aboutsummaryrefslogtreecommitdiff
path: root/lib/IR/Constants.cpp
blob: 0c7effb5cac71a5092f5429d060d46c5db96f8dc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
//===-- Constants.cpp - Implement Constant nodes --------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Constant* classes.
//
//===----------------------------------------------------------------------===//

#include "llvm/IR/Constants.h"
#include "ConstantFold.h"
#include "LLVMContextImpl.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstdarg>
using namespace llvm;

//===----------------------------------------------------------------------===//
//                              Constant Class
//===----------------------------------------------------------------------===//

void Constant::anchor() { }

bool Constant::isNegativeZeroValue() const {
  // Floating point values have an explicit -0.0 value.
  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
    return CFP->isZero() && CFP->isNegative();

  // Otherwise, just use +0.0.
  return isNullValue();
}

// Return true iff this constant is positive zero (floating point), negative
// zero (floating point), or a null value.
bool Constant::isZeroValue() const {
  // Floating point values have an explicit -0.0 value.
  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
    return CFP->isZero();

  // Otherwise, just use +0.0.
  return isNullValue();
}

bool Constant::isNullValue() const {
  // 0 is null.
  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
    return CI->isZero();

  // +0.0 is null.
  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
    return CFP->isZero() && !CFP->isNegative();

  // constant zero is zero for aggregates and cpnull is null for pointers.
  return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
}

bool Constant::isAllOnesValue() const {
  // Check for -1 integers
  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
    return CI->isMinusOne();

  // Check for FP which are bitcasted from -1 integers
  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
    return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();

  // Check for constant vectors which are splats of -1 values.
  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
    if (Constant *Splat = CV->getSplatValue())
      return Splat->isAllOnesValue();

  // Check for constant vectors which are splats of -1 values.
  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
    if (Constant *Splat = CV->getSplatValue())
      return Splat->isAllOnesValue();

  return false;
}

// Constructor to create a '0' constant of arbitrary type...
Constant *Constant::getNullValue(Type *Ty) {
  switch (Ty->getTypeID()) {
  case Type::IntegerTyID:
    return ConstantInt::get(Ty, 0);
  case Type::HalfTyID:
    return ConstantFP::get(Ty->getContext(),
                           APFloat::getZero(APFloat::IEEEhalf));
  case Type::FloatTyID:
    return ConstantFP::get(Ty->getContext(),
                           APFloat::getZero(APFloat::IEEEsingle));
  case Type::DoubleTyID:
    return ConstantFP::get(Ty->getContext(),
                           APFloat::getZero(APFloat::IEEEdouble));
  case Type::X86_FP80TyID:
    return ConstantFP::get(Ty->getContext(),
                           APFloat::getZero(APFloat::x87DoubleExtended));
  case Type::FP128TyID:
    return ConstantFP::get(Ty->getContext(),
                           APFloat::getZero(APFloat::IEEEquad));
  case Type::PPC_FP128TyID:
    return ConstantFP::get(Ty->getContext(),
                           APFloat(APFloat::PPCDoubleDouble,
                                   APInt::getNullValue(128)));
  case Type::PointerTyID:
    return ConstantPointerNull::get(cast<PointerType>(Ty));
  case Type::StructTyID:
  case Type::ArrayTyID:
  case Type::VectorTyID:
    return ConstantAggregateZero::get(Ty);
  default:
    // Function, Label, or Opaque type?
    llvm_unreachable("Cannot create a null constant of that type!");
  }
}

Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
  Type *ScalarTy = Ty->getScalarType();

  // Create the base integer constant.
  Constant *C = ConstantInt::get(Ty->getContext(), V);

  // Convert an integer to a pointer, if necessary.
  if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
    C = ConstantExpr::getIntToPtr(C, PTy);

  // Broadcast a scalar to a vector, if necessary.
  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    C = ConstantVector::getSplat(VTy->getNumElements(), C);

  return C;
}

Constant *Constant::getAllOnesValue(Type *Ty) {
  if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
    return ConstantInt::get(Ty->getContext(),
                            APInt::getAllOnesValue(ITy->getBitWidth()));

  if (Ty->isFloatingPointTy()) {
    APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
                                          !Ty->isPPC_FP128Ty());
    return ConstantFP::get(Ty->getContext(), FL);
  }

  VectorType *VTy = cast<VectorType>(Ty);
  return ConstantVector::getSplat(VTy->getNumElements(),
                                  getAllOnesValue(VTy->getElementType()));
}

/// getAggregateElement - For aggregates (struct/array/vector) return the
/// constant that corresponds to the specified element if possible, or null if
/// not.  This can return null if the element index is a ConstantExpr, or if
/// 'this' is a constant expr.
Constant *Constant::getAggregateElement(unsigned Elt) const {
  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this))
    return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : 0;

  if (const ConstantArray *CA = dyn_cast<ConstantArray>(this))
    return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : 0;

  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
    return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : 0;

  if (const ConstantAggregateZero *CAZ =dyn_cast<ConstantAggregateZero>(this))
    return CAZ->getElementValue(Elt);

  if (const UndefValue *UV = dyn_cast<UndefValue>(this))
    return UV->getElementValue(Elt);

  if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
    return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) : 0;
  return 0;
}

Constant *Constant::getAggregateElement(Constant *Elt) const {
  assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
  if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
    return getAggregateElement(CI->getZExtValue());
  return 0;
}


void Constant::destroyConstantImpl() {
  // When a Constant is destroyed, there may be lingering
  // references to the constant by other constants in the constant pool.  These
  // constants are implicitly dependent on the module that is being deleted,
  // but they don't know that.  Because we only find out when the CPV is
  // deleted, we must now notify all of our users (that should only be
  // Constants) that they are, in fact, invalid now and should be deleted.
  //
  while (!use_empty()) {
    Value *V = use_back();
#ifndef NDEBUG      // Only in -g mode...
    if (!isa<Constant>(V)) {
      dbgs() << "While deleting: " << *this
             << "\n\nUse still stuck around after Def is destroyed: "
             << *V << "\n\n";
    }
#endif
    assert(isa<Constant>(V) && "References remain to Constant being destroyed");
    cast<Constant>(V)->destroyConstant();

    // The constant should remove itself from our use list...
    assert((use_empty() || use_back() != V) && "Constant not removed!");
  }

  // Value has no outstanding references it is safe to delete it now...
  delete this;
}

/// canTrap - Return true if evaluation of this constant could trap.  This is
/// true for things like constant expressions that could divide by zero.
bool Constant::canTrap() const {
  assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
  // The only thing that could possibly trap are constant exprs.
  const ConstantExpr *CE = dyn_cast<ConstantExpr>(this);
  if (!CE) return false;

  // ConstantExpr traps if any operands can trap.
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    if (CE->getOperand(i)->canTrap())
      return true;

  // Otherwise, only specific operations can trap.
  switch (CE->getOpcode()) {
  default:
    return false;
  case Instruction::UDiv:
  case Instruction::SDiv:
  case Instruction::FDiv:
  case Instruction::URem:
  case Instruction::SRem:
  case Instruction::FRem:
    // Div and rem can trap if the RHS is not known to be non-zero.
    if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
      return true;
    return false;
  }
}

/// isThreadDependent - Return true if the value can vary between threads.
bool Constant::isThreadDependent() const {
  SmallPtrSet<const Constant*, 64> Visited;
  SmallVector<const Constant*, 64> WorkList;
  WorkList.push_back(this);
  Visited.insert(this);

  while (!WorkList.empty()) {
    const Constant *C = WorkList.pop_back_val();

    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
      if (GV->isThreadLocal())
        return true;
    }

    for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) {
      const Constant *D = dyn_cast<Constant>(C->getOperand(I));
      if (!D)
        continue;
      if (Visited.insert(D))
        WorkList.push_back(D);
    }
  }

  return false;
}

/// isConstantUsed - Return true if the constant has users other than constant
/// exprs and other dangling things.
bool Constant::isConstantUsed() const {
  for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
    const Constant *UC = dyn_cast<Constant>(*UI);
    if (UC == 0 || isa<GlobalValue>(UC))
      return true;

    if (UC->isConstantUsed())
      return true;
  }
  return false;
}



/// getRelocationInfo - This method classifies the entry according to
/// whether or not it may generate a relocation entry.  This must be
/// conservative, so if it might codegen to a relocatable entry, it should say
/// so.  The return values are:
/// 
///  NoRelocation: This constant pool entry is guaranteed to never have a
///     relocation applied to it (because it holds a simple constant like
///     '4').
///  LocalRelocation: This entry has relocations, but the entries are
///     guaranteed to be resolvable by the static linker, so the dynamic
///     linker will never see them.
///  GlobalRelocations: This entry may have arbitrary relocations.
///
/// FIXME: This really should not be in IR.
Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
  if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
    if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
      return LocalRelocation;  // Local to this file/library.
    return GlobalRelocations;    // Global reference.
  }
  
  if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
    return BA->getFunction()->getRelocationInfo();
  
  // While raw uses of blockaddress need to be relocated, differences between
  // two of them don't when they are for labels in the same function.  This is a
  // common idiom when creating a table for the indirect goto extension, so we
  // handle it efficiently here.
  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
    if (CE->getOpcode() == Instruction::Sub) {
      ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
      ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
      if (LHS && RHS &&
          LHS->getOpcode() == Instruction::PtrToInt &&
          RHS->getOpcode() == Instruction::PtrToInt &&
          isa<BlockAddress>(LHS->getOperand(0)) &&
          isa<BlockAddress>(RHS->getOperand(0)) &&
          cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
            cast<BlockAddress>(RHS->getOperand(0))->getFunction())
        return NoRelocation;
    }

