aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/Hexagon/HexagonISelLowering.cpp
blob: d6da0d0911b99e3e7c3e74cc542f83655eff6e4b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
//===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the interfaces that Hexagon uses to lower LLVM code
// into a selection DAG.
//
//===----------------------------------------------------------------------===//

#include "HexagonISelLowering.h"
#include "HexagonTargetMachine.h"
#include "HexagonMachineFunctionInfo.h"
#include "HexagonTargetObjectFile.h"
#include "HexagonSubtarget.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/InlineAsm.h"
#include "llvm/GlobalVariable.h"
#include "llvm/GlobalAlias.h"
#include "llvm/Intrinsics.h"
#include "llvm/CallingConv.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;

const unsigned Hexagon_MAX_RET_SIZE = 64;

static cl::opt<bool>
EmitJumpTables("hexagon-emit-jump-tables", cl::init(true), cl::Hidden,
               cl::desc("Control jump table emission on Hexagon target"));

int NumNamedVarArgParams = -1;

// Implement calling convention for Hexagon.
static bool
CC_Hexagon(unsigned ValNo, MVT ValVT,
           MVT LocVT, CCValAssign::LocInfo LocInfo,
           ISD::ArgFlagsTy ArgFlags, CCState &State);

static bool
CC_Hexagon32(unsigned ValNo, MVT ValVT,
             MVT LocVT, CCValAssign::LocInfo LocInfo,
             ISD::ArgFlagsTy ArgFlags, CCState &State);

static bool
CC_Hexagon64(unsigned ValNo, MVT ValVT,
             MVT LocVT, CCValAssign::LocInfo LocInfo,
             ISD::ArgFlagsTy ArgFlags, CCState &State);

static bool
RetCC_Hexagon(unsigned ValNo, MVT ValVT,
              MVT LocVT, CCValAssign::LocInfo LocInfo,
              ISD::ArgFlagsTy ArgFlags, CCState &State);

static bool
RetCC_Hexagon32(unsigned ValNo, MVT ValVT,
                MVT LocVT, CCValAssign::LocInfo LocInfo,
                ISD::ArgFlagsTy ArgFlags, CCState &State);

static bool
RetCC_Hexagon64(unsigned ValNo, MVT ValVT,
                MVT LocVT, CCValAssign::LocInfo LocInfo,
                ISD::ArgFlagsTy ArgFlags, CCState &State);

static bool
CC_Hexagon_VarArg (unsigned ValNo, MVT ValVT,
            MVT LocVT, CCValAssign::LocInfo LocInfo,
            ISD::ArgFlagsTy ArgFlags, CCState &State) {

  // NumNamedVarArgParams can not be zero for a VarArg function.
  assert ( (NumNamedVarArgParams > 0) &&
           "NumNamedVarArgParams is not bigger than zero.");

  if ( (int)ValNo < NumNamedVarArgParams ) {
    // Deal with named arguments.
    return CC_Hexagon(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State);
  }

  // Deal with un-named arguments.
  unsigned ofst;
  if (ArgFlags.isByVal()) {
    // If pass-by-value, the size allocated on stack is decided
    // by ArgFlags.getByValSize(), not by the size of LocVT.
    assert ((ArgFlags.getByValSize() > 8) &&
            "ByValSize must be bigger than 8 bytes");
    ofst = State.AllocateStack(ArgFlags.getByValSize(), 4);
    State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
    return false;
  }
  if (LocVT == MVT::i32) {
    ofst = State.AllocateStack(4, 4);
    State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
    return false;
  }
  if (LocVT == MVT::i64) {
    ofst = State.AllocateStack(8, 8);
    State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
    return false;
  }
  llvm_unreachable(0);
}


static bool
CC_Hexagon (unsigned ValNo, MVT ValVT,
            MVT LocVT, CCValAssign::LocInfo LocInfo,
            ISD::ArgFlagsTy ArgFlags, CCState &State) {

  if (ArgFlags.isByVal()) {
    // Passed on stack.
    assert ((ArgFlags.getByValSize() > 8) &&
            "ByValSize must be bigger than 8 bytes");
    unsigned Offset = State.AllocateStack(ArgFlags.getByValSize(), 4);
    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
    return false;
  }

  if (LocVT == MVT::i1 || LocVT == MVT::i8 || LocVT == MVT::i16) {
    LocVT = MVT::i32;
    ValVT = MVT::i32;
    if (ArgFlags.isSExt())
      LocInfo = CCValAssign::SExt;
    else if (ArgFlags.isZExt())
      LocInfo = CCValAssign::ZExt;
    else
      LocInfo = CCValAssign::AExt;
  }

  if (LocVT == MVT::i32) {
    if (!CC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
      return false;
  }

  if (LocVT == MVT::i64) {
    if (!CC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
      return false;
  }

  return true;  // CC didn't match.
}


static bool CC_Hexagon32(unsigned ValNo, MVT ValVT,
                         MVT LocVT, CCValAssign::LocInfo LocInfo,
                         ISD::ArgFlagsTy ArgFlags, CCState &State) {

  static const uint16_t RegList[] = {
    Hexagon::R0, Hexagon::R1, Hexagon::R2, Hexagon::R3, Hexagon::R4,
    Hexagon::R5
  };
  if (unsigned Reg = State.AllocateReg(RegList, 6)) {
    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
    return false;
  }

  unsigned Offset = State.AllocateStack(4, 4);
  State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
  return false;
}

static bool CC_Hexagon64(unsigned ValNo, MVT ValVT,
                         MVT LocVT, CCValAssign::LocInfo LocInfo,
                         ISD::ArgFlagsTy ArgFlags, CCState &State) {

  if (unsigned Reg = State.AllocateReg(Hexagon::D0)) {
    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
    return false;
  }

  static const uint16_t RegList1[] = {
    Hexagon::D1, Hexagon::D2
  };
  static const uint16_t RegList2[] = {
    Hexagon::R1, Hexagon::R3
  };
  if (unsigned Reg = State.AllocateReg(RegList1, RegList2, 2)) {
    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
    return false;
  }

  unsigned Offset = State.AllocateStack(8, 8, Hexagon::D2);
  State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
  return false;
}

static bool RetCC_Hexagon(unsigned ValNo, MVT ValVT,
                          MVT LocVT, CCValAssign::LocInfo LocInfo,
                          ISD::ArgFlagsTy ArgFlags, CCState &State) {


