aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/AArch64/AArch64InstrInfo.cpp
blob: 94b342952a8e8d98185fe54f4059565be8fa0020 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
//===- AArch64InstrInfo.cpp - AArch64 Instruction Information -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the AArch64 implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//

#include "AArch64.h"
#include "AArch64InstrInfo.h"
#include "AArch64MachineFunctionInfo.h"
#include "AArch64TargetMachine.h"
#include "MCTargetDesc/AArch64MCTargetDesc.h"
#include "Utils/AArch64BaseInfo.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"

#include <algorithm>

#define GET_INSTRINFO_CTOR
#include "AArch64GenInstrInfo.inc"

using namespace llvm;

AArch64InstrInfo::AArch64InstrInfo(const AArch64Subtarget &STI)
  : AArch64GenInstrInfo(AArch64::ADJCALLSTACKDOWN, AArch64::ADJCALLSTACKUP),
    RI(*this, STI), Subtarget(STI) {}

void AArch64InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
                                   MachineBasicBlock::iterator I, DebugLoc DL,
                                   unsigned DestReg, unsigned SrcReg,
                                   bool KillSrc) const {
  unsigned Opc = 0;
  unsigned ZeroReg = 0;
  if (DestReg == AArch64::XSP || SrcReg == AArch64::XSP) {
    // E.g. ADD xDst, xsp, #0 (, lsl #0)
    BuildMI(MBB, I, DL, get(AArch64::ADDxxi_lsl0_s), DestReg)
      .addReg(SrcReg)
      .addImm(0);
    return;
  } else if (DestReg == AArch64::WSP || SrcReg == AArch64::WSP) {
    // E.g. ADD wDST, wsp, #0 (, lsl #0)
    BuildMI(MBB, I, DL, get(AArch64::ADDwwi_lsl0_s), DestReg)
      .addReg(SrcReg)
      .addImm(0);
    return;
  } else if (DestReg == AArch64::NZCV) {
    assert(AArch64::GPR64RegClass.contains(SrcReg));
    // E.g. MSR NZCV, xDST
    BuildMI(MBB, I, DL, get(AArch64::MSRix))
      .addImm(A64SysReg::NZCV)
      .addReg(SrcReg);
  } else if (SrcReg == AArch64::NZCV) {
    assert(AArch64::GPR64RegClass.contains(DestReg));
    // E.g. MRS xDST, NZCV
    BuildMI(MBB, I, DL, get(AArch64::MRSxi), DestReg)
      .addImm(A64SysReg::NZCV);
  } else if (AArch64::GPR64RegClass.contains(DestReg)) {
    assert(AArch64::GPR64RegClass.contains(SrcReg));
    Opc = AArch64::ORRxxx_lsl;
    ZeroReg = AArch64::XZR;
  } else if (AArch64::GPR32RegClass.contains(DestReg)) {
    assert(AArch64::GPR32RegClass.contains(SrcReg));
    Opc = AArch64::ORRwww_lsl;
    ZeroReg = AArch64::WZR;
  } else if (AArch64::FPR32RegClass.contains(DestReg)) {
    assert(AArch64::FPR32RegClass.contains(SrcReg));
    BuildMI(MBB, I, DL, get(AArch64::FMOVss), DestReg)
      .addReg(SrcReg);
    return;
  } else if (AArch64::FPR64RegClass.contains(DestReg)) {
    assert(AArch64::FPR64RegClass.contains(SrcReg));
    BuildMI(MBB, I, DL, get(AArch64::FMOVdd), DestReg)
      .addReg(SrcReg);
    return;
  } else if (AArch64::FPR128RegClass.contains(DestReg)) {
    assert(AArch64::FPR128RegClass.contains(SrcReg));

    // FIXME: there's no good way to do this, at least without NEON:
    //   + There's no single move instruction for q-registers
    //   + We can't create a spill slot and use normal STR/LDR because stack
    //     allocation has already happened
    //   + We can't go via X-registers with FMOV because register allocation has
    //     already happened.
    // This may not be efficient, but at least it works.
    BuildMI(MBB, I, DL, get(AArch64::LSFP128_PreInd_STR), AArch64::XSP)
      .addReg(SrcReg)
      .addReg(AArch64::XSP)
      .addImm(0x1ff & -16);