  PossibleRelocationsTy Result = NoRelocation;
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    Result = std::max(Result,
                      cast<Constant>(getOperand(i))->getRelocationInfo());

  return Result;
}

/// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
/// it.  This involves recursively eliminating any dead users of the
/// constantexpr.
static bool removeDeadUsersOfConstant(const Constant *C) {
  if (isa<GlobalValue>(C)) return false; // Cannot remove this

  while (!C->use_empty()) {
    const Constant *User = dyn_cast<Constant>(C->use_back());
    if (!User) return false; // Non-constant usage;
    if (!removeDeadUsersOfConstant(User))
      return false; // Constant wasn't dead
  }

  const_cast<Constant*>(C)->destroyConstant();
  return true;
}


/// removeDeadConstantUsers - If there are any dead constant users dangling
/// off of this constant, remove them.  This method is useful for clients
/// that want to check to see if a global is unused, but don't want to deal
/// with potentially dead constants hanging off of the globals.
void Constant::removeDeadConstantUsers() const {
  Value::const_use_iterator I = use_begin(), E = use_end();
  Value::const_use_iterator LastNonDeadUser = E;
  while (I != E) {
    const Constant *User = dyn_cast<Constant>(*I);
    if (User == 0) {
      LastNonDeadUser = I;
      ++I;
      continue;
    }

    if (!removeDeadUsersOfConstant(User)) {
      // If the constant wasn't dead, remember that this was the last live use
      // and move on to the next constant.
      LastNonDeadUser = I;
      ++I;
      continue;
    }

    // If the constant was dead, then the iterator is invalidated.
    if (LastNonDeadUser == E) {
      I = use_begin();
      if (I == E) break;
    } else {
      I = LastNonDeadUser;
      ++I;
    }
  }
}



//===----------------------------------------------------------------------===//
//                                ConstantInt
//===----------------------------------------------------------------------===//

void ConstantInt::anchor() { }

ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
  : Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
  assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
}

ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
  LLVMContextImpl *pImpl = Context.pImpl;
  if (!pImpl->TheTrueVal)
    pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
  return pImpl->TheTrueVal;
}

ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
  LLVMContextImpl *pImpl = Context.pImpl;
  if (!pImpl->TheFalseVal)
    pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
  return pImpl->TheFalseVal;
}

Constant *ConstantInt::getTrue(Type *Ty) {
  VectorType *VTy = dyn_cast<VectorType>(Ty);
  if (!VTy) {
    assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
    return ConstantInt::getTrue(Ty->getContext());
  }
  assert(VTy->getElementType()->isIntegerTy(1) &&
         "True must be vector of i1 or i1.");
  return ConstantVector::getSplat(VTy->getNumElements(),
                                  ConstantInt::getTrue(Ty->getContext()));
}

Constant *ConstantInt::getFalse(Type *Ty) {
  VectorType *VTy = dyn_cast<VectorType>(Ty);
  if (!VTy) {
    assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
    return ConstantInt::getFalse(Ty->getContext());
  }
  assert(VTy->getElementType()->isIntegerTy(1) &&
         "False must be vector of i1 or i1.");
  return ConstantVector::getSplat(VTy->getNumElements(),
                                  ConstantInt::getFalse(Ty->getContext()));
}


// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap 
// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
// operator== and operator!= to ensure that the DenseMap doesn't attempt to
// compare APInt's of different widths, which would violate an APInt class
// invariant which generates an assertion.
ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
  // Get the corresponding integer type for the bit width of the value.
  IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
  // get an existing value or the insertion position
  DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
  ConstantInt *&Slot = Context.pImpl->IntConstants[Key]; 
  if (!Slot) Slot = new ConstantInt(ITy, V);
  return Slot;
}

Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
  Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);

  // For vectors, broadcast the value.
  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    return ConstantVector::getSplat(VTy->getNumElements(), C);

  return C;
}

ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, 
                              bool isSigned) {
  return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
}

ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
  return get(Ty, V, true);
}

Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
  return get(Ty, V, true);
}

Constant *ConstantInt::get(Type *Ty, const APInt& V) {
  ConstantInt *C = get(Ty->getContext(), V);
  assert(C->getType() == Ty->getScalarType() &&
         "ConstantInt type doesn't match the type implied by its value!");

  // For vectors, broadcast the value.
  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    return ConstantVector::getSplat(VTy->getNumElements(), C);

  return C;
}

ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str,
                              uint8_t radix) {
  return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
}

//===----------------------------------------------------------------------===//
//                                ConstantFP
//===----------------------------------------------------------------------===//

static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
  if (Ty->isHalfTy())
    return &APFloat::IEEEhalf;
  if (Ty->isFloatTy())
    return &APFloat::IEEEsingle;
  if (Ty->isDoubleTy())
    return &APFloat::IEEEdouble;
  if (Ty->isX86_FP80Ty())
    return &APFloat::x87DoubleExtended;
  else if (Ty->isFP128Ty())
    return &APFloat::IEEEquad;

  assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
  return &APFloat::PPCDoubleDouble;
}

void ConstantFP::anchor() { }

/// get() - This returns a constant fp for the specified value in the
/// specified type.  This should only be used for simple constant values like
/// 2.0/1.0 etc, that are known-valid both as double and as the target format.
Constant *ConstantFP::get(Type *Ty, double V) {
  LLVMContext &Context = Ty->getContext();

  APFloat FV(V);
  bool ignored;
  FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
             APFloat::rmNearestTiesToEven, &ignored);
  Constant *C = get(Context, FV);

  // For vectors, broadcast the value.
  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    return ConstantVector::getSplat(VTy->getNumElements(), C);

  return C;
}


Constant *ConstantFP::get(Type *Ty, StringRef Str) {
  LLVMContext &Context = Ty->getContext();

  APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
  Constant *C = get(Context, FV);

  // For vectors, broadcast the value.
  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    return ConstantVector::getSplat(VTy->getNumElements(), C);

  return C; 
}


ConstantFP *ConstantFP::getNegativeZero(Type *Ty) {
  LLVMContext &Context = Ty->getContext();
  APFloat apf = cast<ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
  apf.changeSign();
  return get(Context, apf);
}


Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
  Type *ScalarTy = Ty->getScalarType();
  if (ScalarTy->isFloatingPointTy()) {
    Constant *C = getNegativeZero(ScalarTy);
    if (VectorType *VTy = dyn_cast<VectorType>(Ty))
      return ConstantVector::getSplat(VTy->getNumElements(), C);
    return C;
  }

  return Constant::getNullValue(Ty);
}


// ConstantFP accessors.
ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
  DenseMapAPFloatKeyInfo::KeyTy Key(V);

  LLVMContextImpl* pImpl = Context.pImpl;

  ConstantFP *&Slot = pImpl->FPConstants[Key];

  if (!Slot) {
    Type *Ty;
    if (&V.getSemantics() == &APFloat::IEEEhalf)
      Ty = Type::getHalfTy(Context);
    else if (&V.getSemantics() == &APFloat::IEEEsingle)
      Ty = Type::getFloatTy(Context);
    else if (&V.getSemantics() == &APFloat::IEEEdouble)
      Ty = Type::getDoubleTy(Context);
    else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
      Ty = Type::getX86_FP80Ty(Context);
    else if (&V.getSemantics() == &APFloat::IEEEquad)
      Ty = Type::getFP128Ty(Context);
    else {
      assert(&V.getSemantics() == &APFloat::PPCDoubleDouble && 
             "Unknown FP format");
      Ty = Type::getPPC_FP128Ty(Context);
    }
    Slot = new ConstantFP(Ty, V);
  }

  return Slot;
}

ConstantFP *ConstantFP::getInfinity(Type *Ty, bool Negative) {
  const fltSemantics &Semantics = *TypeToFloatSemantics(Ty);
  return ConstantFP::get(Ty->getContext(),
                         APFloat::getInf(Semantics, Negative));
}

ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
  : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
  assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
         "FP type Mismatch");
}

bool ConstantFP::isExactlyValue(const APFloat &V) const {
  return Val.bitwiseIsEqual(V);
}

//===----------------------------------------------------------------------===//
//                   ConstantAggregateZero Implementation
//===----------------------------------------------------------------------===//

/// getSequentialElement - If this CAZ has array or vector type, return a zero
/// with the right element type.
Constant *ConstantAggregateZero::getSequentialElement() const {
  return Constant::getNullValue(getType()->getSequentialElementType());
}

/// getStructElement - If this CAZ has struct type, return a zero with the
/// right element type for the specified element.
Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
  return Constant::getNullValue(getType()->getStructElementType(Elt));
}

/// getElementValue - Return a zero of the right value for the specified GEP
/// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
  if (isa<SequentialType>(getType()))
    return getSequentialElement();
  return getStructElement(cast<ConstantInt>(C)->getZExtValue());
}

/// getElementValue - Return a zero of the right value for the specified GEP
/// index.
Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
  if (isa<SequentialType>(getType()))
    return getSequentialElement();
  return getStructElement(Idx);
}


//===----------------------------------------------------------------------===//
//                         UndefValue Implementation
//===----------------------------------------------------------------------===//

/// getSequentialElement - If this undef has array or vector type, return an
/// undef with the right element type.
UndefValue *UndefValue::getSequentialElement() const {
  return UndefValue::get(getType()->getSequentialElementType());
}

/// getStructElement - If this undef has struct type, return a zero with the
/// right element type for the specified element.
UndefValue *UndefValue::getStructElement(unsigned Elt) const {
  return UndefValue::get(getType()->getStructElementType(Elt));
}

/// getElementValue - Return an undef of the right value for the specified GEP
/// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
UndefValue *UndefValue::getElementValue(Constant *C) const {
  if (isa<SequentialType>(getType()))
    return getSequentialElement();
  return getStructElement(cast<ConstantInt>(C)->getZExtValue());
}

/// getElementValue - Return an undef of the right value for the specified GEP
/// index.
UndefValue *UndefValue::getElementValue(unsigned Idx) const {
  if (isa<SequentialType>(getType()))
    return getSequentialElement();
  return getStructElement(Idx);
}



//===----------------------------------------------------------------------===//
//                            ConstantXXX Classes
//===----------------------------------------------------------------------===//

template <typename ItTy, typename EltTy>
static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
  for (; Start != End; ++Start)
    if (*Start != Elt)
      return false;
  return true;
}

ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
  : Constant(T, ConstantArrayVal,
             OperandTraits<ConstantArray>::op_end(this) - V.size(),
             V.size()) {
  assert(V.size() == T->getNumElements() &&
         "Invalid initializer vector for constant array");
  for (unsigned i = 0, e = V.size(); i != e; ++i)
    assert(V[i]->getType() == T->getElementType() &&
           "Initializer for array element doesn't match array element type!");
  std::copy(V.begin(), V.end(), op_begin());
}

Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
  // Empty arrays are canonicalized to ConstantAggregateZero.
  if (V.empty())
    return ConstantAggregateZero::get(Ty);

  for (unsigned i = 0, e = V.size(); i != e; ++i) {
    assert(V[i]->getType() == Ty->getElementType() &&
           "Wrong type in array element initializer");
  }
  LLVMContextImpl *pImpl = Ty->getContext().pImpl;

  // If this is an all-zero array, return a ConstantAggregateZero object.  If
  // all undef, return an UndefValue, if "all simple", then return a
  // ConstantDataArray.
  Constant *C = V[0];
  if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
    return UndefValue::get(Ty);

  if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
    return ConstantAggregateZero::get(Ty);

  // Check to see if all of the elements are ConstantFP or ConstantInt and if
  // the element type is compatible with ConstantDataVector.  If so, use it.
  if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
    // We speculatively build the elements here even if it turns out that there
    // is a constantexpr or something else weird in the array, since it is so
    // uncommon for that to happen.
    if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
      if (CI->getType()->isIntegerTy(8)) {
        SmallVector<uint8_t, 16> Elts;
        for (unsigned i = 0, e = V.size(); i != e; ++i)
          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
            Elts.push_back(CI->getZExtValue());
          else
            break;
        if (Elts.size() == V.size())
          return ConstantDataArray::get(C->getContext(), Elts);
      } else if (CI->getType()->isIntegerTy(16)) {
        SmallVector<uint16_t, 16> Elts;
        for (unsigned i = 0, e = V.size(); i != e; ++i)
          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
            Elts.push_back(CI->getZExtValue());
          else
            break;
        if (Elts.size() == V.size())
          return ConstantDataArray::get(C->getContext(), Elts);
      } else if (CI->getType()->isIntegerTy(32)) {
        SmallVector<uint32_t, 16> Elts;
        for (unsigned i = 0, e = V.size(); i != e; ++i)
          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
            Elts.push_back(CI->getZExtValue());
          else
            break;
        if (Elts.size() == V.size())
          return ConstantDataArray::get(C->getContext(), Elts);
      } else if (CI->getType()->isIntegerTy(64)) {
        SmallVector<uint64_t, 16> Elts;
        for (unsigned i = 0, e = V.size(); i != e; ++i)
          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
            Elts.push_back(CI->getZExtValue());
          else
            break;
        if (Elts.size() == V.size())
          return ConstantDataArray::get(C->getContext(), Elts);
      }
    }

    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
      if (CFP->getType()->isFloatTy()) {
        SmallVector<float, 16> Elts;
        for (unsigned i = 0, e = V.size(); i != e; ++i)
          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
            Elts.push_back(CFP->getValueAPF().convertToFloat());
          else
            break;
        if (Elts.size() == V.size())
          return ConstantDataArray::get(C->getContext(), Elts);
      } else if (CFP->getType()->isDoubleTy()) {
        SmallVector<double, 16> Elts;
        for (unsigned i = 0, e = V.size(); i != e; ++i)
          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
            Elts.push_back(CFP->getValueAPF().convertToDouble());
          else
            break;
        if (Elts.size() == V.size())
          return ConstantDataArray::get(C->getContext(), Elts);
      }
    }
  }

  // Otherwise, we really do want to create a ConstantArray.
  return pImpl->ArrayConstants.getOrCreate(Ty, V);
}

/// getTypeForElements - Return an anonymous struct type to use for a constant
/// with the specified set of elements.  The list must not be empty.
StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
                                               ArrayRef<Constant*> V,
                                               bool Packed) {
  unsigned VecSize = V.size();
  SmallVector<Type*, 16> EltTypes(VecSize);
  for (unsigned i = 0; i != VecSize; ++i)
    EltTypes[i] = V[i]->getType();

  return StructType::get(Context, EltTypes, Packed);
}


StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
                                               bool Packed) {
  assert(!V.empty() &&
         "ConstantStruct::getTypeForElements cannot be called on empty list");
  return getTypeForElements(V[0]->getContext(), V, Packed);
}


ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
  : Constant(T, ConstantStructVal,
             OperandTraits<ConstantStruct>::op_end(this) - V.size(),
             V.size()) {
  assert(V.size() == T->getNumElements() &&
         "Invalid initializer vector for constant structure");
  for (unsigned i = 0, e = V.size(); i != e; ++i)
    assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
           "Initializer for struct element doesn't match struct element type!");
  std::copy(V.begin(), V.end(), op_begin());
}

// ConstantStruct accessors.
Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
  assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
         "Incorrect # elements specified to ConstantStruct::get");

  // Create a ConstantAggregateZero value if all elements are zeros.
  bool isZero = true;
  bool isUndef = false;
  
  if (!V.empty()) {
    isUndef = isa<UndefValue>(V[0]);
    isZero = V[0]->isNullValue();
    if (isUndef || isZero) {
      for (unsigned i = 0, e = V.size(); i != e; ++i) {
        if (!V[i]->isNullValue())
          isZero = false;
        if (!isa<UndefValue>(V[i]))
          isUndef = false;
      }
    }
  }
  if (isZero)
    return ConstantAggregateZero::get(ST);
  if (isUndef)
    return UndefValue::get(ST);

  return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
}

Constant *ConstantStruct::get(StructType *T, ...) {
  va_list ap;
  SmallVector<Constant*, 8> Values;
  va_start(ap, T);
  while (Constant *Val = va_arg(ap, llvm::Constant*))
    Values.push_back(Val);
  va_end(ap);
  return get(T, Values);
}

ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
  : Constant(T, ConstantVectorVal,
             OperandTraits<ConstantVector>::op_end(this) - V.size(),
             V.size()) {
  for (size_t i = 0, e = V.size(); i != e; i++)
    assert(V[i]->getType() == T->getElementType() &&
           "Initializer for vector element doesn't match vector element type!");
  std::copy(V.begin(), V.end(), op_begin());
}

// ConstantVector accessors.
Constant *ConstantVector::get(ArrayRef<Constant*> V) {
  assert(!V.empty() && "Vectors can't be empty");
  VectorType *T = VectorType::get(V.front()->getType(), V.size());
  LLVMContextImpl *pImpl = T->getContext().pImpl;

  // If this is an all-undef or all-zero vector, return a
  // ConstantAggregateZero or UndefValue.
  Constant *C = V[0];
  bool isZero = C->isNullValue();
  bool isUndef = isa<UndefValue>(C);

  if (isZero || isUndef) {
    for (unsigned i = 1, e = V.size(); i != e; ++i)
      if (V[i] != C) {
        isZero = isUndef = false;
        break;
      }
  }

  if (isZero)
    return ConstantAggregateZero::get(T);
  if (isUndef)
    return UndefValue::get(T);

  // Check to see if all of the elements are ConstantFP or ConstantInt and if
  // the element type is compatible with ConstantDataVector.  If so, use it.
  if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
    // We speculatively build the elements here even if it turns out that there
    // is a constantexpr or something else weird in the array, since it is so
    // uncommon for that to happen.
    if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
      if (CI->getType()->isIntegerTy(8)) {
        SmallVector<uint8_t, 16> Elts;
        for (unsigned i = 0, e = V.size(); i != e; ++i)
          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
            Elts.push_back(CI->getZExtValue());
          else
            break;
        if (Elts.size() == V.size())
          return ConstantDataVector::get(C->getContext(), Elts);
      } else if (CI->getType()->isIntegerTy(16)) {
        SmallVector<uint16_t, 16> Elts;
        for (unsigned i = 0, e = V.size(); i != e; ++i)
          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
            Elts.push_back(CI->getZExtValue());
          else
            break;
        if (Elts.size() == V.size())
          return ConstantDataVector::get(C->getContext(), Elts);
      } else if (CI->getType()->isIntegerTy(32)) {
        SmallVector<uint32_t, 16> Elts;
        for (unsigned i = 0, e = V.size(); i != e; ++i)
          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
            Elts.push_back(CI->getZExtValue());
          else
            break;
        if (Elts.size() == V.size())
          return ConstantDataVector::get(C->getContext(), Elts);
      } else if (CI->getType()->isIntegerTy(64)) {
        SmallVector<uint64_t, 16> Elts;
        for (unsigned i = 0, e = V.size(); i != e; ++i)
          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
            Elts.push_back(CI->getZExtValue());
          else
            break;
        if (Elts.size() == V.size())
          return ConstantDataVector::get(C->getContext(), Elts);
      }
    }

    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
      if (CFP->getType()->isFloatTy()) {
        SmallVector<float, 16> Elts;
        for (unsigned i = 0, e = V.size(); i != e; ++i)
          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
            Elts.push_back(CFP->getValueAPF().convertToFloat());
          else
            break;
        if (Elts.size() == V.size())
          return ConstantDataVector::get(C->getContext(), Elts);
      } else if (CFP->getType()->isDoubleTy()) {
        SmallVector<double, 16> Elts;
        for (unsigned i = 0, e = V.size(); i != e; ++i)
          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
            Elts.push_back(CFP->getValueAPF().convertToDouble());
          else
            break;
        if (Elts.size() == V.size())
          return ConstantDataVector::get(C->getContext(), Elts);
      }
    }
  }

  // Otherwise, the element type isn't compatible with ConstantDataVector, or
  // the operand list constants a ConstantExpr or something else strange.
  return pImpl->VectorConstants.getOrCreate(T, V);
}

Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
  // If this splat is compatible with ConstantDataVector, use it instead of
  // ConstantVector.
  if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
      ConstantDataSequential::isElementTypeCompatible(V->getType()))
    return ConstantDataVector::getSplat(NumElts, V);