  if (LocVT == MVT::i1 ||
      LocVT == MVT::i8 ||
      LocVT == MVT::i16) {
    LocVT = MVT::i32;
    ValVT = MVT::i32;
    if (ArgFlags.isSExt())
      LocInfo = CCValAssign::SExt;
    else if (ArgFlags.isZExt())
      LocInfo = CCValAssign::ZExt;
    else
      LocInfo = CCValAssign::AExt;
  }

  if (LocVT == MVT::i32) {
    if (!RetCC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
    return false;
  }

  if (LocVT == MVT::i64) {
    if (!RetCC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
    return false;
  }

  return true;  // CC didn't match.
}

static bool RetCC_Hexagon32(unsigned ValNo, MVT ValVT,
                            MVT LocVT, CCValAssign::LocInfo LocInfo,
                            ISD::ArgFlagsTy ArgFlags, CCState &State) {

  if (LocVT == MVT::i32) {
    if (unsigned Reg = State.AllocateReg(Hexagon::R0)) {
      State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
      return false;
    }
  }

  unsigned Offset = State.AllocateStack(4, 4);
  State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
  return false;
}

static bool RetCC_Hexagon64(unsigned ValNo, MVT ValVT,
                            MVT LocVT, CCValAssign::LocInfo LocInfo,
                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
  if (LocVT == MVT::i64) {
    if (unsigned Reg = State.AllocateReg(Hexagon::D0)) {
      State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
      return false;
    }
  }

  unsigned Offset = State.AllocateStack(8, 8);
  State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
  return false;
}

SDValue
HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG)
const {
  return SDValue();
}

/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
/// by "Src" to address "Dst" of size "Size".  Alignment information is
/// specified by the specific parameter attribute. The copy will be passed as
/// a byval function parameter.  Sometimes what we are copying is the end of a
/// larger object, the part that does not fit in registers.
static SDValue
CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
                          DebugLoc dl) {

  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
                       /*isVolatile=*/false, /*AlwaysInline=*/false,
                       MachinePointerInfo(), MachinePointerInfo());
}


// LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is
// passed by value, the function prototype is modified to return void and
// the value is stored in memory pointed by a pointer passed by caller.
SDValue
HexagonTargetLowering::LowerReturn(SDValue Chain,
                                   CallingConv::ID CallConv, bool isVarArg,
                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
                                   const SmallVectorImpl<SDValue> &OutVals,
                                   DebugLoc dl, SelectionDAG &DAG) const {

  // CCValAssign - represent the assignment of the return value to locations.
  SmallVector<CCValAssign, 16> RVLocs;

  // CCState - Info about the registers and stack slot.
  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
		 getTargetMachine(), RVLocs, *DAG.getContext());

  // Analyze return values of ISD::RET
  CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon);

  // If this is the first return lowered for this function, add the regs to the
  // liveout set for the function.
  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
    for (unsigned i = 0; i != RVLocs.size(); ++i)
      if (RVLocs[i].isRegLoc())
        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
  }

  SDValue Flag;
  // Copy the result values into the output registers.
  for (unsigned i = 0; i != RVLocs.size(); ++i) {
    CCValAssign &VA = RVLocs[i];

    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);

    // Guarantee that all emitted copies are stuck together with flags.
    Flag = Chain.getValue(1);
  }

  if (Flag.getNode())
    return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, Chain, Flag);

  return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, Chain);
}




/// LowerCallResult - Lower the result values of an ISD::CALL into the
/// appropriate copies out of appropriate physical registers.  This assumes that
/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
/// being lowered. Returns a SDNode with the same number of values as the
/// ISD::CALL.
SDValue
HexagonTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
                                       CallingConv::ID CallConv, bool isVarArg,
                                       const
                                       SmallVectorImpl<ISD::InputArg> &Ins,
                                       DebugLoc dl, SelectionDAG &DAG,
                                       SmallVectorImpl<SDValue> &InVals,
                                       const SmallVectorImpl<SDValue> &OutVals,
                                       SDValue Callee) const {

  // Assign locations to each value returned by this call.
  SmallVector<CCValAssign, 16> RVLocs;

  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
		 getTargetMachine(), RVLocs, *DAG.getContext());

  CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon);

  // Copy all of the result registers out of their specified physreg.
  for (unsigned i = 0; i != RVLocs.size(); ++i) {
    Chain = DAG.getCopyFromReg(Chain, dl,
                               RVLocs[i].getLocReg(),
                               RVLocs[i].getValVT(), InFlag).getValue(1);
    InFlag = Chain.getValue(2);
    InVals.push_back(Chain.getValue(0));
  }

  return Chain;
}

/// LowerCall - Functions arguments are copied from virtual regs to
/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
SDValue
HexagonTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
                                 CallingConv::ID CallConv, bool isVarArg,
                                 bool doesNotRet, bool &isTailCall,
                                 const SmallVectorImpl<ISD::OutputArg> &Outs,
                                 const SmallVectorImpl<SDValue> &OutVals,
                                 const SmallVectorImpl<ISD::InputArg> &Ins,
                                 DebugLoc dl, SelectionDAG &DAG,
                                 SmallVectorImpl<SDValue> &InVals) const {

  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();

  // Analyze operands of the call, assigning locations to each operand.
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
		 getTargetMachine(), ArgLocs, *DAG.getContext());

  // Check for varargs.
  NumNamedVarArgParams = -1;
  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Callee))
  {
    const Function* CalleeFn = NULL;
    Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, MVT::i32);
    if ((CalleeFn = dyn_cast<Function>(GA->getGlobal())))
    {
      // If a function has zero args and is a vararg function, that's
      // disallowed so it must be an undeclared function.  Do not assume
      // varargs if the callee is undefined.
      if (CalleeFn->isVarArg() &&
          CalleeFn->getFunctionType()->getNumParams() != 0) {
        NumNamedVarArgParams = CalleeFn->getFunctionType()->getNumParams();
      }
    }
  }

  if (NumNamedVarArgParams > 0)
    CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_VarArg);
  else
    CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon);


  if(isTailCall) {
    bool StructAttrFlag =
      DAG.getMachineFunction().getFunction()->hasStructRetAttr();
    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
                                                   isVarArg, IsStructRet,
                                                   StructAttrFlag,
                                                   Outs, OutVals, Ins, DAG);
    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i){
      CCValAssign &VA = ArgLocs[i];
      if (VA.isMemLoc()) {
        isTailCall = false;
        break;
      }
    }
    if (isTailCall) {
      DEBUG(dbgs () << "Eligible for Tail Call\n");
    } else {
      DEBUG(dbgs () <<
            "Argument must be passed on stack. Not eligible for Tail Call\n");
    }
  }
  // Get a count of how many bytes are to be pushed on the stack.
  unsigned NumBytes = CCInfo.getNextStackOffset();
  SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
  SmallVector<SDValue, 8> MemOpChains;