    BuildMI(MBB, I, DL, get(AArch64::LSFP128_PostInd_LDR), DestReg)
      .addReg(AArch64::XSP, RegState::Define)
      .addReg(AArch64::XSP)
      .addImm(16);
    return;
  } else {
    llvm_unreachable("Unknown register class in copyPhysReg");
  }

  // E.g. ORR xDst, xzr, xSrc, lsl #0
  BuildMI(MBB, I, DL, get(Opc), DestReg)
    .addReg(ZeroReg)
    .addReg(SrcReg)
    .addImm(0);
}

MachineInstr *
AArch64InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF, int FrameIx,
                                           uint64_t Offset, const MDNode *MDPtr,
                                           DebugLoc DL) const {
  MachineInstrBuilder MIB = BuildMI(MF, DL, get(AArch64::DBG_VALUE))
    .addFrameIndex(FrameIx).addImm(0)
    .addImm(Offset)
    .addMetadata(MDPtr);
  return &*MIB;
}

/// Does the Opcode represent a conditional branch that we can remove and re-add
/// at the end of a basic block?
static bool isCondBranch(unsigned Opc) {
  return Opc == AArch64::Bcc || Opc == AArch64::CBZw || Opc == AArch64::CBZx ||
         Opc == AArch64::CBNZw || Opc == AArch64::CBNZx ||
         Opc == AArch64::TBZwii || Opc == AArch64::TBZxii ||
         Opc == AArch64::TBNZwii || Opc == AArch64::TBNZxii;
}

/// Takes apart a given conditional branch MachineInstr (see isCondBranch),
/// setting TBB to the destination basic block and populating the Cond vector
/// with data necessary to recreate the conditional branch at a later
/// date. First element will be the opcode, and subsequent ones define the
/// conditions being branched on in an instruction-specific manner.
static void classifyCondBranch(MachineInstr *I, MachineBasicBlock *&TBB,
                               SmallVectorImpl<MachineOperand> &Cond) {
  switch(I->getOpcode()) {
  case AArch64::Bcc:
  case AArch64::CBZw:
  case AArch64::CBZx:
  case AArch64::CBNZw:
  case AArch64::CBNZx:
    // These instructions just have one predicate operand in position 0 (either
    // a condition code or a register being compared).
    Cond.push_back(MachineOperand::CreateImm(I->getOpcode()));
    Cond.push_back(I->getOperand(0));
    TBB = I->getOperand(1).getMBB();
    return;
  case AArch64::TBZwii:
  case AArch64::TBZxii:
  case AArch64::TBNZwii:
  case AArch64::TBNZxii:
    // These have two predicate operands: a register and a bit position.
    Cond.push_back(MachineOperand::CreateImm(I->getOpcode()));
    Cond.push_back(I->getOperand(0));
    Cond.push_back(I->getOperand(1));
    TBB = I->getOperand(2).getMBB();
    return;
  default:
    llvm_unreachable("Unknown conditional branch to classify");
  }
}


bool
AArch64InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
                                MachineBasicBlock *&FBB,
                                SmallVectorImpl<MachineOperand> &Cond,
                                bool AllowModify) const {
  // If the block has no terminators, it just falls into the block after it.
  MachineBasicBlock::iterator I = MBB.end();
  if (I == MBB.begin())
    return false;
  --I;
  while (I->isDebugValue()) {
    if (I == MBB.begin())
      return false;
    --I;
  }
  if (!isUnpredicatedTerminator(I))
    return false;

  // Get the last instruction in the block.
  MachineInstr *LastInst = I;

  // If there is only one terminator instruction, process it.
  unsigned LastOpc = LastInst->getOpcode();
  if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
    if (LastOpc == AArch64::Bimm) {
      TBB = LastInst->getOperand(0).getMBB();
      return false;
    }
    if (isCondBranch(LastOpc)) {
      classifyCondBranch(LastInst, TBB, Cond);
      return false;
    }
    return true;  // Can't handle indirect branch.
  }

  // Get the instruction before it if it is a terminator.
  MachineInstr *SecondLastInst = I;
  unsigned SecondLastOpc = SecondLastInst->getOpcode();

  // If AllowModify is true and the block ends with two or more unconditional
  // branches, delete all but the first unconditional branch.
  if (AllowModify && LastOpc == AArch64::Bimm) {
    while (SecondLastOpc == AArch64::Bimm) {
      LastInst->eraseFromParent();
      LastInst = SecondLastInst;
      LastOpc = LastInst->getOpcode();
      if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
        // Return now the only terminator is an unconditional branch.
        TBB = LastInst->getOperand(0).getMBB();
        return false;
      } else {
        SecondLastInst = I;
        SecondLastOpc = SecondLastInst->getOpcode();
      }
    }
  }