  SmallVector<Constant*, 32> Elts(NumElts, V);
  return get(Elts);
}


// Utility function for determining if a ConstantExpr is a CastOp or not. This
// can't be inline because we don't want to #include Instruction.h into
// Constant.h
bool ConstantExpr::isCast() const {
  return Instruction::isCast(getOpcode());
}

bool ConstantExpr::isCompare() const {
  return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
}

bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
  if (getOpcode() != Instruction::GetElementPtr) return false;

  gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
  User::const_op_iterator OI = llvm::next(this->op_begin());

  // Skip the first index, as it has no static limit.
  ++GEPI;
  ++OI;

  // The remaining indices must be compile-time known integers within the
  // bounds of the corresponding notional static array types.
  for (; GEPI != E; ++GEPI, ++OI) {
    ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
    if (!CI) return false;
    if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
      if (CI->getValue().getActiveBits() > 64 ||
          CI->getZExtValue() >= ATy->getNumElements())
        return false;
  }

  // All the indices checked out.
  return true;
}

bool ConstantExpr::hasIndices() const {
  return getOpcode() == Instruction::ExtractValue ||
         getOpcode() == Instruction::InsertValue;
}

ArrayRef<unsigned> ConstantExpr::getIndices() const {
  if (const ExtractValueConstantExpr *EVCE =
        dyn_cast<ExtractValueConstantExpr>(this))
    return EVCE->Indices;

  return cast<InsertValueConstantExpr>(this)->Indices;
}

unsigned ConstantExpr::getPredicate() const {
  assert(isCompare());
  return ((const CompareConstantExpr*)this)->predicate;
}

/// getWithOperandReplaced - Return a constant expression identical to this
/// one, but with the specified operand set to the specified value.
Constant *
ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
  assert(Op->getType() == getOperand(OpNo)->getType() &&
         "Replacing operand with value of different type!");
  if (getOperand(OpNo) == Op)
    return const_cast<ConstantExpr*>(this);

  SmallVector<Constant*, 8> NewOps;
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    NewOps.push_back(i == OpNo ? Op : getOperand(i));

  return getWithOperands(NewOps);
}

/// getWithOperands - This returns the current constant expression with the
/// operands replaced with the specified values.  The specified array must
/// have the same number of operands as our current one.
Constant *ConstantExpr::
getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const {
  assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
  bool AnyChange = Ty != getType();
  for (unsigned i = 0; i != Ops.size(); ++i)
    AnyChange |= Ops[i] != getOperand(i);

  if (!AnyChange)  // No operands changed, return self.
    return const_cast<ConstantExpr*>(this);

  switch (getOpcode()) {
  case Instruction::Trunc:
  case Instruction::ZExt:
  case Instruction::SExt:
  case Instruction::FPTrunc:
  case Instruction::FPExt:
  case Instruction::UIToFP:
  case Instruction::SIToFP:
  case Instruction::FPToUI:
  case Instruction::FPToSI:
  case Instruction::PtrToInt:
  case Instruction::IntToPtr:
  case Instruction::BitCast:
    return ConstantExpr::getCast(getOpcode(), Ops[0], Ty);
  case Instruction::Select:
    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
  case Instruction::InsertElement:
    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
  case Instruction::ExtractElement:
    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
  case Instruction::InsertValue:
    return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices());
  case Instruction::ExtractValue:
    return ConstantExpr::getExtractValue(Ops[0], getIndices());
  case Instruction::ShuffleVector:
    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
  case Instruction::GetElementPtr:
    return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1),
                                      cast<GEPOperator>(this)->isInBounds());
  case Instruction::ICmp:
  case Instruction::FCmp:
    return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
  default:
    assert(getNumOperands() == 2 && "Must be binary operator?");
    return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData);
  }
}


//===----------------------------------------------------------------------===//
//                      isValueValidForType implementations

bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
  unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
  if (Ty->isIntegerTy(1))
    return Val == 0 || Val == 1;
  if (NumBits >= 64)
    return true; // always true, has to fit in largest type
  uint64_t Max = (1ll << NumBits) - 1;
  return Val <= Max;
}

bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
  unsigned NumBits = Ty->getIntegerBitWidth();
  if (Ty->isIntegerTy(1))
    return Val == 0 || Val == 1 || Val == -1;
  if (NumBits >= 64)
    return true; // always true, has to fit in largest type
  int64_t Min = -(1ll << (NumBits-1));
  int64_t Max = (1ll << (NumBits-1)) - 1;
  return (Val >= Min && Val <= Max);
}

bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
  // convert modifies in place, so make a copy.
  APFloat Val2 = APFloat(Val);
  bool losesInfo;
  switch (Ty->getTypeID()) {
  default:
    return false;         // These can't be represented as floating point!

  // FIXME rounding mode needs to be more flexible
  case Type::HalfTyID: {
    if (&Val2.getSemantics() == &APFloat::IEEEhalf)
      return true;
    Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo);
    return !losesInfo;
  }
  case Type::FloatTyID: {
    if (&Val2.getSemantics() == &APFloat::IEEEsingle)
      return true;
    Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
    return !losesInfo;
  }
  case Type::DoubleTyID: {
    if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
        &Val2.getSemantics() == &APFloat::IEEEsingle ||
        &Val2.getSemantics() == &APFloat::IEEEdouble)
      return true;
    Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
    return !losesInfo;
  }
  case Type::X86_FP80TyID:
    return &Val2.getSemantics() == &APFloat::IEEEhalf ||
           &Val2.getSemantics() == &APFloat::IEEEsingle || 
           &Val2.getSemantics() == &APFloat::IEEEdouble ||
           &Val2.getSemantics() == &APFloat::x87DoubleExtended;
  case Type::FP128TyID:
    return &Val2.getSemantics() == &APFloat::IEEEhalf ||
           &Val2.getSemantics() == &APFloat::IEEEsingle || 
           &Val2.getSemantics() == &APFloat::IEEEdouble ||
           &Val2.getSemantics() == &APFloat::IEEEquad;
  case Type::PPC_FP128TyID:
    return &Val2.getSemantics() == &APFloat::IEEEhalf ||
           &Val2.getSemantics() == &APFloat::IEEEsingle || 
           &Val2.getSemantics() == &APFloat::IEEEdouble ||
           &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
  }
}


//===----------------------------------------------------------------------===//
//                      Factory Function Implementation

ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
  assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
         "Cannot create an aggregate zero of non-aggregate type!");
  
  ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty];
  if (Entry == 0)
    Entry = new ConstantAggregateZero(Ty);

  return Entry;
}

/// destroyConstant - Remove the constant from the constant table.
///
void ConstantAggregateZero::destroyConstant() {
  getContext().pImpl->CAZConstants.erase(getType());
  destroyConstantImpl();
}

/// destroyConstant - Remove the constant from the constant table...
///
void ConstantArray::destroyConstant() {
  getType()->getContext().pImpl->ArrayConstants.remove(this);
  destroyConstantImpl();
}


//---- ConstantStruct::get() implementation...
//

// destroyConstant - Remove the constant from the constant table...
//
void ConstantStruct::destroyConstant() {
  getType()->getContext().pImpl->StructConstants.remove(this);
  destroyConstantImpl();
}

// destroyConstant - Remove the constant from the constant table...
//
void ConstantVector::destroyConstant() {
  getType()->getContext().pImpl->VectorConstants.remove(this);
  destroyConstantImpl();
}

/// getSplatValue - If this is a splat vector constant, meaning that all of
/// the elements have the same value, return that value. Otherwise return 0.
Constant *Constant::getSplatValue() const {
  assert(this->getType()->isVectorTy() && "Only valid for vectors!");
  if (isa<ConstantAggregateZero>(this))
    return getNullValue(this->getType()->getVectorElementType());
  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
    return CV->getSplatValue();
  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
    return CV->getSplatValue();
  return 0;
}

/// getSplatValue - If this is a splat constant, where all of the
/// elements have the same value, return that value. Otherwise return null.
Constant *ConstantVector::getSplatValue() const {
  // Check out first element.
  Constant *Elt = getOperand(0);
  // Then make sure all remaining elements point to the same value.
  for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
    if (getOperand(I) != Elt)
      return 0;
  return Elt;
}

/// If C is a constant integer then return its value, otherwise C must be a
/// vector of constant integers, all equal, and the common value is returned.
const APInt &Constant::getUniqueInteger() const {
  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
    return CI->getValue();
  assert(this->getSplatValue() && "Doesn't contain a unique integer!");
  const Constant *C = this->getAggregateElement(0U);
  assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
  return cast<ConstantInt>(C)->getValue();
}


//---- ConstantPointerNull::get() implementation.
//

ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
  ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty];
  if (Entry == 0)
    Entry = new ConstantPointerNull(Ty);

  return Entry;
}

// destroyConstant - Remove the constant from the constant table...
//
void ConstantPointerNull::destroyConstant() {
  getContext().pImpl->CPNConstants.erase(getType());
  // Free the constant and any dangling references to it.
  destroyConstantImpl();
}


//---- UndefValue::get() implementation.
//

UndefValue *UndefValue::get(Type *Ty) {
  UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty];
  if (Entry == 0)
    Entry = new UndefValue(Ty);

  return Entry;
}

// destroyConstant - Remove the constant from the constant table.
//
void UndefValue::destroyConstant() {
  // Free the constant and any dangling references to it.
  getContext().pImpl->UVConstants.erase(getType());
  destroyConstantImpl();
}

//---- BlockAddress::get() implementation.
//

BlockAddress *BlockAddress::get(BasicBlock *BB) {
  assert(BB->getParent() != 0 && "Block must have a parent");
  return get(BB->getParent(), BB);
}

BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
  BlockAddress *&BA =
    F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
  if (BA == 0)
    BA = new BlockAddress(F, BB);

  assert(BA->getFunction() == F && "Basic block moved between functions");
  return BA;
}

BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
: Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
           &Op<0>(), 2) {
  setOperand(0, F);
  setOperand(1, BB);
  BB->AdjustBlockAddressRefCount(1);
}