  SDValue StackPtr =
    DAG.getCopyFromReg(Chain, dl, TM.getRegisterInfo()->getStackRegister(),
                       getPointerTy());

  // Walk the register/memloc assignments, inserting copies/loads.
  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    CCValAssign &VA = ArgLocs[i];
    SDValue Arg = OutVals[i];
    ISD::ArgFlagsTy Flags = Outs[i].Flags;

    // Promote the value if needed.
    switch (VA.getLocInfo()) {
      default:
        // Loc info must be one of Full, SExt, ZExt, or AExt.
        llvm_unreachable("Unknown loc info!");
      case CCValAssign::Full:
        break;
      case CCValAssign::SExt:
        Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
        break;
      case CCValAssign::ZExt:
        Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
        break;
      case CCValAssign::AExt:
        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
        break;
    }

    if (VA.isMemLoc()) {
      unsigned LocMemOffset = VA.getLocMemOffset();
      SDValue PtrOff = DAG.getConstant(LocMemOffset, StackPtr.getValueType());
      PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);

      if (Flags.isByVal()) {
        // The argument is a struct passed by value. According to LLVM, "Arg"
        // is is pointer.
        MemOpChains.push_back(CreateCopyOfByValArgument(Arg, PtrOff, Chain,
                                                        Flags, DAG, dl));
      } else {
        // The argument is not passed by value. "Arg" is a buildin type. It is
        // not a pointer.
        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
                                           MachinePointerInfo(),false, false,
                                           0));
      }
      continue;
    }

    // Arguments that can be passed on register must be kept at RegsToPass
    // vector.
    if (VA.isRegLoc()) {
      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
    }
  }

  // Transform all store nodes into one single node because all store
  // nodes are independent of each other.
  if (!MemOpChains.empty()) {
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOpChains[0],
                        MemOpChains.size());
  }

  if (!isTailCall)
    Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes,
                                                        getPointerTy(), true));

  // Build a sequence of copy-to-reg nodes chained together with token
  // chain and flag operands which copy the outgoing args into registers.
  // The InFlag in necessary since all emited instructions must be
  // stuck together.
  SDValue InFlag;
  if (!isTailCall) {
    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
                               RegsToPass[i].second, InFlag);
      InFlag = Chain.getValue(1);
    }
  }

  // For tail calls lower the arguments to the 'real' stack slot.
  if (isTailCall) {
    // Force all the incoming stack arguments to be loaded from the stack
    // before any new outgoing arguments are stored to the stack, because the
    // outgoing stack slots may alias the incoming argument stack slots, and
    // the alias isn't otherwise explicit. This is slightly more conservative
    // than necessary, because it means that each store effectively depends
    // on every argument instead of just those arguments it would clobber.
    //
    // Do not flag preceeding copytoreg stuff together with the following stuff.
    InFlag = SDValue();
    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
                               RegsToPass[i].second, InFlag);
      InFlag = Chain.getValue(1);
    }
    InFlag =SDValue();
  }

  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
  // node so that legalize doesn't hack it.
  if (flag_aligned_memcpy) {
    const char *MemcpyName =
      "__hexagon_memcpy_likely_aligned_min32bytes_mult8bytes";
    Callee =
      DAG.getTargetExternalSymbol(MemcpyName, getPointerTy());
    flag_aligned_memcpy = false;
  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy());
  } else if (ExternalSymbolSDNode *S =
             dyn_cast<ExternalSymbolSDNode>(Callee)) {
    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
  }

  // Returns a chain & a flag for retval copy to use.
  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
  SmallVector<SDValue, 8> Ops;
  Ops.push_back(Chain);
  Ops.push_back(Callee);

  // Add argument registers to the end of the list so that they are
  // known live into the call.
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
                                  RegsToPass[i].second.getValueType()));
  }

  if (InFlag.getNode()) {
    Ops.push_back(InFlag);
  }

  if (isTailCall)
    return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());

  Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
  InFlag = Chain.getValue(1);

  // Create the CALLSEQ_END node.
  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
                             DAG.getIntPtrConstant(0, true), InFlag);
  InFlag = Chain.getValue(1);

  // Handle result values, copying them out of physregs into vregs that we
  // return.
  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
                         InVals, OutVals, Callee);
}

static bool getIndexedAddressParts(SDNode *Ptr, EVT VT,
                                   bool isSEXTLoad, SDValue &Base,
                                   SDValue &Offset, bool &isInc,
                                   SelectionDAG &DAG) {
  if (Ptr->getOpcode() != ISD::ADD)
  return false;

  if (VT == MVT::i64 || VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
    isInc = (Ptr->getOpcode() == ISD::ADD);
    Base = Ptr->getOperand(0);
    Offset = Ptr->getOperand(1);
    // Ensure that Offset is a constant.
    return (isa<ConstantSDNode>(Offset));
  }

  return false;
}

// TODO: Put this function along with the other isS* functions in
// HexagonISelDAGToDAG.cpp into a common file. Or better still, use the
// functions defined in HexagonImmediates.td.
static bool Is_PostInc_S4_Offset(SDNode * S, int ShiftAmount) {
  ConstantSDNode *N = cast<ConstantSDNode>(S);

  // immS4 predicate - True if the immediate fits in a 4-bit sign extended.
  // field.
  int64_t v = (int64_t)N->getSExtValue();
  int64_t m = 0;
  if (ShiftAmount > 0) {
    m = v % ShiftAmount;
    v = v >> ShiftAmount;
  }
  return (v <= 7) && (v >= -8) && (m == 0);
}

/// getPostIndexedAddressParts - returns true by value, base pointer and
/// offset pointer and addressing mode by reference if this node can be
/// combined with a load / store to form a post-indexed load / store.
bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
                                                       SDValue &Base,
                                                       SDValue &Offset,
                                                       ISD::MemIndexedMode &AM,
                                                       SelectionDAG &DAG) const
{
  EVT VT;
  SDValue Ptr;
  bool isSEXTLoad = false;