  // If there are three terminators, we don't know what sort of block this is.
  if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I))
    return true;

  // If the block ends with a B and a Bcc, handle it.
  if (LastOpc == AArch64::Bimm) {
    if (SecondLastOpc == AArch64::Bcc) {
      TBB =  SecondLastInst->getOperand(1).getMBB();
      Cond.push_back(MachineOperand::CreateImm(AArch64::Bcc));
      Cond.push_back(SecondLastInst->getOperand(0));
      FBB = LastInst->getOperand(0).getMBB();
      return false;
    } else if (isCondBranch(SecondLastOpc)) {
      classifyCondBranch(SecondLastInst, TBB, Cond);
      FBB = LastInst->getOperand(0).getMBB();
      return false;
    }
  }

  // If the block ends with two unconditional branches, handle it.  The second
  // one is not executed, so remove it.
  if (SecondLastOpc == AArch64::Bimm && LastOpc == AArch64::Bimm) {
    TBB = SecondLastInst->getOperand(0).getMBB();
    I = LastInst;
    if (AllowModify)
      I->eraseFromParent();
    return false;
  }

  // Otherwise, can't handle this.
  return true;
}

bool AArch64InstrInfo::ReverseBranchCondition(
                                  SmallVectorImpl<MachineOperand> &Cond) const {
  switch (Cond[0].getImm()) {
  case AArch64::Bcc: {
    A64CC::CondCodes CC = static_cast<A64CC::CondCodes>(Cond[1].getImm());
    CC = A64InvertCondCode(CC);
    Cond[1].setImm(CC);
    return false;
  }
  case AArch64::CBZw:
    Cond[0].setImm(AArch64::CBNZw);
    return false;
  case AArch64::CBZx:
    Cond[0].setImm(AArch64::CBNZx);
    return false;
  case AArch64::CBNZw:
    Cond[0].setImm(AArch64::CBZw);
    return false;
  case AArch64::CBNZx:
    Cond[0].setImm(AArch64::CBZx);
    return false;
  case AArch64::TBZwii:
    Cond[0].setImm(AArch64::TBNZwii);
    return false;
  case AArch64::TBZxii:
    Cond[0].setImm(AArch64::TBNZxii);
    return false;
  case AArch64::TBNZwii:
    Cond[0].setImm(AArch64::TBZwii);
    return false;
  case AArch64::TBNZxii:
    Cond[0].setImm(AArch64::TBZxii);
    return false;
  default:
    llvm_unreachable("Unknown branch type");
  }
}


unsigned
AArch64InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
                               MachineBasicBlock *FBB,
                               const SmallVectorImpl<MachineOperand> &Cond,
                               DebugLoc DL) const {
  if (FBB == 0 && Cond.empty()) {
    BuildMI(&MBB, DL, get(AArch64::Bimm)).addMBB(TBB);
    return 1;
  } else if (FBB == 0) {
    MachineInstrBuilder MIB = BuildMI(&MBB, DL, get(Cond[0].getImm()));
    for (int i = 1, e = Cond.size(); i != e; ++i)
      MIB.addOperand(Cond[i]);
    MIB.addMBB(TBB);
    return 1;
  }

  MachineInstrBuilder MIB = BuildMI(&MBB, DL, get(Cond[0].getImm()));
  for (int i = 1, e = Cond.size(); i != e; ++i)
    MIB.addOperand(Cond[i]);
  MIB.addMBB(TBB);

  BuildMI(&MBB, DL, get(AArch64::Bimm)).addMBB(FBB);
  return 2;
}

unsigned AArch64InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
  MachineBasicBlock::iterator I = MBB.end();
  if (I == MBB.begin()) return 0;
  --I;
  while (I->isDebugValue()) {
    if (I == MBB.begin())
      return 0;
    --I;
  }
  if (I->getOpcode() != AArch64::Bimm && !isCondBranch(I->getOpcode()))
    return 0;

  // Remove the branch.
  I->eraseFromParent();

  I = MBB.end();

  if (I == MBB.begin()) return 1;
  --I;
  if (!isCondBranch(I->getOpcode()))
    return 1;

