1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
|
//===-- ConstantRange.cpp - ConstantRange implementation ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Represent a range of possible values that may occur when the program is run
// for an integral value. This keeps track of a lower and upper bound for the
// constant, which MAY wrap around the end of the numeric range. To do this, it
// keeps track of a [lower, upper) bound, which specifies an interval just like
// STL iterators. When used with boolean values, the following are important
// ranges (other integral ranges use min/max values for special range values):
//
// [F, F) = {} = Empty set
// [T, F) = {T}
// [F, T) = {F}
// [T, T) = {F, T} = Full set
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/ConstantRange.h"
#include "llvm/Support/Streams.h"
#include <ostream>
using namespace llvm;
/// Initialize a full (the default) or empty set for the specified type.
///
ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) :
Lower(BitWidth, 0), Upper(BitWidth, 0) {
if (Full)
Lower = Upper = APInt::getMaxValue(BitWidth);
else
Lower = Upper = APInt::getMinValue(BitWidth);
}
/// Initialize a range to hold the single specified value.
///
ConstantRange::ConstantRange(const APInt & V) : Lower(V), Upper(V + 1) { }
ConstantRange::ConstantRange(const APInt &L, const APInt &U) :
Lower(L), Upper(U) {
assert(L.getBitWidth() == U.getBitWidth() &&
"ConstantRange with unequal bit widths");
uint32_t BitWidth = L.getBitWidth();
assert((L != U || (L == APInt::getMaxValue(BitWidth) ||
L == APInt::getMinValue(BitWidth))) &&
"Lower == Upper, but they aren't min or max value!");
}
/// isFullSet - Return true if this set contains all of the elements possible
/// for this data-type
bool ConstantRange::isFullSet() const {
return Lower == Upper && Lower == APInt::getMaxValue(getBitWidth());
}
/// isEmptySet - Return true if this set contains no members.
///
bool ConstantRange::isEmptySet() const {
return Lower == Upper && Lower == APInt::getMinValue(getBitWidth());
}
/// isWrappedSet - Return true if this set wraps around the top of the range,
/// for example: [100, 8)
///
bool ConstantRange::isWrappedSet(bool isSigned) const {
if (isSigned)
return Lower.sgt(Upper);
return Lower.ugt(Upper);
}
/// getSetSize - Return the number of elements in this set.
///
APInt ConstantRange::getSetSize() const {
if (isEmptySet())
return APInt(getBitWidth(), 0);
if (getBitWidth() == 1) {
if (Lower != Upper) // One of T or F in the set...
return APInt(2, 1);
return APInt(2, 2); // Must be full set...
}
// Simply subtract the bounds...
return Upper - Lower;
}
/// contains - Return true if the specified value is in the set.
///
bool ConstantRange::contains(const APInt &V, bool isSigned) const {
if (Lower == Upper) {
if (isFullSet())
return true;
return false;
}
if (!isWrappedSet(isSigned))
if (isSigned)
return Lower.sle(V) && V.slt(Upper);
else
return Lower.ule(V) && V.ult(Upper);
if (isSigned)
return Lower.sle(V) || V.slt(Upper);
else
return Lower.ule(V) || V.ult(Upper);
}
/// subtract - Subtract the specified constant from the endpoints of this
/// constant range.
ConstantRange ConstantRange::subtract(const APInt &Val) const {
assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
// If the set is empty or full, don't modify the endpoints.
if (Lower == Upper)
return *this;
return ConstantRange(Lower - Val, Upper - Val);
}
// intersect1Wrapped - This helper function is used to intersect two ranges when
// it is known that LHS is wrapped and RHS isn't.
//
ConstantRange
ConstantRange::intersect1Wrapped(const ConstantRange &LHS,
const ConstantRange &RHS, bool isSigned) {
assert(LHS.isWrappedSet(isSigned) && !RHS.isWrappedSet(isSigned));
// Check to see if we overlap on the Left side of RHS...
//
bool LT = (isSigned ? RHS.Lower.slt(LHS.Upper) : RHS.Lower.ult(LHS.Upper));
bool GT = (isSigned ? RHS.Upper.sgt(LHS.Lower) : RHS.Upper.ugt(LHS.Lower));
if (LT) {
// We do overlap on the left side of RHS, see if we overlap on the right of
// RHS...
if (GT) {
// Ok, the result overlaps on both the left and right sides. See if the
// resultant interval will be smaller if we wrap or not...
