requires<[HasV4T]>;

  def _abs_cdnPt_V4 : LDInst2<(outs IntRegs:$dst),
            (ins PredRegs:$src1, u0AlwaysExt:$src2),
            !strconcat("if ($src1.new) $dst = ",
            !strconcat(OpcStr, "(##$src2)")),
            []>,
            Requires<[HasV4T]>;

  def _abs_cdnNotPt_V4 : LDInst2<(outs IntRegs:$dst),
            (ins PredRegs:$src1, u0AlwaysExt:$src2),
            !strconcat("if (!$src1.new) $dst = ",
            !strconcat(OpcStr, "(##$src2)")),
            []>,
            Requires<[HasV4T]>;
}
}

defm LDrib_imm  : LD_absimm<"memb">;
defm LDriub_imm : LD_absimm<"memub">;
defm LDrih_imm  : LD_absimm<"memh">;
defm LDriuh_imm : LD_absimm<"memuh">;
defm LDriw_imm  : LD_absimm<"memw">;

let Predicates = [HasV4T], AddedComplexity  = 30 in {
def : Pat<(i32 (load u0AlwaysExtPred:$src)),
          (LDriw_imm_abs_V4 u0AlwaysExtPred:$src)>;

def : Pat<(i32 (sextloadi8 u0AlwaysExtPred:$src)),
          (LDrib_imm_abs_V4 u0AlwaysExtPred:$src)>;

def : Pat<(i32 (zextloadi8 u0AlwaysExtPred:$src)),
          (LDriub_imm_abs_V4 u0AlwaysExtPred:$src)>;

def : Pat<(i32 (sextloadi16 u0AlwaysExtPred:$src)),
          (LDrih_imm_abs_V4 u0AlwaysExtPred:$src)>;

def : Pat<(i32 (zextloadi16 u0AlwaysExtPred:$src)),
          (LDriuh_imm_abs_V4 u0AlwaysExtPred:$src)>;
}

// Indexed store double word - global address.
// memw(Rs+#u6:2)=#S8
let AddedComplexity = 10 in
def STriw_offset_ext_V4 : STInst<(outs),
            (ins IntRegs:$src1, u6_2Imm:$src2, globaladdress:$src3),
            "memw($src1+#$src2) = ##$src3",
            [(store (HexagonCONST32 tglobaladdr:$src3),
                    (add IntRegs:$src1, u6_2ImmPred:$src2))]>,
            Requires<[HasV4T]>;


// Indexed store double word - global address.
// memw(Rs+#u6:2)=#S8
let AddedComplexity = 10 in
def STrih_offset_ext_V4 : STInst<(outs),
            (ins IntRegs:$src1, u6_1Imm:$src2, globaladdress:$src3),
            "memh($src1+#$src2) = ##$src3",
            [(truncstorei16 (HexagonCONST32 tglobaladdr:$src3),
                    (add IntRegs:$src1, u6_1ImmPred:$src2))]>,
            Requires<[HasV4T]>;
// Map from store(globaladdress + x) -> memd(#foo + x)
let AddedComplexity = 100 in
def : Pat<(store (i64 DoubleRegs:$src1),
                 FoldGlobalAddrGP:$addr),
          (STrid_abs_V4 FoldGlobalAddrGP:$addr, (i64 DoubleRegs:$src1))>,
          Requires<[HasV4T]>;

def : Pat<(atomic_store_64 FoldGlobalAddrGP:$addr,
                           (i64 DoubleRegs:$src1)),
          (STrid_abs_V4 FoldGlobalAddrGP:$addr, (i64 DoubleRegs:$src1))>,
          Requires<[HasV4T]>;

// Map from store(globaladdress + x) -> memb(#foo + x)
let AddedComplexity = 100 in
def : Pat<(truncstorei8 (i32 IntRegs:$src1), FoldGlobalAddrGP:$addr),
          (STrib_abs_V4 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
            Requires<[HasV4T]>;

def : Pat<(atomic_store_8 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1)),
          (STrib_abs_V4 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
            Requires<[HasV4T]>;