  // Remove the branch.
  I->eraseFromParent();
  return 2;
}

bool
AArch64InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MBBI) const {
  MachineInstr &MI = *MBBI;
  MachineBasicBlock &MBB = *MI.getParent();

  unsigned Opcode = MI.getOpcode();
  switch (Opcode) {
  case AArch64::TLSDESC_BLRx: {
    MachineInstr *NewMI =
      BuildMI(MBB, MBBI, MI.getDebugLoc(), get(AArch64::TLSDESCCALL))
        .addOperand(MI.getOperand(1));
    MI.setDesc(get(AArch64::BLRx));

    llvm::finalizeBundle(MBB, NewMI, *++MBBI);
    return true;
    }
  default:
    return false;
  }

  return false;
}

void
AArch64InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
                                      MachineBasicBlock::iterator MBBI,
                                      unsigned SrcReg, bool isKill,
                                      int FrameIdx,
                                      const TargetRegisterClass *RC,
                                      const TargetRegisterInfo *TRI) const {
  DebugLoc DL = MBB.findDebugLoc(MBBI);
  MachineFunction &MF = *MBB.getParent();
  MachineFrameInfo &MFI = *MF.getFrameInfo();
  unsigned Align = MFI.getObjectAlignment(FrameIdx);

  MachineMemOperand *MMO
    = MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
                              MachineMemOperand::MOStore,
                              MFI.getObjectSize(FrameIdx),
                              Align);

  unsigned StoreOp = 0;
  if (RC->hasType(MVT::i64) || RC->hasType(MVT::i32)) {
    switch(RC->getSize()) {
    case 4: StoreOp = AArch64::LS32_STR; break;
    case 8: StoreOp = AArch64::LS64_STR; break;
    default:
      llvm_unreachable("Unknown size for regclass");
    }
  } else {
    assert((RC->hasType(MVT::f32) || RC->hasType(MVT::f64) ||
            RC->hasType(MVT::f128))
           && "Expected integer or floating type for store");
    switch (RC->getSize()) {
    case 4: StoreOp = AArch64::LSFP32_STR; break;
    case 8: StoreOp = AArch64::LSFP64_STR; break;
    case 16: StoreOp = AArch64::LSFP128_STR; break;
    default:
      llvm_unreachable("Unknown size for regclass");
    }
  }

  MachineInstrBuilder NewMI = BuildMI(MBB, MBBI, DL, get(StoreOp));
  NewMI.addReg(SrcReg, getKillRegState(isKill))
    .addFrameIndex(FrameIdx)
    .addImm(0)
    .addMemOperand(MMO);

}

void
AArch64InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
                                       MachineBasicBlock::iterator MBBI,
                                       unsigned DestReg, int FrameIdx,
                                       const TargetRegisterClass *RC,
                                       const TargetRegisterInfo *TRI) const {
  DebugLoc DL = MBB.findDebugLoc(MBBI);
  MachineFunction &MF = *MBB.getParent();
  MachineFrameInfo &MFI = *MF.getFrameInfo();
  unsigned Align = MFI.getObjectAlignment(FrameIdx);

  MachineMemOperand *MMO
    = MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
                              MachineMemOperand::MOLoad,
                              MFI.getObjectSize(FrameIdx),
                              Align);

  unsigned LoadOp = 0;
  if (RC->hasType(MVT::i64) || RC->hasType(MVT::i32)) {
    switch(RC->getSize()) {
    case 4: LoadOp = AArch64::LS32_LDR; break;
    case 8: LoadOp = AArch64::LS64_LDR; break;
    default:
      llvm_unreachable("Unknown size for regclass");
    }
  } else {
    assert((RC->hasType(MVT::f32) || RC->hasType(MVT::f64)
            || RC->hasType(MVT::f128))
           && "Expected integer or floating type for store");
    switch (RC->getSize()) {
    case 4: LoadOp = AArch64::LSFP32_LDR; break;
    case 8: LoadOp = AArch64::LSFP64_LDR; break;
    case 16: LoadOp = AArch64::LSFP128_LDR; break;
    default:
      llvm_unreachable("Unknown size for regclass");
    }
  }