//
if (LHS.getSetSize().ult(RHS.getSetSize()))
return LHS;
else
return RHS;
} else {
// No overlap on the right, just on the left.
return ConstantRange(RHS.Lower, LHS.Upper);
}
} else {
// We don't overlap on the left side of RHS, see if we overlap on the right
// of RHS...
if (GT) {
// Simple overlap...
return ConstantRange(LHS.Lower, RHS.Upper);
} else {
// No overlap...
return ConstantRange(LHS.getBitWidth(), false);
}
}
}
/// intersectWith - Return the range that results from the intersection of this
/// range with another range.
///
ConstantRange ConstantRange::intersectWith(const ConstantRange &CR,
bool isSigned) const {
assert(getBitWidth() == CR.getBitWidth() &&
"ConstantRange types don't agree!");
// Handle common special cases
if (isEmptySet() || CR.isFullSet())
return *this;
if (isFullSet() || CR.isEmptySet())
return CR;
if (!isWrappedSet(isSigned)) {
if (!CR.isWrappedSet(isSigned)) {
using namespace APIntOps;
APInt L = isSigned ? smax(Lower, CR.Lower) : umax(Lower, CR.Lower);
APInt U = isSigned ? smin(Upper, CR.Upper) : umin(Upper, CR.Upper);
if (isSigned ? L.slt(U) : L.ult(U)) // If range isn't empty...
return ConstantRange(L, U);
else
return ConstantRange(getBitWidth(), false);// Otherwise, empty set
} else
return intersect1Wrapped(CR, *this, isSigned);
} else { // We know "this" is wrapped...
if (!CR.isWrappedSet(isSigned))
return intersect1Wrapped(*this, CR, isSigned);
else {
// Both ranges are wrapped...
using namespace APIntOps;
APInt L = isSigned ? smax(Lower, CR.Lower) : umax(Lower, CR.Lower);
APInt U = isSigned ? smin(Upper, CR.Upper) : umin(Upper, CR.Upper);
return ConstantRange(L, U);
}
}
return *this;
}
/// unionWith - Return the range that results from the union of this range with
/// another range. The resultant range is guaranteed to include the elements of
/// both sets, but may contain more. For example, [3, 9) union [12,15) is [3,
/// 15), which includes 9, 10, and 11, which were not included in either set
/// before.
///
ConstantRange ConstantRange::unionWith(const ConstantRange &CR,
bool isSigned) const {
assert(getBitWidth() == CR.getBitWidth() &&
"ConstantRange types don't agree!");
assert(0 && "Range union not implemented yet!");
return *this;
}
/// zeroExtend - Return a new range in the specified integer type, which must
/// be strictly larger than the current type. The returned range will
/// correspond to the possible range of values as if the source range had been
/// zero extended.
ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
unsigned SrcTySize = getBitWidth();
assert(SrcTySize < DstTySize && "Not a value extension");
if (isFullSet())
// Change a source full set into [0, 1 << 8*numbytes)
return ConstantRange(APInt(DstTySize,0), APInt(DstTySize,1).shl(SrcTySize));
APInt L = Lower; L.zext(DstTySize);
APInt U = Upper; U.zext(DstTySize);
return ConstantRange(L, U);
}
/// truncate - Return a new range in the specified integer type, which must be
/// strictly smaller than the current type. The returned range will
/// correspond to the possible range of values as if the source range had been
/// truncated to the specified type.
ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
unsigned SrcTySize = getBitWidth();
assert(SrcTySize > DstTySize && "Not a value truncation");
APInt Size = APInt::getMaxValue(DstTySize).zext(SrcTySize);
if (isFullSet() || getSetSize().ugt(Size))
return ConstantRange(DstTySize);
APInt L = Lower; L.trunc(DstTySize);
APInt U = Upper; U.trunc(DstTySize);
return ConstantRange(L, U);
}
/// print - Print out the bounds to a stream...
///
void ConstantRange::print(std::ostream &OS) const {
OS << "[" << Lower.toStringSigned(10) << ","
<< Upper.toStringSigned(10) << " )";
}
/// dump - Allow printing from a debugger easily...
///
void ConstantRange::dump() const {
print(cerr);
}
|