  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
    VT  = LD->getMemoryVT();
    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
    VT  = ST->getMemoryVT();
    if (ST->getValue().getValueType() == MVT::i64 && ST->isTruncatingStore()) {
      return false;
    }
  } else {
    return false;
  }

  bool isInc = false;
  bool isLegal = getIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
                                        isInc, DAG);
  // ShiftAmount = number of left-shifted bits in the Hexagon instruction.
  int ShiftAmount = VT.getSizeInBits() / 16;
  if (isLegal && Is_PostInc_S4_Offset(Offset.getNode(), ShiftAmount)) {
    AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
    return true;
  }

  return false;
}

SDValue HexagonTargetLowering::LowerINLINEASM(SDValue Op,
                                              SelectionDAG &DAG) const {
  SDNode *Node = Op.getNode();
  MachineFunction &MF = DAG.getMachineFunction();
  HexagonMachineFunctionInfo *FuncInfo =
    MF.getInfo<HexagonMachineFunctionInfo>();
  switch (Node->getOpcode()) {
    case ISD::INLINEASM: {
      unsigned NumOps = Node->getNumOperands();
      if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
        --NumOps;  // Ignore the flag operand.

      for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
        if (FuncInfo->hasClobberLR())
          break;
        unsigned Flags =
          cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
        unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
        ++i;  // Skip the ID value.

        switch (InlineAsm::getKind(Flags)) {
        default: llvm_unreachable("Bad flags!");
          case InlineAsm::Kind_RegDef:
          case InlineAsm::Kind_RegUse:
          case InlineAsm::Kind_Imm:
          case InlineAsm::Kind_Clobber:
          case InlineAsm::Kind_Mem: {
            for (; NumVals; --NumVals, ++i) {}
            break;
          }
          case InlineAsm::Kind_RegDefEarlyClobber: {
            for (; NumVals; --NumVals, ++i) {
              unsigned Reg =
                cast<RegisterSDNode>(Node->getOperand(i))->getReg();

              // Check it to be lr
              if (Reg == TM.getRegisterInfo()->getRARegister()) {
                FuncInfo->setHasClobberLR(true);
                break;
              }
            }
            break;
          }
        }
      }
    }
  } // Node->getOpcode
  return Op;
}


//
// Taken from the XCore backend.
//
SDValue HexagonTargetLowering::
LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
{
  SDValue Chain = Op.getOperand(0);
  SDValue Table = Op.getOperand(1);
  SDValue Index = Op.getOperand(2);
  DebugLoc dl = Op.getDebugLoc();
  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
  unsigned JTI = JT->getIndex();
  MachineFunction &MF = DAG.getMachineFunction();
  const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
  SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);

  // Mark all jump table targets as address taken.
  const std::vector<MachineJumpTableEntry> &JTE = MJTI->getJumpTables();
  const std::vector<MachineBasicBlock*> &JTBBs = JTE[JTI].MBBs;
  for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
    MachineBasicBlock *MBB = JTBBs[i];
    MBB->setHasAddressTaken();
    // This line is needed to set the hasAddressTaken flag on the BasicBlock
    // object.
    BlockAddress::get(const_cast<BasicBlock *>(MBB->getBasicBlock()));
  }

  SDValue JumpTableBase = DAG.getNode(HexagonISD::WrapperJT, dl,
                                      getPointerTy(), TargetJT);
  SDValue ShiftIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
                                   DAG.getConstant(2, MVT::i32));
  SDValue JTAddress = DAG.getNode(ISD::ADD, dl, MVT::i32, JumpTableBase,
                                  ShiftIndex);
  SDValue LoadTarget = DAG.getLoad(MVT::i32, dl, Chain, JTAddress,
                                   MachinePointerInfo(), false, false, false,
                                   0);
  return DAG.getNode(HexagonISD::BR_JT, dl, MVT::Other, Chain, LoadTarget);
}


SDValue
HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
                                               SelectionDAG &DAG) const {
  SDValue Chain = Op.getOperand(0);
  SDValue Size = Op.getOperand(1);
  DebugLoc dl = Op.getDebugLoc();

  unsigned SPReg = getStackPointerRegisterToSaveRestore();

  // Get a reference to the stack pointer.
  SDValue StackPointer = DAG.getCopyFromReg(Chain, dl, SPReg, MVT::i32);

  // Subtract the dynamic size from the actual stack size to
  // obtain the new stack size.
  SDValue Sub = DAG.getNode(ISD::SUB, dl, MVT::i32, StackPointer, Size);

  //
  // For Hexagon, the outgoing memory arguments area should be on top of the
  // alloca area on the stack i.e., the outgoing memory arguments should be
  // at a lower address than the alloca area. Move the alloca area down the
  // stack by adding back the space reserved for outgoing arguments to SP
  // here.
  //
  // We do not know what the size of the outgoing args is at this point.
  // So, we add a pseudo instruction ADJDYNALLOC that will adjust the
  // stack pointer. We patch this instruction with the correct, known
  // offset in emitPrologue().
  //
  // Use a placeholder immediate (zero) for now. This will be patched up
  // by emitPrologue().
  SDValue ArgAdjust = DAG.getNode(HexagonISD::ADJDYNALLOC, dl,
                                  MVT::i32,
                                  Sub,
                                  DAG.getConstant(0, MVT::i32));

  // The Sub result contains the new stack start address, so it
  // must be placed in the stack pointer register.
  SDValue CopyChain = DAG.getCopyToReg(Chain, dl,
                                       TM.getRegisterInfo()->getStackRegister(),
                                       Sub);

  SDValue Ops[2] = { ArgAdjust, CopyChain };
  return DAG.getMergeValues(Ops, 2, dl);
}

SDValue
HexagonTargetLowering::LowerFormalArguments(SDValue Chain,
                                            CallingConv::ID CallConv,
                                            bool isVarArg,
                                            const
                                            SmallVectorImpl<ISD::InputArg> &Ins,
                                            DebugLoc dl, SelectionDAG &DAG,
                                            SmallVectorImpl<SDValue> &InVals)
const {

  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo *MFI = MF.getFrameInfo();
  MachineRegisterInfo &RegInfo = MF.getRegInfo();
  HexagonMachineFunctionInfo *FuncInfo =
    MF.getInfo<HexagonMachineFunctionInfo>();


  // Assign locations to all of the incoming arguments.
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
		 getTargetMachine(), ArgLocs, *DAG.getContext());

  CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon);

  // For LLVM, in the case when returning a struct by value (>8byte),
  // the first argument is a pointer that points to the location on caller's
  // stack where the return value will be stored. For Hexagon, the location on
  // caller's stack is passed only when the struct size is smaller than (and
  // equal to) 8 bytes. If not, no address will be passed into callee and
  // callee return the result direclty through R0/R1.