  MachineInstrBuilder NewMI = BuildMI(MBB, MBBI, DL, get(LoadOp), DestReg);
  NewMI.addFrameIndex(FrameIdx)
       .addImm(0)
       .addMemOperand(MMO);
}

unsigned AArch64InstrInfo::estimateRSStackLimit(MachineFunction &MF) const {
  unsigned Limit = (1 << 16) - 1;
  for (MachineFunction::iterator BB = MF.begin(),E = MF.end(); BB != E; ++BB) {
    for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end();
         I != E; ++I) {
      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
        if (!I->getOperand(i).isFI()) continue;

        // When using ADDxxi_lsl0_s to get the address of a stack object, 0xfff
        // is the largest offset guaranteed to fit in the immediate offset.
        if (I->getOpcode() == AArch64::ADDxxi_lsl0_s) {
          Limit = std::min(Limit, 0xfffu);
          break;
        }

        int AccessScale, MinOffset, MaxOffset;
        getAddressConstraints(*I, AccessScale, MinOffset, MaxOffset);
        Limit = std::min(Limit, static_cast<unsigned>(MaxOffset));

        break; // At most one FI per instruction
      }
    }
  }

  return Limit;
}
void AArch64InstrInfo::getAddressConstraints(const MachineInstr &MI,
                                             int &AccessScale, int &MinOffset,
                                             int &MaxOffset) const {
  switch (MI.getOpcode()) {
  default: llvm_unreachable("Unkown load/store kind");
  case TargetOpcode::DBG_VALUE:
    AccessScale = 1;
    MinOffset = INT_MIN;
    MaxOffset = INT_MAX;
    return;
  case AArch64::LS8_LDR: case AArch64::LS8_STR:
  case AArch64::LSFP8_LDR: case AArch64::LSFP8_STR:
  case AArch64::LDRSBw:
  case AArch64::LDRSBx:
    AccessScale = 1;
    MinOffset = 0;
    MaxOffset = 0xfff;
    return;
  case AArch64::LS16_LDR: case AArch64::LS16_STR:
  case AArch64::LSFP16_LDR: case AArch64::LSFP16_STR:
  case AArch64::LDRSHw:
  case AArch64::LDRSHx:
    AccessScale = 2;
    MinOffset = 0;
    MaxOffset = 0xfff * AccessScale;
    return;
  case AArch64::LS32_LDR:  case AArch64::LS32_STR:
  case AArch64::LSFP32_LDR: case AArch64::LSFP32_STR:
  case AArch64::LDRSWx:
  case AArch64::LDPSWx:
    AccessScale = 4;
    MinOffset = 0;
    MaxOffset = 0xfff * AccessScale;
    return;
  case AArch64::LS64_LDR: case AArch64::LS64_STR:
  case AArch64::LSFP64_LDR: case AArch64::LSFP64_STR:
  case AArch64::PRFM:
    AccessScale = 8;
    MinOffset = 0;
    MaxOffset = 0xfff * AccessScale;
    return;
  case AArch64::LSFP128_LDR: case AArch64::LSFP128_STR:
    AccessScale = 16;
    MinOffset = 0;
    MaxOffset = 0xfff * AccessScale;
    return;
  case AArch64::LSPair32_LDR: case AArch64::LSPair32_STR:
  case AArch64::LSFPPair32_LDR: case AArch64::LSFPPair32_STR:
    AccessScale = 4;
    MinOffset = -0x40 * AccessScale;
    MaxOffset = 0x3f * AccessScale;
    return;
  case AArch64::LSPair64_LDR: case AArch64::LSPair64_STR:
  case AArch64::LSFPPair64_LDR: case AArch64::LSFPPair64_STR:
    AccessScale = 8;
    MinOffset = -0x40 * AccessScale;
    MaxOffset = 0x3f * AccessScale;
    return;
  case AArch64::LSFPPair128_LDR: case AArch64::LSFPPair128_STR:
    AccessScale = 16;
    MinOffset = -0x40 * AccessScale;
    MaxOffset = 0x3f * AccessScale;
    return;
  }
}

unsigned AArch64InstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
  const MCInstrDesc &MCID = MI.getDesc();
  const MachineBasicBlock &MBB = *MI.getParent();
  const MachineFunction &MF = *MBB.getParent();
  const MCAsmInfo &MAI = *MF.getTarget().getMCAsmInfo();

  if (MCID.getSize())
    return MCID.getSize();

  if (MI.getOpcode() == AArch64::INLINEASM)
    return getInlineAsmLength(MI.getOperand(0).getSymbolName(), MAI);

  if (MI.isLabel())
    return 0;