// destroyConstant - Remove the constant from the constant table.
//
void BlockAddress::destroyConstant() {
  getFunction()->getType()->getContext().pImpl
    ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
  getBasicBlock()->AdjustBlockAddressRefCount(-1);
  destroyConstantImpl();
}

void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
  // This could be replacing either the Basic Block or the Function.  In either
  // case, we have to remove the map entry.
  Function *NewF = getFunction();
  BasicBlock *NewBB = getBasicBlock();

  if (U == &Op<0>())
    NewF = cast<Function>(To);
  else
    NewBB = cast<BasicBlock>(To);

  // See if the 'new' entry already exists, if not, just update this in place
  // and return early.
  BlockAddress *&NewBA =
    getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
  if (NewBA == 0) {
    getBasicBlock()->AdjustBlockAddressRefCount(-1);

    // Remove the old entry, this can't cause the map to rehash (just a
    // tombstone will get added).
    getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
                                                            getBasicBlock()));
    NewBA = this;
    setOperand(0, NewF);
    setOperand(1, NewBB);
    getBasicBlock()->AdjustBlockAddressRefCount(1);
    return;
  }

  // Otherwise, I do need to replace this with an existing value.
  assert(NewBA != this && "I didn't contain From!");

  // Everyone using this now uses the replacement.
  replaceAllUsesWith(NewBA);

  destroyConstant();
}

//---- ConstantExpr::get() implementations.
//

/// This is a utility function to handle folding of casts and lookup of the
/// cast in the ExprConstants map. It is used by the various get* methods below.
static inline Constant *getFoldedCast(
  Instruction::CastOps opc, Constant *C, Type *Ty) {
  assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
  // Fold a few common cases
  if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
    return FC;

  LLVMContextImpl *pImpl = Ty->getContext().pImpl;

  // Look up the constant in the table first to ensure uniqueness.
  ExprMapKeyType Key(opc, C);

  return pImpl->ExprConstants.getOrCreate(Ty, Key);
}

Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) {
  Instruction::CastOps opc = Instruction::CastOps(oc);
  assert(Instruction::isCast(opc) && "opcode out of range");
  assert(C && Ty && "Null arguments to getCast");
  assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");

  switch (opc) {
  default:
    llvm_unreachable("Invalid cast opcode");
  case Instruction::Trunc:    return getTrunc(C, Ty);
  case Instruction::ZExt:     return getZExt(C, Ty);
  case Instruction::SExt:     return getSExt(C, Ty);
  case Instruction::FPTrunc:  return getFPTrunc(C, Ty);
  case Instruction::FPExt:    return getFPExtend(C, Ty);
  case Instruction::UIToFP:   return getUIToFP(C, Ty);
  case Instruction::SIToFP:   return getSIToFP(C, Ty);
  case Instruction::FPToUI:   return getFPToUI(C, Ty);
  case Instruction::FPToSI:   return getFPToSI(C, Ty);
  case Instruction::PtrToInt: return getPtrToInt(C, Ty);
  case Instruction::IntToPtr: return getIntToPtr(C, Ty);
  case Instruction::BitCast:  return getBitCast(C, Ty);
  }
}

Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
    return getBitCast(C, Ty);
  return getZExt(C, Ty);
}

Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
    return getBitCast(C, Ty);
  return getSExt(C, Ty);
}

Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
    return getBitCast(C, Ty);
  return getTrunc(C, Ty);
}

Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
  assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
          "Invalid cast");

  if (Ty->isIntOrIntVectorTy())
    return getPtrToInt(S, Ty);
  return getBitCast(S, Ty);
}

Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, 
                                       bool isSigned) {
  assert(C->getType()->isIntOrIntVectorTy() &&
         Ty->isIntOrIntVectorTy() && "Invalid cast");
  unsigned SrcBits = C->getType()->getScalarSizeInBits();
  unsigned DstBits = Ty->getScalarSizeInBits();
  Instruction::CastOps opcode =
    (SrcBits == DstBits ? Instruction::BitCast :
     (SrcBits > DstBits ? Instruction::Trunc :
      (isSigned ? Instruction::SExt : Instruction::ZExt)));
  return getCast(opcode, C, Ty);
}

Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
         "Invalid cast");
  unsigned SrcBits = C->getType()->getScalarSizeInBits();
  unsigned DstBits = Ty->getScalarSizeInBits();
  if (SrcBits == DstBits)
    return C; // Avoid a useless cast
  Instruction::CastOps opcode =
    (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
  return getCast(opcode, C, Ty);
}

Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) {
#ifndef NDEBUG
  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
  bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
  assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
  assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
  assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
         "SrcTy must be larger than DestTy for Trunc!");

  return getFoldedCast(Instruction::Trunc, C, Ty);
}

Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) {
#ifndef NDEBUG
  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
  bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
  assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
  assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
  assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
         "SrcTy must be smaller than DestTy for SExt!");

  return getFoldedCast(Instruction::SExt, C, Ty);
}

Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) {
#ifndef NDEBUG
  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
  bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
  assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
  assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
  assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
         "SrcTy must be smaller than DestTy for ZExt!");

  return getFoldedCast(Instruction::ZExt, C, Ty);
}

Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) {
#ifndef NDEBUG
  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
  bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
         C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
         "This is an illegal floating point truncation!");
  return getFoldedCast(Instruction::FPTrunc, C, Ty);
}

Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) {
#ifndef NDEBUG
  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
  bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
         C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
         "This is an illegal floating point extension!");
  return getFoldedCast(Instruction::FPExt, C, Ty);
}

Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) {
#ifndef NDEBUG
  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
  bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
  assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
         "This is an illegal uint to floating point cast!");
  return getFoldedCast(Instruction::UIToFP, C, Ty);
}

Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) {
#ifndef NDEBUG
  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
  bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
  assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
         "This is an illegal sint to floating point cast!");
  return getFoldedCast(Instruction::SIToFP, C, Ty);
}

Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) {
#ifndef NDEBUG
  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
  bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
  assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
         "This is an illegal floating point to uint cast!");
  return getFoldedCast(Instruction::FPToUI, C, Ty);
}

Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) {
#ifndef NDEBUG
  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
  bool toVec = Ty->getTypeID() == Type::VectorTyID;
#endif
  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
  assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
         "This is an illegal floating point to sint cast!");
  return getFoldedCast(Instruction::FPToSI, C, Ty);
}

Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) {
  assert(C->getType()->getScalarType()->isPointerTy() &&
         "PtrToInt source must be pointer or pointer vector");
  assert(DstTy->getScalarType()->isIntegerTy() && 
         "PtrToInt destination must be integer or integer vector");
  assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
  if (isa<VectorType>(C->getType()))
    assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
           "Invalid cast between a different number of vector elements");
  return getFoldedCast(Instruction::PtrToInt, C, DstTy);
}

Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) {
  assert(C->getType()->getScalarType()->isIntegerTy() &&
         "IntToPtr source must be integer or integer vector");
  assert(DstTy->getScalarType()->isPointerTy() &&
         "IntToPtr destination must be a pointer or pointer vector");
  assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
  if (isa<VectorType>(C->getType()))
    assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
           "Invalid cast between a different number of vector elements");
  return getFoldedCast(Instruction::IntToPtr, C, DstTy);
}

Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) {
  assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
         "Invalid constantexpr bitcast!");

  // It is common to ask for a bitcast of a value to its own type, handle this
  // speedily.
  if (C->getType() == DstTy) return C;

  return getFoldedCast(Instruction::BitCast, C, DstTy);
}

Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
                            unsigned Flags) {
  // Check the operands for consistency first.
  assert(Opcode >= Instruction::BinaryOpsBegin &&
         Opcode <  Instruction::BinaryOpsEnd   &&
         "Invalid opcode in binary constant expression");
  assert(C1->getType() == C2->getType() &&
         "Operand types in binary constant expression should match");

#ifndef NDEBUG
  switch (Opcode) {
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
    assert(C1->getType()->isIntOrIntVectorTy() &&
           "Tried to create an integer operation on a non-integer type!");
    break;
  case Instruction::FAdd:
  case Instruction::FSub:
  case Instruction::FMul:
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
    assert(C1->getType()->isFPOrFPVectorTy() &&
           "Tried to create a floating-point operation on a "
           "non-floating-point type!");
    break;
  case Instruction::UDiv: 
  case Instruction::SDiv: 
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
    assert(C1->getType()->isIntOrIntVectorTy() &&
           "Tried to create an arithmetic operation on a non-arithmetic type!");
    break;
  case Instruction::FDiv:
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
    assert(C1->getType()->isFPOrFPVectorTy() &&
           "Tried to create an arithmetic operation on a non-arithmetic type!");
    break;
  case Instruction::URem: 
  case Instruction::SRem: 
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
    assert(C1->getType()->isIntOrIntVectorTy() &&
           "Tried to create an arithmetic operation on a non-arithmetic type!");
    break;
  case Instruction::FRem:
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
    assert(C1->getType()->isFPOrFPVectorTy() &&
           "Tried to create an arithmetic operation on a non-arithmetic type!");
    break;
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
    assert(C1->getType()->isIntOrIntVectorTy() &&
           "Tried to create a logical operation on a non-integral type!");
    break;
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
    assert(C1->getType() == C2->getType() && "Op types should be identical!");
    assert(C1->getType()->isIntOrIntVectorTy() &&
           "Tried to create a shift operation on a non-integer type!");
    break;
  default:
    break;
  }
#endif

  if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
    return FC;          // Fold a few common cases.