  SmallVector<SDValue, 4> MemOps;

  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    CCValAssign &VA = ArgLocs[i];
    ISD::ArgFlagsTy Flags = Ins[i].Flags;
    unsigned ObjSize;
    unsigned StackLocation;
    int FI;

    if (   (VA.isRegLoc() && !Flags.isByVal())
        || (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() > 8)) {
      // Arguments passed in registers
      // 1. int, long long, ptr args that get allocated in register.
      // 2. Large struct that gets an register to put its address in.
      EVT RegVT = VA.getLocVT();
      if (RegVT == MVT::i8 || RegVT == MVT::i16 || RegVT == MVT::i32) {
        unsigned VReg =
          RegInfo.createVirtualRegister(Hexagon::IntRegsRegisterClass);
        RegInfo.addLiveIn(VA.getLocReg(), VReg);
        InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
      } else if (RegVT == MVT::i64) {
        unsigned VReg =
          RegInfo.createVirtualRegister(Hexagon::DoubleRegsRegisterClass);
        RegInfo.addLiveIn(VA.getLocReg(), VReg);
        InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
      } else {
        assert (0);
      }
    } else if (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() <= 8) {
      assert (0 && "ByValSize must be bigger than 8 bytes");
    } else {
      // Sanity check.
      assert(VA.isMemLoc());

      if (Flags.isByVal()) {
        // If it's a byval parameter, then we need to compute the
        // "real" size, not the size of the pointer.
        ObjSize = Flags.getByValSize();
      } else {
        ObjSize = VA.getLocVT().getStoreSizeInBits() >> 3;
      }

      StackLocation = HEXAGON_LRFP_SIZE + VA.getLocMemOffset();
      // Create the frame index object for this incoming parameter...
      FI = MFI->CreateFixedObject(ObjSize, StackLocation, true);

      // Create the SelectionDAG nodes cordl, responding to a load
      // from this parameter.
      SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);

      if (Flags.isByVal()) {
        // If it's a pass-by-value aggregate, then do not dereference the stack
        // location. Instead, we should generate a reference to the stack
        // location.
        InVals.push_back(FIN);
      } else {
        InVals.push_back(DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
                                     MachinePointerInfo(), false, false,
                                     false, 0));
      }
    }
  }

  if (!MemOps.empty())
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOps[0],
                        MemOps.size());

  if (isVarArg) {
    // This will point to the next argument passed via stack.
    int FrameIndex = MFI->CreateFixedObject(Hexagon_PointerSize,
                                            HEXAGON_LRFP_SIZE +
                                            CCInfo.getNextStackOffset(),
                                            true);
    FuncInfo->setVarArgsFrameIndex(FrameIndex);
  }

  return Chain;
}

SDValue
HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
  // VASTART stores the address of the VarArgsFrameIndex slot into the
  // memory location argument.
  MachineFunction &MF = DAG.getMachineFunction();
  HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>();
  SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32);
  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
  return DAG.getStore(Op.getOperand(0), Op.getDebugLoc(), Addr,
                      Op.getOperand(1), MachinePointerInfo(SV), false,
                      false, 0);
}

SDValue
HexagonTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
  SDNode* OpNode = Op.getNode();

  SDValue Cond = DAG.getNode(ISD::SETCC, Op.getDebugLoc(), MVT::i1,
                             Op.getOperand(2), Op.getOperand(3),
                             Op.getOperand(4));
  return DAG.getNode(ISD::SELECT, Op.getDebugLoc(), OpNode->getValueType(0),
                     Cond, Op.getOperand(0),
                     Op.getOperand(1));
}

SDValue
HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo *MFI = MF.getFrameInfo();
  MFI->setReturnAddressIsTaken(true);

  EVT VT = Op.getValueType();
  DebugLoc dl = Op.getDebugLoc();
  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
  if (Depth) {
    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
    SDValue Offset = DAG.getConstant(4, MVT::i32);
    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
                       MachinePointerInfo(), false, false, false, 0);
  }

  // Return LR, which contains the return address. Mark it an implicit live-in.
  unsigned Reg = MF.addLiveIn(TRI->getRARegister(), getRegClassFor(MVT::i32));
  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
}

SDValue
HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
  const HexagonRegisterInfo  *TRI = TM.getRegisterInfo();
  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
  MFI->setFrameAddressIsTaken(true);

  EVT VT = Op.getValueType();
  DebugLoc dl = Op.getDebugLoc();
  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
                                         TRI->getFrameRegister(), VT);
  while (Depth--)
    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
                            MachinePointerInfo(),
                            false, false, false, 0);
  return FrameAddr;
}


SDValue HexagonTargetLowering::LowerMEMBARRIER(SDValue Op,
                                               SelectionDAG& DAG) const {
  DebugLoc dl = Op.getDebugLoc();
  return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other,  Op.getOperand(0));
}


SDValue HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op,
                                                 SelectionDAG& DAG) const {
  DebugLoc dl = Op.getDebugLoc();
  return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0));
}


SDValue HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op,
                                                  SelectionDAG &DAG) const {
  SDValue Result;
  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
  DebugLoc dl = Op.getDebugLoc();
  Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);

  HexagonTargetObjectFile &TLOF =
    (HexagonTargetObjectFile&)getObjFileLowering();
  if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
    return DAG.getNode(HexagonISD::CONST32_GP, dl, getPointerTy(), Result);
  }

  return DAG.getNode(HexagonISD::CONST32, dl, getPointerTy(), Result);
}

//===----------------------------------------------------------------------===//
// TargetLowering Implementation
//===----------------------------------------------------------------------===//

HexagonTargetLowering::HexagonTargetLowering(HexagonTargetMachine
                                             &targetmachine)
  : TargetLowering(targetmachine, new HexagonTargetObjectFile()),
    TM(targetmachine) {