  switch (MI.getOpcode()) {
  case TargetOpcode::BUNDLE:
    return getInstBundleLength(MI);
  case TargetOpcode::IMPLICIT_DEF:
  case TargetOpcode::KILL:
  case TargetOpcode::PROLOG_LABEL:
  case TargetOpcode::EH_LABEL:
  case TargetOpcode::DBG_VALUE:
    return 0;
  case AArch64::CONSTPOOL_ENTRY:
    return MI.getOperand(2).getImm();
  case AArch64::TLSDESCCALL:
    return 0;
  default:
    llvm_unreachable("Unknown instruction class");
  }
}

unsigned AArch64InstrInfo::getInstBundleLength(const MachineInstr &MI) const {
  unsigned Size = 0;
  MachineBasicBlock::const_instr_iterator I = MI;
  MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
  while (++I != E && I->isInsideBundle()) {
    assert(!I->isBundle() && "No nested bundle!");
    Size += getInstSizeInBytes(*I);
  }
  return Size;
}

bool llvm::rewriteA64FrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
                                unsigned FrameReg, int &Offset,
                                const AArch64InstrInfo &TII) {
  MachineBasicBlock &MBB = *MI.getParent();
  MachineFunction &MF = *MBB.getParent();
  MachineFrameInfo &MFI = *MF.getFrameInfo();

  MFI.getObjectOffset(FrameRegIdx);
  llvm_unreachable("Unimplemented rewriteFrameIndex");
}

void llvm::emitRegUpdate(MachineBasicBlock &MBB,
                         MachineBasicBlock::iterator MBBI,
                         DebugLoc dl, const TargetInstrInfo &TII,
                         unsigned DstReg, unsigned SrcReg, unsigned ScratchReg,
                         int64_t NumBytes, MachineInstr::MIFlag MIFlags) {
  if (NumBytes == 0 && DstReg == SrcReg)
    return;
  else if (abs(NumBytes) & ~0xffffff) {
    // Generically, we have to materialize the offset into a temporary register
    // and subtract it. There are a couple of ways this could be done, for now
    // we'll go for a literal-pool load.
    MachineFunction &MF = *MBB.getParent();
    MachineConstantPool *MCP = MF.getConstantPool();
    const Constant *C
      = ConstantInt::get(Type::getInt64Ty(MF.getFunction()->getContext()),
                         abs(NumBytes));
    unsigned CPI = MCP->getConstantPoolIndex(C, 8);

    // LDR xTMP, .LITPOOL
    BuildMI(MBB, MBBI, dl, TII.get(AArch64::LDRx_lit), ScratchReg)
      .addConstantPoolIndex(CPI)
      .setMIFlag(MIFlags);

    // ADD DST, SRC, xTMP (, lsl #0)
    unsigned AddOp = NumBytes > 0 ? AArch64::ADDxxx_uxtx : AArch64::SUBxxx_uxtx;
    BuildMI(MBB, MBBI, dl, TII.get(AddOp), DstReg)
      .addReg(SrcReg, RegState::Kill)
      .addReg(ScratchReg, RegState::Kill)
      .addImm(0)
      .setMIFlag(MIFlags);
    return;
  }

  // Now we know that the adjustment can be done in at most two add/sub
  // (immediate) instructions, which is always more efficient than a
  // literal-pool load, or even a hypothetical movz/movk/add sequence

  // Decide whether we're doing addition or subtraction
  unsigned LowOp, HighOp;
  if (NumBytes >= 0) {
    LowOp = AArch64::ADDxxi_lsl0_s;
    HighOp = AArch64::ADDxxi_lsl12_s;
  } else {
    LowOp = AArch64::SUBxxi_lsl0_s;
    HighOp = AArch64::SUBxxi_lsl12_s;
    NumBytes = abs(NumBytes);
  }

  // If we're here, at the very least a move needs to be produced, which just
  // happens to be materializable by an ADD.
  if ((NumBytes & 0xfff) || NumBytes == 0) {
    BuildMI(MBB, MBBI, dl, TII.get(LowOp), DstReg)
      .addReg(SrcReg, RegState::Kill)
      .addImm(NumBytes & 0xfff)
      .setMIFlag(MIFlags);