  Constant *ArgVec[] = { C1, C2 };
  ExprMapKeyType Key(Opcode, ArgVec, 0, Flags);

  LLVMContextImpl *pImpl = C1->getContext().pImpl;
  return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
}

Constant *ConstantExpr::getSizeOf(Type* Ty) {
  // sizeof is implemented as: (i64) gep (Ty*)null, 1
  // Note that a non-inbounds gep is used, as null isn't within any object.
  Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
  Constant *GEP = getGetElementPtr(
                 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
  return getPtrToInt(GEP, 
                     Type::getInt64Ty(Ty->getContext()));
}

Constant *ConstantExpr::getAlignOf(Type* Ty) {
  // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
  // Note that a non-inbounds gep is used, as null isn't within any object.
  Type *AligningTy = 
    StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL);
  Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo());
  Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
  Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
  Constant *Indices[2] = { Zero, One };
  Constant *GEP = getGetElementPtr(NullPtr, Indices);
  return getPtrToInt(GEP,
                     Type::getInt64Ty(Ty->getContext()));
}

Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
  return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
                                           FieldNo));
}

Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
  // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
  // Note that a non-inbounds gep is used, as null isn't within any object.
  Constant *GEPIdx[] = {
    ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
    FieldNo
  };
  Constant *GEP = getGetElementPtr(
                Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
  return getPtrToInt(GEP,
                     Type::getInt64Ty(Ty->getContext()));
}

Constant *ConstantExpr::getCompare(unsigned short Predicate, 
                                   Constant *C1, Constant *C2) {
  assert(C1->getType() == C2->getType() && "Op types should be identical!");

  switch (Predicate) {
  default: llvm_unreachable("Invalid CmpInst predicate");
  case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
  case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
  case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
  case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
  case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
  case CmpInst::FCMP_TRUE:
    return getFCmp(Predicate, C1, C2);

  case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
  case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
  case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
  case CmpInst::ICMP_SLE:
    return getICmp(Predicate, C1, C2);
  }
}

Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) {
  assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");

  if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
    return SC;        // Fold common cases

  Constant *ArgVec[] = { C, V1, V2 };
  ExprMapKeyType Key(Instruction::Select, ArgVec);

  LLVMContextImpl *pImpl = C->getContext().pImpl;
  return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
}

Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs,
                                         bool InBounds) {
  assert(C->getType()->isPtrOrPtrVectorTy() &&
         "Non-pointer type for constant GetElementPtr expression");

  if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs))
    return FC;          // Fold a few common cases.

  // Get the result type of the getelementptr!
  Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs);
  assert(Ty && "GEP indices invalid!");
  unsigned AS = C->getType()->getPointerAddressSpace();
  Type *ReqTy = Ty->getPointerTo(AS);
  if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
    ReqTy = VectorType::get(ReqTy, VecTy->getNumElements());

  // Look up the constant in the table first to ensure uniqueness
  std::vector<Constant*> ArgVec;
  ArgVec.reserve(1 + Idxs.size());
  ArgVec.push_back(C);
  for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
    assert(Idxs[i]->getType()->isVectorTy() == ReqTy->isVectorTy() &&
           "getelementptr index type missmatch");
    assert((!Idxs[i]->getType()->isVectorTy() ||
            ReqTy->getVectorNumElements() ==
            Idxs[i]->getType()->getVectorNumElements()) &&
           "getelementptr index type missmatch");
    ArgVec.push_back(cast<Constant>(Idxs[i]));
  }
  const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
                           InBounds ? GEPOperator::IsInBounds : 0);

  LLVMContextImpl *pImpl = C->getContext().pImpl;
  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}

Constant *
ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) {
  assert(LHS->getType() == RHS->getType());
  assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && 
         pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");

  if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
    return FC;          // Fold a few common cases...

  // Look up the constant in the table first to ensure uniqueness
  Constant *ArgVec[] = { LHS, RHS };
  // Get the key type with both the opcode and predicate
  const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);

  Type *ResultTy = Type::getInt1Ty(LHS->getContext());
  if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
    ResultTy = VectorType::get(ResultTy, VT->getNumElements());

  LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
  return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
}

Constant *
ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) {
  assert(LHS->getType() == RHS->getType());
  assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");

  if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
    return FC;          // Fold a few common cases...

  // Look up the constant in the table first to ensure uniqueness
  Constant *ArgVec[] = { LHS, RHS };
  // Get the key type with both the opcode and predicate
  const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);

  Type *ResultTy = Type::getInt1Ty(LHS->getContext());
  if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
    ResultTy = VectorType::get(ResultTy, VT->getNumElements());

  LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
  return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
}

Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
  assert(Val->getType()->isVectorTy() &&
         "Tried to create extractelement operation on non-vector type!");
  assert(Idx->getType()->isIntegerTy(32) &&
         "Extractelement index must be i32 type!");

  if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
    return FC;          // Fold a few common cases.

  // Look up the constant in the table first to ensure uniqueness
  Constant *ArgVec[] = { Val, Idx };
  const ExprMapKeyType Key(Instruction::ExtractElement, ArgVec);

  LLVMContextImpl *pImpl = Val->getContext().pImpl;
  Type *ReqTy = Val->getType()->getVectorElementType();
  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}

Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, 
                                         Constant *Idx) {
  assert(Val->getType()->isVectorTy() &&
         "Tried to create insertelement operation on non-vector type!");
  assert(Elt->getType() == Val->getType()->getVectorElementType() &&
         "Insertelement types must match!");
  assert(Idx->getType()->isIntegerTy(32) &&
         "Insertelement index must be i32 type!");

  if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
    return FC;          // Fold a few common cases.
  // Look up the constant in the table first to ensure uniqueness
  Constant *ArgVec[] = { Val, Elt, Idx };
  const ExprMapKeyType Key(Instruction::InsertElement, ArgVec);

  LLVMContextImpl *pImpl = Val->getContext().pImpl;
  return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
}

Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, 
                                         Constant *Mask) {
  assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
         "Invalid shuffle vector constant expr operands!");

  if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
    return FC;          // Fold a few common cases.

  unsigned NElts = Mask->getType()->getVectorNumElements();
  Type *EltTy = V1->getType()->getVectorElementType();
  Type *ShufTy = VectorType::get(EltTy, NElts);

  // Look up the constant in the table first to ensure uniqueness
  Constant *ArgVec[] = { V1, V2, Mask };
  const ExprMapKeyType Key(Instruction::ShuffleVector, ArgVec);

  LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
  return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
}

Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
                                       ArrayRef<unsigned> Idxs) {
  assert(ExtractValueInst::getIndexedType(Agg->getType(),
                                          Idxs) == Val->getType() &&
         "insertvalue indices invalid!");
  assert(Agg->getType()->isFirstClassType() &&
         "Non-first-class type for constant insertvalue expression");
  Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs);
  assert(FC && "insertvalue constant expr couldn't be folded!");
  return FC;
}

Constant *ConstantExpr::getExtractValue(Constant *Agg,
                                        ArrayRef<unsigned> Idxs) {
  assert(Agg->getType()->isFirstClassType() &&
         "Tried to create extractelement operation on non-first-class type!");

  Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
  (void)ReqTy;
  assert(ReqTy && "extractvalue indices invalid!");

  assert(Agg->getType()->isFirstClassType() &&
         "Non-first-class type for constant extractvalue expression");
  Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs);
  assert(FC && "ExtractValue constant expr couldn't be folded!");
  return FC;
}

Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
  assert(C->getType()->isIntOrIntVectorTy() &&
         "Cannot NEG a nonintegral value!");
  return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
                C, HasNUW, HasNSW);
}

Constant *ConstantExpr::getFNeg(Constant *C) {
  assert(C->getType()->isFPOrFPVectorTy() &&
         "Cannot FNEG a non-floating-point value!");
  return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
}

Constant *ConstantExpr::getNot(Constant *C) {
  assert(C->getType()->isIntOrIntVectorTy() &&
         "Cannot NOT a nonintegral value!");
  return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
}

Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
                               bool HasNUW, bool HasNSW) {
  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
  return get(Instruction::Add, C1, C2, Flags);
}

Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
  return get(Instruction::FAdd, C1, C2);
}

Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
                               bool HasNUW, bool HasNSW) {
  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
  return get(Instruction::Sub, C1, C2, Flags);
}

Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
  return get(Instruction::FSub, C1, C2);
}

Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
                               bool HasNUW, bool HasNSW) {
  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
  return get(Instruction::Mul, C1, C2, Flags);
}

Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
  return get(Instruction::FMul, C1, C2);
}

Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
  return get(Instruction::UDiv, C1, C2,
             isExact ? PossiblyExactOperator::IsExact : 0);
}

Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
  return get(Instruction::SDiv, C1, C2,
             isExact ? PossiblyExactOperator::IsExact : 0);
}

Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
  return get(Instruction::FDiv, C1, C2);
}

Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
  return get(Instruction::URem, C1, C2);
}

Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
  return get(Instruction::SRem, C1, C2);
}

Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
  return get(Instruction::FRem, C1, C2);
}

Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
  return get(Instruction::And, C1, C2);
}

Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
  return get(Instruction::Or, C1, C2);
}

Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
  return get(Instruction::Xor, C1, C2);
}

Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
                               bool HasNUW, bool HasNSW) {
  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
  return get(Instruction::Shl, C1, C2, Flags);
}

Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
  return get(Instruction::LShr, C1, C2,
             isExact ? PossiblyExactOperator::IsExact : 0);
}

Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
  return get(Instruction::AShr, C1, C2,
             isExact ? PossiblyExactOperator::IsExact : 0);
}

/// getBinOpIdentity - Return the identity for the given binary operation,
/// i.e. a constant C such that X op C = X and C op X = X for every X.  It
/// returns null if the operator doesn't have an identity.
Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) {
  switch (Opcode) {
  default:
    // Doesn't have an identity.
    return 0;

  case Instruction::Add:
  case Instruction::Or:
  case Instruction::Xor:
    return Constant::getNullValue(Ty);

  case Instruction::Mul:
    return ConstantInt::get(Ty, 1);

  case Instruction::And:
    return Constant::getAllOnesValue(Ty);
  }
}

/// getBinOpAbsorber - Return the absorbing element for the given binary
/// operation, i.e. a constant C such that X op C = C and C op X = C for
/// every X.  For example, this returns zero for integer multiplication.
/// It returns null if the operator doesn't have an absorbing element.
Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
  switch (Opcode) {
  default:
    // Doesn't have an absorber.
    return 0;

  case Instruction::Or:
    return Constant::getAllOnesValue(Ty);

  case Instruction::And:
  case Instruction::Mul:
    return Constant::getNullValue(Ty);
  }
}