// Map from store(globaladdress + x) -> memh(#foo + x)
let AddedComplexity = 100 in
def : Pat<(truncstorei16 (i32 IntRegs:$src1), FoldGlobalAddrGP:$addr),
          (STrih_abs_V4 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
            Requires<[HasV4T]>;

def : Pat<(atomic_store_16 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1)),
          (STrih_abs_V4 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
            Requires<[HasV4T]>;

// Map from store(globaladdress + x) -> memw(#foo + x)
let AddedComplexity = 100 in
def : Pat<(store (i32 IntRegs:$src1), FoldGlobalAddrGP:$addr),
          (STriw_abs_V4 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
           Requires<[HasV4T]>;

def : Pat<(atomic_store_32 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1)),
          (STriw_abs_V4 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
            Requires<[HasV4T]>;

// Map from load(globaladdress + x) -> memd(#foo + x)
let AddedComplexity = 100 in
def : Pat<(i64 (load FoldGlobalAddrGP:$addr)),
          (i64 (LDrid_abs_V4 FoldGlobalAddrGP:$addr))>,
           Requires<[HasV4T]>;

def : Pat<(atomic_load_64 FoldGlobalAddrGP:$addr),
          (i64 (LDrid_abs_V4 FoldGlobalAddrGP:$addr))>,
           Requires<[HasV4T]>;

// Map from load(globaladdress + x) -> memb(#foo + x)
let AddedComplexity = 100 in
def : Pat<(i32 (extloadi8 FoldGlobalAddrGP:$addr)),
          (i32 (LDrib_abs_V4 FoldGlobalAddrGP:$addr))>,
           Requires<[HasV4T]>;

// Map from load(globaladdress + x) -> memb(#foo + x)
let AddedComplexity = 100 in
def : Pat<(i32 (sextloadi8 FoldGlobalAddrGP:$addr)),
          (i32 (LDrib_abs_V4 FoldGlobalAddrGP:$addr))>,
           Requires<[HasV4T]>;

//let AddedComplexity = 100 in
let AddedComplexity = 100 in
def : Pat<(i32 (extloadi16 FoldGlobalAddrGP:$addr)),
          (i32 (LDrih_abs_V4 FoldGlobalAddrGP:$addr))>,
           Requires<[HasV4T]>;

// Map from load(globaladdress + x) -> memh(#foo + x)
let AddedComplexity = 100 in
def : Pat<(i32 (sextloadi16 FoldGlobalAddrGP:$addr)),
          (i32 (LDrih_abs_V4 FoldGlobalAddrGP:$addr))>,
           Requires<[HasV4T]>;

// Map from load(globaladdress + x) -> memuh(#foo + x)
let AddedComplexity = 100 in
def : Pat<(i32 (zextloadi16 FoldGlobalAddrGP:$addr)),
          (i32 (LDriuh_abs_V4 FoldGlobalAddrGP:$addr))>,
           Requires<[HasV4T]>;

def : Pat<(atomic_load_16 FoldGlobalAddrGP:$addr),
          (i32 (LDriuh_abs_V4 FoldGlobalAddrGP:$addr))>,
           Requires<[HasV4T]>;

// Map from load(globaladdress + x) -> memub(#foo + x)
let AddedComplexity = 100 in
def : Pat<(i32 (zextloadi8 FoldGlobalAddrGP:$addr)),
          (i32 (LDriub_abs_V4 FoldGlobalAddrGP:$addr))>,
           Requires<[HasV4T]>;

def : Pat<(atomic_load_8 FoldGlobalAddrGP:$addr),
          (i32 (LDriub_abs_V4 FoldGlobalAddrGP:$addr))>,
           Requires<[HasV4T]>;

// Map from load(globaladdress + x) -> memw(#foo + x)
let AddedComplexity = 100 in
def : Pat<(i32 (load FoldGlobalAddrGP:$addr)),
          (i32 (LDriw_abs_V4 FoldGlobalAddrGP:$addr))>,
           Requires<[HasV4T]>;

def : Pat<(atomic_load_32 FoldGlobalAddrGP:$addr),
          (i32 (LDriw_abs_V4 FoldGlobalAddrGP:$addr))>,
           Requires<[HasV4T]>;