    // Set up the register classes.
    addRegisterClass(MVT::i32, Hexagon::IntRegsRegisterClass);
    addRegisterClass(MVT::i64, Hexagon::DoubleRegsRegisterClass);

    addRegisterClass(MVT::i1, Hexagon::PredRegsRegisterClass);

    computeRegisterProperties();

    // Align loop entry
    setPrefLoopAlignment(4);

    // Limits for inline expansion of memcpy/memmove
    maxStoresPerMemcpy = 6;
    maxStoresPerMemmove = 6;

    //
    // Library calls for unsupported operations
    //
    setLibcallName(RTLIB::OGT_F64, "__hexagon_gtdf2");

    setLibcallName(RTLIB::SINTTOFP_I64_F64, "__hexagon_floatdidf");
    setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf");
    setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf");
    setLibcallName(RTLIB::UINTTOFP_I32_F32, "__hexagon_floatunsisf");
    setLibcallName(RTLIB::UINTTOFP_I64_F32, "__hexagon_floatundisf");
    setLibcallName(RTLIB::SINTTOFP_I64_F32, "__hexagon_floatdisf");
    setLibcallName(RTLIB::UINTTOFP_I64_F64, "__hexagon_floatundidf");

    setLibcallName(RTLIB::FPTOUINT_F32_I32, "__hexagon_fixunssfsi");
    setLibcallName(RTLIB::FPTOUINT_F32_I64, "__hexagon_fixunssfdi");
    setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti");

    setLibcallName(RTLIB::FPTOUINT_F64_I32, "__hexagon_fixunsdfsi");
    setLibcallName(RTLIB::FPTOUINT_F64_I64, "__hexagon_fixunsdfdi");
    setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti");

    setLibcallName(RTLIB::UINTTOFP_I32_F64, "__hexagon_floatunsidf");
    setLibcallName(RTLIB::FPTOSINT_F32_I64, "__hexagon_fixsfdi");
    setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti");
    setLibcallName(RTLIB::FPTOSINT_F64_I64, "__hexagon_fixdfdi");
    setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti");

    setLibcallName(RTLIB::OGT_F64, "__hexagon_gtdf2");

    setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3");
    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
    setLibcallName(RTLIB::SREM_I32, "__hexagon_umodsi3");
    setOperationAction(ISD::SREM,  MVT::i32, Expand);

    setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3");
    setOperationAction(ISD::SDIV,  MVT::i64, Expand);
    setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3");
    setOperationAction(ISD::SREM,  MVT::i64, Expand);

    setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3");
    setOperationAction(ISD::UDIV,  MVT::i32, Expand);

    setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3");
    setOperationAction(ISD::UDIV,  MVT::i64, Expand);

    setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3");
    setOperationAction(ISD::UREM,  MVT::i32, Expand);

    setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3");
    setOperationAction(ISD::UREM,  MVT::i64, Expand);

    setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3");
    setOperationAction(ISD::FDIV,  MVT::f32, Expand);

    setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3");
    setOperationAction(ISD::FDIV,  MVT::f64, Expand);

    setLibcallName(RTLIB::FPEXT_F32_F64, "__hexagon_extendsfdf2");
    setOperationAction(ISD::FP_EXTEND,  MVT::f32, Expand);

    setLibcallName(RTLIB::SINTTOFP_I32_F32, "__hexagon_floatsisf");
    setOperationAction(ISD::SINT_TO_FP,  MVT::i32, Expand);

    setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3");
    setOperationAction(ISD::FADD,  MVT::f64, Expand);

    setLibcallName(RTLIB::ADD_F32, "__hexagon_addsf3");
    setOperationAction(ISD::FADD,  MVT::f32, Expand);

    setLibcallName(RTLIB::ADD_F32, "__hexagon_addsf3");
    setOperationAction(ISD::FADD,  MVT::f32, Expand);

    setLibcallName(RTLIB::OEQ_F32, "__hexagon_eqsf2");
    setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);

    setLibcallName(RTLIB::FPTOSINT_F64_I32, "__hexagon_fixdfsi");
    setOperationAction(ISD::FP_TO_SINT, MVT::f64, Expand);

    setLibcallName(RTLIB::FPTOSINT_F32_I32, "__hexagon_fixsfsi");
    setOperationAction(ISD::FP_TO_SINT, MVT::f32, Expand);

    setLibcallName(RTLIB::SINTTOFP_I32_F64, "__hexagon_floatsidf");
    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);

    setLibcallName(RTLIB::OGE_F64, "__hexagon_gedf2");
    setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);

    setLibcallName(RTLIB::OGE_F32, "__hexagon_gesf2");
    setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);

    setLibcallName(RTLIB::OGT_F32, "__hexagon_gtsf2");
    setCondCodeAction(ISD::SETOGT, MVT::f32, Expand);

    setLibcallName(RTLIB::OLE_F64, "__hexagon_ledf2");
    setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);

    setLibcallName(RTLIB::OLE_F32, "__hexagon_lesf2");
    setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);

    setLibcallName(RTLIB::OLT_F64, "__hexagon_ltdf2");
    setCondCodeAction(ISD::SETOLT, MVT::f64, Expand);

    setLibcallName(RTLIB::OLT_F32, "__hexagon_ltsf2");
    setCondCodeAction(ISD::SETOLT, MVT::f32, Expand);

    setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3");
    setOperationAction(ISD::SREM, MVT::i32, Expand);

    setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3");
    setOperationAction(ISD::FMUL, MVT::f64, Expand);

    setLibcallName(RTLIB::MUL_F32, "__hexagon_mulsf3");
    setOperationAction(ISD::MUL, MVT::f32, Expand);

    setLibcallName(RTLIB::UNE_F64, "__hexagon_nedf2");
    setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);

    setLibcallName(RTLIB::UNE_F32, "__hexagon_nesf2");


    setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3");
    setOperationAction(ISD::SUB, MVT::f64, Expand);

    setLibcallName(RTLIB::SUB_F32, "__hexagon_subsf3");
    setOperationAction(ISD::SUB, MVT::f32, Expand);

    setLibcallName(RTLIB::FPROUND_F64_F32, "__hexagon_truncdfsf2");
    setOperationAction(ISD::FP_ROUND, MVT::f64, Expand);

    setLibcallName(RTLIB::UO_F64, "__hexagon_unorddf2");
    setCondCodeAction(ISD::SETUO, MVT::f64, Expand);

    setLibcallName(RTLIB::O_F64, "__hexagon_unorddf2");
    setCondCodeAction(ISD::SETO, MVT::f64, Expand);

    setLibcallName(RTLIB::OEQ_F64, "__hexagon_eqdf2");
    setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);

    setLibcallName(RTLIB::O_F32, "__hexagon_unordsf2");
    setCondCodeAction(ISD::SETO, MVT::f32, Expand);

    setLibcallName(RTLIB::UO_F32, "__hexagon_unordsf2");
    setCondCodeAction(ISD::SETUO, MVT::f32, Expand);

    setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
    setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
    setIndexedLoadAction(ISD::POST_INC, MVT::i32, Legal);
    setIndexedLoadAction(ISD::POST_INC, MVT::i64, Legal);

    setIndexedStoreAction(ISD::POST_INC, MVT::i8, Legal);
    setIndexedStoreAction(ISD::POST_INC, MVT::i16, Legal);
    setIndexedStoreAction(ISD::POST_INC, MVT::i32, Legal);
    setIndexedStoreAction(ISD::POST_INC, MVT::i64, Legal);

    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);

    // Turn FP extload into load/fextend.
    setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
    // Hexagon has a i1 sign extending load.
    setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Expand);
    // Turn FP truncstore into trunc + store.
    setTruncStoreAction(MVT::f64, MVT::f32, Expand);

    // Custom legalize GlobalAddress nodes into CONST32.
    setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
    setOperationAction(ISD::GlobalAddress, MVT::i8, Custom);
    // Truncate action?
    setOperationAction(ISD::TRUNCATE, MVT::i64, Expand);

    // Hexagon doesn't have sext_inreg, replace them with shl/sra.
    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);

    // Hexagon has no REM or DIVREM operations.
    setOperationAction(ISD::UREM, MVT::i32, Expand);
    setOperationAction(ISD::SREM, MVT::i32, Expand);
    setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
    setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
    setOperationAction(ISD::SREM, MVT::i64, Expand);
    setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
    setOperationAction(ISD::UDIVREM, MVT::i64, Expand);

    setOperationAction(ISD::BSWAP, MVT::i64, Expand);

    // Expand fp<->uint.
    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);

    // Hexagon has no select or setcc: expand to SELECT_CC.
    setOperationAction(ISD::SELECT, MVT::f32, Expand);
    setOperationAction(ISD::SELECT, MVT::f64, Expand);

    // Lower SELECT_CC to SETCC and SELECT.
    setOperationAction(ISD::SELECT_CC, MVT::i32,   Custom);
    setOperationAction(ISD::SELECT_CC, MVT::i64,   Custom);
    // This is a workaround documented in DAGCombiner.cpp:2892 We don't
    // support SELECT_CC on every type.
    setOperationAction(ISD::SELECT_CC, MVT::Other,   Expand);

    setOperationAction(ISD::BR_CC, MVT::Other, Expand);
    setOperationAction(ISD::BRIND, MVT::Other, Expand);
    if (EmitJumpTables) {
      setOperationAction(ISD::BR_JT, MVT::Other, Custom);
    } else {
      setOperationAction(ISD::BR_JT, MVT::Other, Expand);
    }

    setOperationAction(ISD::BR_CC, MVT::i32, Expand);

    setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
    setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);

    setOperationAction(ISD::FSIN , MVT::f64, Expand);
    setOperationAction(ISD::FCOS , MVT::f64, Expand);
    setOperationAction(ISD::FREM , MVT::f64, Expand);
    setOperationAction(ISD::FSIN , MVT::f32, Expand);
    setOperationAction(ISD::FCOS , MVT::f32, Expand);
    setOperationAction(ISD::FREM , MVT::f32, Expand);
    setOperationAction(ISD::CTPOP, MVT::i32, Expand);
    setOperationAction(ISD::CTTZ , MVT::i32, Expand);
    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
    setOperationAction(ISD::CTLZ , MVT::i32, Expand);
    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
    setOperationAction(ISD::ROTL , MVT::i32, Expand);
    setOperationAction(ISD::ROTR , MVT::i32, Expand);
    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
    setOperationAction(ISD::FPOW , MVT::f64, Expand);
    setOperationAction(ISD::FPOW , MVT::f32, Expand);

    setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
    setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
    setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);

    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);

    setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
    setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);

    setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
    setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
    setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
    setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);

    setOperationAction(ISD::EH_RETURN,     MVT::Other, Expand);

    if (TM.getSubtargetImpl()->isSubtargetV2()) {
      setExceptionPointerRegister(Hexagon::R20);
      setExceptionSelectorRegister(Hexagon::R21);
    } else {
      setExceptionPointerRegister(Hexagon::R0);
      setExceptionSelectorRegister(Hexagon::R1);
    }

    // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
    setOperationAction(ISD::VASTART           , MVT::Other, Custom);

    // Use the default implementation.
    setOperationAction(ISD::VAARG             , MVT::Other, Expand);
    setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
    setOperationAction(ISD::VAEND             , MVT::Other, Expand);
    setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
    setOperationAction(ISD::STACKRESTORE      , MVT::Other, Expand);


    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
    setOperationAction(ISD::INLINEASM         , MVT::Other, Custom);

    setMinFunctionAlignment(2);

    // Needed for DYNAMIC_STACKALLOC expansion.
    unsigned StackRegister = TM.getRegisterInfo()->getStackRegister();
    setStackPointerRegisterToSaveRestore(StackRegister);
    setSchedulingPreference(Sched::VLIW);
}


const char*
HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const {
  switch (Opcode) {
    default: return 0;
    case HexagonISD::CONST32:    return "HexagonISD::CONST32";
    case HexagonISD::ADJDYNALLOC: return "HexagonISD::ADJDYNALLOC";
    case HexagonISD::CMPICC:     return "HexagonISD::CMPICC";
    case HexagonISD::CMPFCC:     return "HexagonISD::CMPFCC";
    case HexagonISD::BRICC:      return "HexagonISD::BRICC";
    case HexagonISD::BRFCC:      return "HexagonISD::BRFCC";
    case HexagonISD::SELECT_ICC: return "HexagonISD::SELECT_ICC";
    case HexagonISD::SELECT_FCC: return "HexagonISD::SELECT_FCC";
    case HexagonISD::Hi:         return "HexagonISD::Hi";
    case HexagonISD::Lo:         return "HexagonISD::Lo";
    case HexagonISD::FTOI:       return "HexagonISD::FTOI";
    case HexagonISD::ITOF:       return "HexagonISD::ITOF";
    case HexagonISD::CALL:       return "HexagonISD::CALL";
    case HexagonISD::RET_FLAG:   return "HexagonISD::RET_FLAG";
    case HexagonISD::BR_JT:      return "HexagonISD::BR_JT";
    case HexagonISD::TC_RETURN:  return "HexagonISD::TC_RETURN";
  }
}

bool
HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
  EVT MTy1 = EVT::getEVT(Ty1);
  EVT MTy2 = EVT::getEVT(Ty2);
  if (!MTy1.isSimple() || !MTy2.isSimple()) {
    return false;
  }
  return ((MTy1.getSimpleVT() == MVT::i64) && (MTy2.getSimpleVT() == MVT::i32));
}

bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
  if (!VT1.isSimple() || !VT2.isSimple()) {
    return false;
  }
  return ((VT1.getSimpleVT() == MVT::i64) && (VT2.getSimpleVT() == MVT::i32));
}

SDValue
HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
  switch (Op.getOpcode()) {
    default: llvm_unreachable("Should not custom lower this!");
      // Frame & Return address.  Currently unimplemented.
    case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
    case ISD::FRAMEADDR:  return LowerFRAMEADDR(Op, DAG);
    case ISD::GlobalTLSAddress:
                          llvm_unreachable("TLS not implemented for Hexagon.");
    case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op, DAG);
    case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
    case ISD::GlobalAddress:      return LowerGLOBALADDRESS(Op, DAG);
    case ISD::VASTART:            return LowerVASTART(Op, DAG);
    case ISD::BR_JT:              return LowerBR_JT(Op, DAG);

    case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
    case ISD::SELECT_CC:        return LowerSELECT_CC(Op, DAG);
    case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
  case ISD::INLINEASM:          return LowerINLINEASM(Op, DAG);

  }
}



//===----------------------------------------------------------------------===//
//                           Hexagon Scheduler Hooks
//===----------------------------------------------------------------------===//
MachineBasicBlock *
HexagonTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
                                                   MachineBasicBlock *BB)
const {
  switch (MI->getOpcode()) {
    case Hexagon::ADJDYNALLOC: {
      MachineFunction *MF = BB->getParent();
      HexagonMachineFunctionInfo *FuncInfo =
        MF->getInfo<HexagonMachineFunctionInfo>();
      FuncInfo->addAllocaAdjustInst(MI);
      return BB;
    }
    default: llvm_unreachable("Unexpected instr type to insert");
  } // switch
}

//===----------------------------------------------------------------------===//
// Inline Assembly Support
//===----------------------------------------------------------------------===//

std::pair<unsigned, const TargetRegisterClass*>
HexagonTargetLowering::getRegForInlineAsmConstraint(const
                                                    std::string &Constraint,
                                                    EVT VT) const {
  if (Constraint.size() == 1) {
    switch (Constraint[0]) {
    case 'r':   // R0-R31
       switch (VT.getSimpleVT().SimpleTy) {
       default:
         llvm_unreachable("getRegForInlineAsmConstraint Unhandled data type");
       case MVT::i32:
       case MVT::i16:
       case MVT::i8:
         return std::make_pair(0U, Hexagon::IntRegsRegisterClass);
       case MVT::i64:
         return std::make_pair(0U, Hexagon::DoubleRegsRegisterClass);
      }
    default:
      llvm_unreachable("Unknown asm register class");
    }
  }

  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
}

/// isLegalAddressingMode - Return true if the addressing mode represented by
/// AM is legal for this target, for a load/store of the specified type.
bool HexagonTargetLowering::isLegalAddressingMode(const AddrMode &AM,
                                                  Type *Ty) const {
  // Allows a signed-extended 11-bit immediate field.
  if (AM.BaseOffs <= -(1LL << 13) || AM.BaseOffs >= (1LL << 13)-1) {
    return false;
  }

  // No global is ever allowed as a base.
  if (AM.BaseGV) {
    return false;
  }

  int Scale = AM.Scale;
  if (Scale < 0) Scale = -Scale;
  switch (Scale) {
  case 0:  // No scale reg, "r+i", "r", or just "i".
    break;
  default: // No scaled addressing mode.
    return false;
  }
  return true;
}

/// isLegalICmpImmediate - Return true if the specified immediate is legal
/// icmp immediate, that is the target has icmp instructions which can compare
/// a register against the immediate without having to materialize the
/// immediate into a register.
bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
  return Imm >= -512 && Imm <= 511;
}

/// IsEligibleForTailCallOptimization - Check whether the call is eligible
/// for tail call optimization. Targets which want to do tail call
/// optimization should implement this function.
bool HexagonTargetLowering::IsEligibleForTailCallOptimization(
                                 SDValue Callee,
                                 CallingConv::ID CalleeCC,
                                 bool isVarArg,
                                 bool isCalleeStructRet,
                                 bool isCallerStructRet,
                                 const SmallVectorImpl<ISD::OutputArg> &Outs,
                                 const SmallVectorImpl<SDValue> &OutVals,
                                 const SmallVectorImpl<ISD::InputArg> &Ins,
                                 SelectionDAG& DAG) const {
  const Function *CallerF = DAG.getMachineFunction().getFunction();
  CallingConv::ID CallerCC = CallerF->getCallingConv();
  bool CCMatch = CallerCC == CalleeCC;

  // ***************************************************************************
  //  Look for obvious safe cases to perform tail call optimization that do not
  //  require ABI changes.
  // ***************************************************************************

  // If this is a tail call via a function pointer, then don't do it!
  if (!(dyn_cast<GlobalAddressSDNode>(Callee))
      && !(dyn_cast<ExternalSymbolSDNode>(Callee))) {
    return false;
  }

  // Do not optimize if the calling conventions do not match.
  if (!CCMatch)
    return false;

  // Do not tail call optimize vararg calls.
  if (isVarArg)
    return false;

  // Also avoid tail call optimization if either caller or callee uses struct
  // return semantics.
  if (isCalleeStructRet || isCallerStructRet)
    return false;

  // In addition to the cases above, we also disable Tail Call Optimization if
  // the calling convention code that at least one outgoing argument needs to
  // go on the stack. We cannot check that here because at this point that
  // information is not available.
  return true;
}