// destroyConstant - Remove the constant from the constant table...
//
void ConstantExpr::destroyConstant() {
  getType()->getContext().pImpl->ExprConstants.remove(this);
  destroyConstantImpl();
}

const char *ConstantExpr::getOpcodeName() const {
  return Instruction::getOpcodeName(getOpcode());
}



GetElementPtrConstantExpr::
GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList,
                          Type *DestTy)
  : ConstantExpr(DestTy, Instruction::GetElementPtr,
                 OperandTraits<GetElementPtrConstantExpr>::op_end(this)
                 - (IdxList.size()+1), IdxList.size()+1) {
  OperandList[0] = C;
  for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
    OperandList[i+1] = IdxList[i];
}

//===----------------------------------------------------------------------===//
//                       ConstantData* implementations

void ConstantDataArray::anchor() {}
void ConstantDataVector::anchor() {}

/// getElementType - Return the element type of the array/vector.
Type *ConstantDataSequential::getElementType() const {
  return getType()->getElementType();
}

StringRef ConstantDataSequential::getRawDataValues() const {
  return StringRef(DataElements, getNumElements()*getElementByteSize());
}

/// isElementTypeCompatible - Return true if a ConstantDataSequential can be
/// formed with a vector or array of the specified element type.
/// ConstantDataArray only works with normal float and int types that are
/// stored densely in memory, not with things like i42 or x86_f80.
bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) {
  if (Ty->isFloatTy() || Ty->isDoubleTy()) return true;
  if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) {
    switch (IT->getBitWidth()) {
    case 8:
    case 16:
    case 32:
    case 64:
      return true;
    default: break;
    }
  }
  return false;
}

/// getNumElements - Return the number of elements in the array or vector.
unsigned ConstantDataSequential::getNumElements() const {
  if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
    return AT->getNumElements();
  return getType()->getVectorNumElements();
}


/// getElementByteSize - Return the size in bytes of the elements in the data.
uint64_t ConstantDataSequential::getElementByteSize() const {
  return getElementType()->getPrimitiveSizeInBits()/8;
}

/// getElementPointer - Return the start of the specified element.
const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
  assert(Elt < getNumElements() && "Invalid Elt");
  return DataElements+Elt*getElementByteSize();
}


/// isAllZeros - return true if the array is empty or all zeros.
static bool isAllZeros(StringRef Arr) {
  for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I)
    if (*I != 0)
      return false;
  return true;
}

/// getImpl - This is the underlying implementation of all of the
/// ConstantDataSequential::get methods.  They all thunk down to here, providing
/// the correct element type.  We take the bytes in as a StringRef because
/// we *want* an underlying "char*" to avoid TBAA type punning violations.
Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
  assert(isElementTypeCompatible(Ty->getSequentialElementType()));
  // If the elements are all zero or there are no elements, return a CAZ, which
  // is more dense and canonical.
  if (isAllZeros(Elements))
    return ConstantAggregateZero::get(Ty);

  // Do a lookup to see if we have already formed one of these.
  StringMap<ConstantDataSequential*>::MapEntryTy &Slot =
    Ty->getContext().pImpl->CDSConstants.GetOrCreateValue(Elements);

  // The bucket can point to a linked list of different CDS's that have the same
  // body but different types.  For example, 0,0,0,1 could be a 4 element array
  // of i8, or a 1-element array of i32.  They'll both end up in the same
  /// StringMap bucket, linked up by their Next pointers.  Walk the list.
  ConstantDataSequential **Entry = &Slot.getValue();
  for (ConstantDataSequential *Node = *Entry; Node != 0;
       Entry = &Node->Next, Node = *Entry)
    if (Node->getType() == Ty)
      return Node;

  // Okay, we didn't get a hit.  Create a node of the right class, link it in,
  // and return it.
  if (isa<ArrayType>(Ty))
    return *Entry = new ConstantDataArray(Ty, Slot.getKeyData());

  assert(isa<VectorType>(Ty));
  return *Entry = new ConstantDataVector(Ty, Slot.getKeyData());
}

void ConstantDataSequential::destroyConstant() {
  // Remove the constant from the StringMap.
  StringMap<ConstantDataSequential*> &CDSConstants = 
    getType()->getContext().pImpl->CDSConstants;

  StringMap<ConstantDataSequential*>::iterator Slot =
    CDSConstants.find(getRawDataValues());

  assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");

  ConstantDataSequential **Entry = &Slot->getValue();

  // Remove the entry from the hash table.
  if ((*Entry)->Next == 0) {
    // If there is only one value in the bucket (common case) it must be this
    // entry, and removing the entry should remove the bucket completely.
    assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
    getContext().pImpl->CDSConstants.erase(Slot);
  } else {
    // Otherwise, there are multiple entries linked off the bucket, unlink the 
    // node we care about but keep the bucket around.
    for (ConstantDataSequential *Node = *Entry; ;
         Entry = &Node->Next, Node = *Entry) {
      assert(Node && "Didn't find entry in its uniquing hash table!");
      // If we found our entry, unlink it from the list and we're done.
      if (Node == this) {
        *Entry = Node->Next;
        break;
      }
    }
  }

  // If we were part of a list, make sure that we don't delete the list that is
  // still owned by the uniquing map.
  Next = 0;

  // Finally, actually delete it.
  destroyConstantImpl();
}

/// get() constructors - Return a constant with array type with an element
/// count and element type matching the ArrayRef passed in.  Note that this
/// can return a ConstantAggregateZero object.
Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) {
  Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
  const char *Data = reinterpret_cast<const char *>(Elts.data());
  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
}
Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
  Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
  const char *Data = reinterpret_cast<const char *>(Elts.data());
  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
}
Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
  Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
  const char *Data = reinterpret_cast<const char *>(Elts.data());
  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
}
Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
  Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
  const char *Data = reinterpret_cast<const char *>(Elts.data());
  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
}
Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) {
  Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
  const char *Data = reinterpret_cast<const char *>(Elts.data());
  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
}
Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) {
  Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
  const char *Data = reinterpret_cast<const char *>(Elts.data());
  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
}

/// getString - This method constructs a CDS and initializes it with a text
/// string. The default behavior (AddNull==true) causes a null terminator to
/// be placed at the end of the array (increasing the length of the string by
/// one more than the StringRef would normally indicate.  Pass AddNull=false
/// to disable this behavior.
Constant *ConstantDataArray::getString(LLVMContext &Context,
                                       StringRef Str, bool AddNull) {
  if (!AddNull) {
    const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
    return get(Context, ArrayRef<uint8_t>(const_cast<uint8_t *>(Data),
               Str.size()));
  }

  SmallVector<uint8_t, 64> ElementVals;
  ElementVals.append(Str.begin(), Str.end());
  ElementVals.push_back(0);
  return get(Context, ElementVals);
}

/// get() constructors - Return a constant with vector type with an element
/// count and element type matching the ArrayRef passed in.  Note that this
/// can return a ConstantAggregateZero object.
Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
  Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
  const char *Data = reinterpret_cast<const char *>(Elts.data());
  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
}
Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
  Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
  const char *Data = reinterpret_cast<const char *>(Elts.data());
  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
}
Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
  Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
  const char *Data = reinterpret_cast<const char *>(Elts.data());
  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
}
Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
  Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
  const char *Data = reinterpret_cast<const char *>(Elts.data());
  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
}
Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
  Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
  const char *Data = reinterpret_cast<const char *>(Elts.data());
  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
}
Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
  Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
  const char *Data = reinterpret_cast<const char *>(Elts.data());
  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
}

Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
  assert(isElementTypeCompatible(V->getType()) &&
         "Element type not compatible with ConstantData");
  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    if (CI->getType()->isIntegerTy(8)) {
      SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
      return get(V->getContext(), Elts);
    }
    if (CI->getType()->isIntegerTy(16)) {
      SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
      return get(V->getContext(), Elts);
    }
    if (CI->getType()->isIntegerTy(32)) {
      SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
      return get(V->getContext(), Elts);
    }
    assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
    SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
    return get(V->getContext(), Elts);
  }

  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
    if (CFP->getType()->isFloatTy()) {
      SmallVector<float, 16> Elts(NumElts, CFP->getValueAPF().convertToFloat());
      return get(V->getContext(), Elts);
    }
    if (CFP->getType()->isDoubleTy()) {
      SmallVector<double, 16> Elts(NumElts,
                                   CFP->getValueAPF().convertToDouble());
      return get(V->getContext(), Elts);
    }
  }
  return ConstantVector::getSplat(NumElts, V);
}


/// getElementAsInteger - If this is a sequential container of integers (of
/// any size), return the specified element in the low bits of a uint64_t.
uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
  assert(isa<IntegerType>(getElementType()) &&
         "Accessor can only be used when element is an integer");
  const char *EltPtr = getElementPointer(Elt);

  // The data is stored in host byte order, make sure to cast back to the right
  // type to load with the right endianness.
  switch (getElementType()->getIntegerBitWidth()) {
  default: llvm_unreachable("Invalid bitwidth for CDS");
  case 8:
    return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr));
  case 16:
    return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr));
  case 32:
    return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr));
  case 64:
    return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr));
  }
}

/// getElementAsAPFloat - If this is a sequential container of floating point
/// type, return the specified element as an APFloat.
APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
  const char *EltPtr = getElementPointer(Elt);

  switch (getElementType()->getTypeID()) {
  default:
    llvm_unreachable("Accessor can only be used when element is float/double!");
  case Type::FloatTyID: {
      const float *FloatPrt = reinterpret_cast<const float *>(EltPtr);
      return APFloat(*const_cast<float *>(FloatPrt));
    }
  case Type::DoubleTyID: {
      const double *DoublePtr = reinterpret_cast<const double *>(EltPtr);
      return APFloat(*const_cast<double *>(DoublePtr));
    }
  }
}

/// getElementAsFloat - If this is an sequential container of floats, return
/// the specified element as a float.
float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
  assert(getElementType()->isFloatTy() &&
         "Accessor can only be used when element is a 'float'");
  const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt));
  return *const_cast<float *>(EltPtr);
}

/// getElementAsDouble - If this is an sequential container of doubles, return
/// the specified element as a float.
double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
  assert(getElementType()->isDoubleTy() &&
         "Accessor can only be used when element is a 'float'");
  const double *EltPtr =
      reinterpret_cast<const double *>(getElementPointer(Elt));
  return *const_cast<double *>(EltPtr);
}

/// getElementAsConstant - Return a Constant for a specified index's element.
/// Note that this has to compute a new constant to return, so it isn't as
/// efficient as getElementAsInteger/Float/Double.
Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
  if (getElementType()->isFloatTy() || getElementType()->isDoubleTy())
    return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));

  return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
}

/// isString - This method returns true if this is an array of i8.
bool ConstantDataSequential::isString() const {
  return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
}

/// isCString - This method returns true if the array "isString", ends with a
/// nul byte, and does not contains any other nul bytes.
bool ConstantDataSequential::isCString() const {
  if (!isString())
    return false;

  StringRef Str = getAsString();

  // The last value must be nul.
  if (Str.back() != 0) return false;

  // Other elements must be non-nul.
  return Str.drop_back().find(0) == StringRef::npos;
}

/// getSplatValue - If this is a splat constant, meaning that all of the
/// elements have the same value, return that value. Otherwise return NULL.
Constant *ConstantDataVector::getSplatValue() const {
  const char *Base = getRawDataValues().data();

  // Compare elements 1+ to the 0'th element.
  unsigned EltSize = getElementByteSize();
  for (unsigned i = 1, e = getNumElements(); i != e; ++i)
    if (memcmp(Base, Base+i*EltSize, EltSize))
      return 0;

  // If they're all the same, return the 0th one as a representative.
  return getElementAsConstant(0);
}

//===----------------------------------------------------------------------===//
//                replaceUsesOfWithOnConstant implementations

/// replaceUsesOfWithOnConstant - Update this constant array to change uses of
/// 'From' to be uses of 'To'.  This must update the uniquing data structures
/// etc.
///
/// Note that we intentionally replace all uses of From with To here.  Consider
/// a large array that uses 'From' 1000 times.  By handling this case all here,
/// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
/// single invocation handles all 1000 uses.  Handling them one at a time would
/// work, but would be really slow because it would have to unique each updated
/// array instance.
///
void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
                                                Use *U) {
  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
  Constant *ToC = cast<Constant>(To);

  LLVMContextImpl *pImpl = getType()->getContext().pImpl;

  SmallVector<Constant*, 8> Values;
  LLVMContextImpl::ArrayConstantsTy::LookupKey Lookup;
  Lookup.first = cast<ArrayType>(getType());
  Values.reserve(getNumOperands());  // Build replacement array.

  // Fill values with the modified operands of the constant array.  Also,
  // compute whether this turns into an all-zeros array.
  unsigned NumUpdated = 0;

  // Keep track of whether all the values in the array are "ToC".
  bool AllSame = true;
  for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
    Constant *Val = cast<Constant>(O->get());
    if (Val == From) {
      Val = ToC;
      ++NumUpdated;
    }
    Values.push_back(Val);
    AllSame &= Val == ToC;
  }

  Constant *Replacement = 0;
  if (AllSame && ToC->isNullValue()) {
    Replacement = ConstantAggregateZero::get(getType());
  } else if (AllSame && isa<UndefValue>(ToC)) {
    Replacement = UndefValue::get(getType());
  } else {
    // Check to see if we have this array type already.
    Lookup.second = makeArrayRef(Values);
    LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
      pImpl->ArrayConstants.find(Lookup);

    if (I != pImpl->ArrayConstants.map_end()) {
      Replacement = I->first;
    } else {
      // Okay, the new shape doesn't exist in the system yet.  Instead of
      // creating a new constant array, inserting it, replaceallusesof'ing the
      // old with the new, then deleting the old... just update the current one
      // in place!
      pImpl->ArrayConstants.remove(this);

      // Update to the new value.  Optimize for the case when we have a single
      // operand that we're changing, but handle bulk updates efficiently.
      if (NumUpdated == 1) {
        unsigned OperandToUpdate = U - OperandList;
        assert(getOperand(OperandToUpdate) == From &&
               "ReplaceAllUsesWith broken!");
        setOperand(OperandToUpdate, ToC);
      } else {
        for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
          if (getOperand(i) == From)
            setOperand(i, ToC);
      }
      pImpl->ArrayConstants.insert(this);
      return;
    }
  }

  // Otherwise, I do need to replace this with an existing value.
  assert(Replacement != this && "I didn't contain From!");

  // Everyone using this now uses the replacement.
  replaceAllUsesWith(Replacement);

  // Delete the old constant!
  destroyConstant();
}

void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
                                                 Use *U) {
  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
  Constant *ToC = cast<Constant>(To);

  unsigned OperandToUpdate = U-OperandList;
  assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");

  SmallVector<Constant*, 8> Values;
  LLVMContextImpl::StructConstantsTy::LookupKey Lookup;
  Lookup.first = cast<StructType>(getType());
  Values.reserve(getNumOperands());  // Build replacement struct.

  // Fill values with the modified operands of the constant struct.  Also,
  // compute whether this turns into an all-zeros struct.
  bool isAllZeros = false;
  bool isAllUndef = false;
  if (ToC->isNullValue()) {
    isAllZeros = true;
    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
      Constant *Val = cast<Constant>(O->get());
      Values.push_back(Val);
      if (isAllZeros) isAllZeros = Val->isNullValue();
    }
  } else if (isa<UndefValue>(ToC)) {
    isAllUndef = true;
    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
      Constant *Val = cast<Constant>(O->get());
      Values.push_back(Val);
      if (isAllUndef) isAllUndef = isa<UndefValue>(Val);
    }
  } else {
    for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
      Values.push_back(cast<Constant>(O->get()));
  }
  Values[OperandToUpdate] = ToC;

  LLVMContextImpl *pImpl = getContext().pImpl;

  Constant *Replacement = 0;
  if (isAllZeros) {
    Replacement = ConstantAggregateZero::get(getType());
  } else if (isAllUndef) {
    Replacement = UndefValue::get(getType());
  } else {
    // Check to see if we have this struct type already.
    Lookup.second = makeArrayRef(Values);
    LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
      pImpl->StructConstants.find(Lookup);

    if (I != pImpl->StructConstants.map_end()) {
      Replacement = I->first;
    } else {
      // Okay, the new shape doesn't exist in the system yet.  Instead of
      // creating a new constant struct, inserting it, replaceallusesof'ing the
      // old with the new, then deleting the old... just update the current one
      // in place!
      pImpl->StructConstants.remove(this);

      // Update to the new value.
      setOperand(OperandToUpdate, ToC);
      pImpl->StructConstants.insert(this);
      return;
    }
  }

  assert(Replacement != this && "I didn't contain From!");

  // Everyone using this now uses the replacement.
  replaceAllUsesWith(Replacement);

  // Delete the old constant!
  destroyConstant();
}

void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
                                                 Use *U) {
  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");

  SmallVector<Constant*, 8> Values;
  Values.reserve(getNumOperands());  // Build replacement array...
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    Constant *Val = getOperand(i);
    if (Val == From) Val = cast<Constant>(To);
    Values.push_back(Val);
  }

  Constant *Replacement = get(Values);
  assert(Replacement != this && "I didn't contain From!");

  // Everyone using this now uses the replacement.
  replaceAllUsesWith(Replacement);

  // Delete the old constant!
  destroyConstant();
}

void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
                                               Use *U) {
  assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
  Constant *To = cast<Constant>(ToV);

  SmallVector<Constant*, 8> NewOps;
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
    Constant *Op = getOperand(i);
    NewOps.push_back(Op == From ? To : Op);
  }

  Constant *Replacement = getWithOperands(NewOps);
  assert(Replacement != this && "I didn't contain From!");

  // Everyone using this now uses the replacement.
  replaceAllUsesWith(Replacement);

  // Delete the old constant!
  destroyConstant();
}

Instruction *ConstantExpr::getAsInstruction() {
  SmallVector<Value*,4> ValueOperands;
  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
    ValueOperands.push_back(cast<Value>(I));

  ArrayRef<Value*> Ops(ValueOperands);

  switch (getOpcode()) {
  case Instruction::Trunc:
  case Instruction::ZExt:
  case Instruction::SExt:
  case Instruction::FPTrunc:
  case Instruction::FPExt:
  case Instruction::UIToFP:
  case Instruction::SIToFP:
  case Instruction::FPToUI:
  case Instruction::FPToSI:
  case Instruction::PtrToInt:
  case Instruction::IntToPtr:
  case Instruction::BitCast:
    return CastInst::Create((Instruction::CastOps)getOpcode(),
                            Ops[0], getType());
  case Instruction::Select:
    return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
  case Instruction::InsertElement:
    return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
  case Instruction::ExtractElement:
    return ExtractElementInst::Create(Ops[0], Ops[1]);
  case Instruction::InsertValue:
    return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
  case Instruction::ExtractValue:
    return ExtractValueInst::Create(Ops[0], getIndices());
  case Instruction::ShuffleVector:
    return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);

  case Instruction::GetElementPtr:
    if (cast<GEPOperator>(this)->isInBounds())
      return GetElementPtrInst::CreateInBounds(Ops[0], Ops.slice(1));
    else
      return GetElementPtrInst::Create(Ops[0], Ops.slice(1));

  case Instruction::ICmp:
  case Instruction::FCmp:
    return CmpInst::Create((Instruction::OtherOps)getOpcode(),
                           getPredicate(), Ops[0], Ops[1]);

  default:
    assert(getNumOperands() == 2 && "Must be binary operator?");
    BinaryOperator *BO =
      BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
                             Ops[0], Ops[1]);
    if (isa<OverflowingBinaryOperator>(BO)) {
      BO->setHasNoUnsignedWrap(SubclassOptionalData &
                               OverflowingBinaryOperator::NoUnsignedWrap);
      BO->setHasNoSignedWrap(SubclassOptionalData &
                             OverflowingBinaryOperator::NoSignedWrap);
    }
    if (isa<PossiblyExactOperator>(BO))
      BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
    return BO;
  }
}