    // Next update should use the register we've just defined.
    SrcReg = DstReg;
  }

  if (NumBytes & 0xfff000) {
    BuildMI(MBB, MBBI, dl, TII.get(HighOp), DstReg)
      .addReg(SrcReg, RegState::Kill)
      .addImm(NumBytes >> 12)
      .setMIFlag(MIFlags);
  }
}

void llvm::emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
                        DebugLoc dl, const TargetInstrInfo &TII,
                        unsigned ScratchReg, int64_t NumBytes,
                        MachineInstr::MIFlag MIFlags) {
  emitRegUpdate(MBB, MI, dl, TII, AArch64::XSP, AArch64::XSP, AArch64::X16,
                NumBytes, MIFlags);
}


namespace {
  struct LDTLSCleanup : public MachineFunctionPass {
    static char ID;
    LDTLSCleanup() : MachineFunctionPass(ID) {}

    virtual bool runOnMachineFunction(MachineFunction &MF) {
      AArch64MachineFunctionInfo* MFI
        = MF.getInfo<AArch64MachineFunctionInfo>();
      if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
        // No point folding accesses if there isn't at least two.
        return false;
      }

      MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
      return VisitNode(DT->getRootNode(), 0);
    }

    // Visit the dominator subtree rooted at Node in pre-order.
    // If TLSBaseAddrReg is non-null, then use that to replace any
    // TLS_base_addr instructions. Otherwise, create the register
    // when the first such instruction is seen, and then use it
    // as we encounter more instructions.
    bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
      MachineBasicBlock *BB = Node->getBlock();
      bool Changed = false;

      // Traverse the current block.
      for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
           ++I) {
        switch (I->getOpcode()) {
        case AArch64::TLSDESC_BLRx:
          // Make sure it's a local dynamic access.
          if (!I->getOperand(1).isSymbol() ||
              strcmp(I->getOperand(1).getSymbolName(), "_TLS_MODULE_BASE_"))
            break;

          if (TLSBaseAddrReg)
            I = ReplaceTLSBaseAddrCall(I, TLSBaseAddrReg);
          else
            I = SetRegister(I, &TLSBaseAddrReg);
          Changed = true;
          break;
        default:
          break;
        }
      }

      // Visit the children of this block in the dominator tree.
      for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
           I != E; ++I) {
        Changed |= VisitNode(*I, TLSBaseAddrReg);
      }

      return Changed;
    }

    // Replace the TLS_base_addr instruction I with a copy from
    // TLSBaseAddrReg, returning the new instruction.
    MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr *I,
                                         unsigned TLSBaseAddrReg) {
      MachineFunction *MF = I->getParent()->getParent();
      const AArch64TargetMachine *TM =
          static_cast<const AArch64TargetMachine *>(&MF->getTarget());
      const AArch64InstrInfo *TII = TM->getInstrInfo();

      // Insert a Copy from TLSBaseAddrReg to x0, which is where the rest of the
      // code sequence assumes the address will be.
      MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(),
                                   TII->get(TargetOpcode::COPY),
                                   AArch64::X0)
        .addReg(TLSBaseAddrReg);

      // Erase the TLS_base_addr instruction.
      I->eraseFromParent();

      return Copy;
    }

    // Create a virtal register in *TLSBaseAddrReg, and populate it by
    // inserting a copy instruction after I. Returns the new instruction.
    MachineInstr *SetRegister(MachineInstr *I, unsigned *TLSBaseAddrReg) {
      MachineFunction *MF = I->getParent()->getParent();
      const AArch64TargetMachine *TM =
          static_cast<const AArch64TargetMachine *>(&MF->getTarget());
      const AArch64InstrInfo *TII = TM->getInstrInfo();

      // Create a virtual register for the TLS base address.
      MachineRegisterInfo &RegInfo = MF->getRegInfo();
      *TLSBaseAddrReg = RegInfo.createVirtualRegister(&AArch64::GPR64RegClass);

      // Insert a copy from X0 to TLSBaseAddrReg for later.
      MachineInstr *Next = I->getNextNode();
      MachineInstr *Copy = BuildMI(*I->getParent(), Next, I->getDebugLoc(),
                                   TII->get(TargetOpcode::COPY),
                                   *TLSBaseAddrReg)
        .addReg(AArch64::X0);

      return Copy;
    }

    virtual const char *getPassName() const {
      return "Local Dynamic TLS Access Clean-up";
    }

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesCFG();
      AU.addRequired<MachineDominatorTree>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }
  };
}

char LDTLSCleanup::ID = 0;
FunctionPass*
llvm::createAArch64CleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }