aboutsummaryrefslogtreecommitdiff
path: root/lib/ExecutionEngine/JIT/JITEmitter.cpp
blob: 02113473a599ed1952d32d7073f5d99d52daf2ab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
//===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a MachineCodeEmitter object that is used by the JIT to
// write machine code to memory and remember where relocatable values are.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "jit"
#include "JIT.h"
#include "llvm/Constant.h"
#include "llvm/Module.h"
#include "llvm/Type.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineRelocation.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetJITInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MutexGuard.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/System/Memory.h"
#include <algorithm>
#include <iostream>
using namespace llvm;

namespace {
  Statistic NumBytes("jit", "Number of bytes of machine code compiled");
  Statistic NumRelos("jit", "Number of relocations applied");
  JIT *TheJIT = 0;
}


//===----------------------------------------------------------------------===//
// JITMemoryManager code.
//
namespace {
  /// MemoryRangeHeader - For a range of memory, this is the header that we put
  /// on the block of memory.  It is carefully crafted to be one word of memory.
  /// Allocated blocks have just this header, free'd blocks have FreeRangeHeader
  /// which starts with this.
  struct FreeRangeHeader;
  struct MemoryRangeHeader {
    /// ThisAllocated - This is true if this block is currently allocated.  If
    /// not, this can be converted to a FreeRangeHeader.
    intptr_t ThisAllocated : 1;
    
    /// PrevAllocated - Keep track of whether the block immediately before us is
    /// allocated.  If not, the word immediately before this header is the size
    /// of the previous block.
    intptr_t PrevAllocated : 1;
    
    /// BlockSize - This is the size in bytes of this memory block,
    /// including this header.
    uintptr_t BlockSize : (sizeof(intptr_t)*8 - 2);
    

    /// getBlockAfter - Return the memory block immediately after this one.
    ///
    MemoryRangeHeader &getBlockAfter() const {
      return *(MemoryRangeHeader*)((char*)this+BlockSize);
    }
    
    /// getFreeBlockBefore - If the block before this one is free, return it,
    /// otherwise return null.
    FreeRangeHeader *getFreeBlockBefore() const {
      if (PrevAllocated) return 0;
      intptr_t PrevSize = ((intptr_t *)this)[-1];
      return (FreeRangeHeader*)((char*)this-PrevSize);
    }
    
    /// FreeBlock - Turn an allocated block into a free block, adjusting
    /// bits in the object headers, and adding an end of region memory block.
    FreeRangeHeader *FreeBlock(FreeRangeHeader *FreeList);
    
    /// TrimAllocationToSize - If this allocated block is significantly larger
    /// than NewSize, split it into two pieces (where the former is NewSize
    /// bytes, including the header), and add the new block to the free list.
    FreeRangeHeader *TrimAllocationToSize(FreeRangeHeader *FreeList, 
                                          uint64_t NewSize);
  };

  /// FreeRangeHeader - For a memory block that isn't already allocated, this
  /// keeps track of the current block and has a pointer to the next free block.
  /// Free blocks are kept on a circularly linked list.
  struct FreeRangeHeader : public MemoryRangeHeader {
    FreeRangeHeader *Prev;
    FreeRangeHeader *Next;
    
    /// getMinBlockSize - Get the minimum size for a memory block.  Blocks
    /// smaller than this size cannot be created.
    static unsigned getMinBlockSize() {
      return sizeof(FreeRangeHeader)+sizeof(intptr_t);
    }
    
    /// SetEndOfBlockSizeMarker - The word at the end of every free block is
    /// known to be the size of the free block.  Set it for this block.
    void SetEndOfBlockSizeMarker() {
      void *EndOfBlock = (char*)this + BlockSize;
      ((intptr_t *)EndOfBlock)[-1] = BlockSize;
    }

    FreeRangeHeader *RemoveFromFreeList() {
      assert(Next->Prev == this && Prev->Next == this && "Freelist broken!");
      Next->Prev = Prev;
      return Prev->Next = Next;
    }
    
    void AddToFreeList(FreeRangeHeader *FreeList) {
      Next = FreeList;
      Prev = FreeList->Prev;
      Prev->Next = this;
      Next->Prev = this;
    }

    /// GrowBlock - The block after this block just got deallocated.  Merge it
    /// into the current block.
    void GrowBlock(uintptr_t NewSize);
    
    /// AllocateBlock - Mark this entire block allocated, updating freelists
    /// etc.  This returns a pointer to the circular free-list.
    FreeRangeHeader *AllocateBlock();
  };
}


/// AllocateBlock - Mark this entire block allocated, updating freelists
/// etc.  This returns a pointer to the circular free-list.
FreeRangeHeader *FreeRangeHeader::AllocateBlock() {
  assert(!ThisAllocated && !getBlockAfter().PrevAllocated &&
         "Cannot allocate an allocated block!");
  // Mark this block allocated.
  ThisAllocated = 1;
  getBlockAfter().PrevAllocated = 1;
 
  // Remove it from the free list.
  return RemoveFromFreeList();
}

/// FreeBlock - Turn an allocated block into a free block, adjusting
/// bits in the object headers, and adding an end of region memory block.
/// If possible, coallesce this block with neighboring blocks.  Return the
/// FreeRangeHeader to allocate from.
FreeRangeHeader *MemoryRangeHeader::FreeBlock(FreeRangeHeader *FreeList) {
  MemoryRangeHeader *FollowingBlock = &getBlockAfter();
  assert(ThisAllocated && "This block is already allocated!");
  assert(FollowingBlock->PrevAllocated && "Flags out of sync!");
  
  FreeRangeHeader *FreeListToReturn = FreeList;
  
  // If the block after this one is free, merge it into this block.
  if (!FollowingBlock->ThisAllocated) {
    FreeRangeHeader &FollowingFreeBlock = *(FreeRangeHeader *)FollowingBlock;
    // "FreeList" always needs to be a valid free block.  If we're about to
    // coallesce with it, update our notion of what the free list is.
    if (&FollowingFreeBlock == FreeList) {
      FreeList = FollowingFreeBlock.Next;
      FreeListToReturn = 0;
      assert(&FollowingFreeBlock != FreeList && "No tombstone block?");
    }
    FollowingFreeBlock.RemoveFromFreeList();
    
    // Include the following block into this one.
    BlockSize += FollowingFreeBlock.BlockSize;
    FollowingBlock = &FollowingFreeBlock.getBlockAfter();
    
    // Tell the block after the block we are coallescing that this block is
    // allocated.
    FollowingBlock->PrevAllocated = 1;
  }
  
  assert(FollowingBlock->ThisAllocated && "Missed coallescing?");
  
  if (FreeRangeHeader *PrevFreeBlock = getFreeBlockBefore()) {
    PrevFreeBlock->GrowBlock(PrevFreeBlock->BlockSize + BlockSize);
    return FreeListToReturn ? FreeListToReturn : PrevFreeBlock;
  }

  // Otherwise, mark this block free.
  FreeRangeHeader &FreeBlock = *(FreeRangeHeader*)this;
  FollowingBlock->PrevAllocated = 0;
  FreeBlock.ThisAllocated = 0;

  // Link this into the linked list of free blocks.
  FreeBlock.AddToFreeList(FreeList);

  // Add a marker at the end of the block, indicating the size of this free
  // block.
  FreeBlock.SetEndOfBlockSizeMarker();
  return FreeListToReturn ? FreeListToReturn : &FreeBlock;
}

/// GrowBlock - The block after this block just got deallocated.  Merge it
/// into the current block.
void FreeRangeHeader::GrowBlock(uintptr_t NewSize) {
  assert(NewSize > BlockSize && "Not growing block?");
  BlockSize = NewSize;
  SetEndOfBlockSizeMarker();
  getBlockAfter().PrevAllocated = 0;
}

/// TrimAllocationToSize - If this allocated block is significantly larger
/// than NewSize, split it into two pieces (where the former is NewSize
/// bytes, including the header), and add the new block to the free list.
FreeRangeHeader *MemoryRangeHeader::
TrimAllocationToSize(FreeRangeHeader *FreeList, uint64_t NewSize) {
  assert(ThisAllocated && getBlockAfter().PrevAllocated &&
         "Cannot deallocate part of an allocated block!");

  // Round up size for alignment of header.
  unsigned HeaderAlign = __alignof(FreeRangeHeader);
  NewSize = (NewSize+ (HeaderAlign-1)) & ~(HeaderAlign-1);
  
  // Size is now the size of the block we will remove from the start of the
  // current block.
  assert(NewSize <= BlockSize &&
         "Allocating more space from this block than exists!");
  
  // If splitting this block will cause the remainder to be too small, do not
  // split the block.
  if (BlockSize <= NewSize+FreeRangeHeader::getMinBlockSize())
    return FreeList;
  
  // Otherwise, we splice the required number of bytes out of this block, form
  // a new block immediately after it, then mark this block allocated.
  MemoryRangeHeader &FormerNextBlock = getBlockAfter();
  
  // Change the size of this block.
  BlockSize = NewSize;
  
  // Get the new block we just sliced out and turn it into a free block.
  FreeRangeHeader &NewNextBlock = (FreeRangeHeader &)getBlockAfter();
  NewNextBlock.BlockSize = (char*)&FormerNextBlock - (char*)&NewNextBlock;
  NewNextBlock.ThisAllocated = 0;
  NewNextBlock.PrevAllocated = 1;
  NewNextBlock.SetEndOfBlockSizeMarker();
  FormerNextBlock.PrevAllocated = 0;
  NewNextBlock.AddToFreeList(FreeList);
  return &NewNextBlock;
}

 
namespace {  
  /// JITMemoryManager - Manage memory for the JIT code generation in a logical,
  /// sane way.  This splits a large block of MAP_NORESERVE'd memory into two
  /// sections, one for function stubs, one for the functions themselves.  We
  /// have to do this because we may need to emit a function stub while in the
  /// middle of emitting a function, and we don't know how large the function we
  /// are emitting is.  This never bothers to release the memory, because when
  /// we are ready to destroy the JIT, the program exits.
  class JITMemoryManager {
    std::vector<sys::MemoryBlock> Blocks; // Memory blocks allocated by the JIT
    FreeRangeHeader *FreeMemoryList;      // Circular list of free blocks.
    
    // When emitting code into a memory block, this is the block.
    MemoryRangeHeader *CurBlock;
    
    unsigned char *CurStubPtr, *StubBase;
    unsigned char *GOTBase;      // Target Specific reserved memory

    // Centralize memory block allocation.
    sys::MemoryBlock getNewMemoryBlock(unsigned size);
    
    std::map<const Function*, MemoryRangeHeader*> FunctionBlocks;
  public:
    JITMemoryManager(bool useGOT);
    ~JITMemoryManager();

    inline unsigned char *allocateStub(unsigned StubSize, unsigned Alignment);
    
    /// startFunctionBody - When a function starts, allocate a block of free
    /// executable memory, returning a pointer to it and its actual size.
    unsigned char *startFunctionBody(uintptr_t &ActualSize) {
      CurBlock = FreeMemoryList;
      
      // Allocate the entire memory block.
      FreeMemoryList = FreeMemoryList->AllocateBlock();
      ActualSize = CurBlock->BlockSize-sizeof(MemoryRangeHeader);
      return (unsigned char *)(CurBlock+1);
    }
    
    /// endFunctionBody - The function F is now allocated, and takes the memory
    /// in the range [FunctionStart,FunctionEnd).
    void endFunctionBody(const Function *F, unsigned char *FunctionStart,
                         unsigned char *FunctionEnd) {
      assert(FunctionEnd > FunctionStart);
      assert(FunctionStart == (unsigned char *)(CurBlock+1) &&
             "Mismatched function start/end!");
      
      uintptr_t BlockSize = FunctionEnd - (unsigned char *)CurBlock;
      FunctionBlocks[F] = CurBlock;

      // Release the memory at the end of this block that isn't needed.
      FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
    }
    
    unsigned char *getGOTBase() const {
      return GOTBase;
    }
    bool isManagingGOT() const {
      return GOTBase != NULL;
    }
    
    /// deallocateMemForFunction - Deallocate all memory for the specified
    /// function body.
    void deallocateMemForFunction(const Function *F) {
      std::map<const Function*, MemoryRangeHeader*>::iterator
        I = FunctionBlocks.find(F);
      if (I == FunctionBlocks.end()) return;
      
      // Find the block that is allocated for this function.
      MemoryRangeHeader *MemRange = I->second;
      assert(MemRange->ThisAllocated && "Block isn't allocated!");
      
      // Fill the buffer with garbage!
      DEBUG(memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange)));
      
      // Free the memory.
      FreeMemoryList = MemRange->FreeBlock(FreeMemoryList);
      
      // Finally, remove this entry from FunctionBlocks.
      FunctionBlocks.erase(I);
    }
  };
}

JITMemoryManager::JITMemoryManager(bool useGOT) {
  // Allocate a 16M block of memory for functions.
  sys::MemoryBlock MemBlock = getNewMemoryBlock(16 << 20);

  unsigned char *MemBase = reinterpret_cast<unsigned char*>(MemBlock.base());

  // Allocate stubs backwards from the base, allocate functions forward
  // from the base.
  StubBase   = MemBase;
  CurStubPtr = MemBase + 512*1024; // Use 512k for stubs, working backwards.
  
  // We set up the memory chunk with 4 mem regions, like this:
  //  [ START
  //    [ Free      #0 ] -> Large space to allocate functions from.
  //    [ Allocated #1 ] -> Tiny space to separate regions.
  //    [ Free      #2 ] -> Tiny space so there is always at least 1 free block.
  //    [ Allocated #3 ] -> Tiny space to prevent looking past end of block.
  //  END ]
  //
  // The last three blocks are never deallocated or touched.
  
  // Add MemoryRangeHeader to the end of the memory region, indicating that
  // the space after the block of memory is allocated.  This is block #3.
  MemoryRangeHeader *Mem3 = (MemoryRangeHeader*)(MemBase+MemBlock.size())-1;
  Mem3->ThisAllocated = 1;
  Mem3->PrevAllocated = 0;
  Mem3->BlockSize     = 0;
  
  /// Add a tiny free region so that the free list always has one entry.
  FreeRangeHeader *Mem2 = 
    (FreeRangeHeader *)(((char*)Mem3)-FreeRangeHeader::getMinBlockSize());
  Mem2->ThisAllocated = 0;
  Mem2->PrevAllocated = 1;
  Mem2->BlockSize     = FreeRangeHeader::getMinBlockSize();
  Mem2->SetEndOfBlockSizeMarker();
  Mem2->Prev = Mem2;   // Mem2 *is* the free list for now.
  Mem2->Next = Mem2;

  /// Add a tiny allocated region so that Mem2 is never coallesced away.
  MemoryRangeHeader *Mem1 = (MemoryRangeHeader*)Mem2-1;
  Mem1->ThisAllocated = 1;
  Mem1->PrevAllocated = 0;
  Mem1->BlockSize     = (char*)Mem2 - (char*)Mem1;
  
  // Add a FreeRangeHeader to the start of the function body region, indicating
  // that the space is free.  Mark the previous block allocated so we never look
  // at it.
  FreeRangeHeader *Mem0 = (FreeRangeHeader*)CurStubPtr;
  Mem0->ThisAllocated = 0;
  Mem0->PrevAllocated = 1;
  Mem0->BlockSize = (char*)Mem1-(char*)Mem0;
  Mem0->SetEndOfBlockSizeMarker();
  Mem0->AddToFreeList(Mem2);
  
  // Start out with the freelist pointing to Mem0.
  FreeMemoryList = Mem0;

  // Allocate the GOT.
  GOTBase = NULL;
  if (useGOT) GOTBase = new unsigned char[sizeof(void*) * 8192];
}

JITMemoryManager::~JITMemoryManager() {
  for (unsigned i = 0, e = Blocks.size(); i != e; ++i)
    sys::Memory::ReleaseRWX(Blocks[i]);
  
  delete[] GOTBase;
  Blocks.clear();
}

unsigned char *JITMemoryManager::allocateStub(unsigned StubSize,
                                              unsigned Alignment) {
  CurStubPtr -= StubSize;
  CurStubPtr = (unsigned char*)(((intptr_t)CurStubPtr) &
                                ~(intptr_t)(Alignment-1));
  if (CurStubPtr < StubBase) {
    // FIXME: allocate a new block
    std::cerr << "JIT ran out of memory for function stubs!\n";
    abort();
  }
  return CurStubPtr;
}

sys::MemoryBlock JITMemoryManager::getNewMemoryBlock(unsigned size) {
  // Allocate a new block close to the last one.
  const sys::MemoryBlock *BOld = Blocks.empty() ? 0 : &Blocks.front();
  std::string ErrMsg;
  sys::MemoryBlock B = sys::Memory::AllocateRWX(size, BOld, &ErrMsg);
  if (B.base() == 0) {
    std::cerr << "Allocation failed when allocating new memory in the JIT\n";
    std::cerr << ErrMsg << "\n";
    abort();
  }
  Blocks.push_back(B);
  return B;
}

//===----------------------------------------------------------------------===//
// JIT lazy compilation code.
//
namespace {
  class JITResolverState {
  private:
    /// FunctionToStubMap - Keep track of the stub created for a particular
    /// function so that we can reuse them if necessary.
    std::map<Function*, void*> FunctionToStubMap;

    /// StubToFunctionMap - Keep track of the function that each stub
    /// corresponds to.
    std::map<void*, Function*> StubToFunctionMap;

  public:
    std::map<Function*, void*>& getFunctionToStubMap(const MutexGuard& locked) {
      assert(locked.holds(TheJIT->lock));
      return FunctionToStubMap;
    }

    std::map<void*, Function*>& getStubToFunctionMap(const MutexGuard& locked) {
      assert(locked.holds(TheJIT->lock));
      return StubToFunctionMap;
    }
  };

  /// JITResolver - Keep track of, and resolve, call sites for functions that
  /// have not yet been compiled.
  class JITResolver {
    /// MCE - The MachineCodeEmitter to use to emit stubs with.
    MachineCodeEmitter &MCE;

    /// LazyResolverFn - The target lazy resolver function that we actually
    /// rewrite instructions to use.
    TargetJITInfo::LazyResolverFn LazyResolverFn;

    JITResolverState state;

    /// ExternalFnToStubMap - This is the equivalent of FunctionToStubMap for
    /// external functions.
    std::map<void*, void*> ExternalFnToStubMap;

    //map addresses to indexes in the GOT
    std::map<void*, unsigned> revGOTMap;
    unsigned nextGOTIndex;

  public:
    JITResolver(MachineCodeEmitter &mce) : MCE(mce), nextGOTIndex(0) {
      LazyResolverFn =
        TheJIT->getJITInfo().getLazyResolverFunction(JITCompilerFn);
    }

    /// getFunctionStub - This returns a pointer to a function stub, creating
    /// one on demand as needed.
    void *getFunctionStub(Function *F);

    /// getExternalFunctionStub - Return a stub for the function at the
    /// specified address, created lazily on demand.
    void *getExternalFunctionStub(void *FnAddr);

    /// AddCallbackAtLocation - If the target is capable of rewriting an
    /// instruction without the use of a stub, record the location of the use so
    /// we know which function is being used at the location.
    void *AddCallbackAtLocation(Function *F, void *Location) {
      MutexGuard locked(TheJIT->lock);
      /// Get the target-specific JIT resolver function.
      state.getStubToFunctionMap(locked)[Location] = F;
      return (void*)(intptr_t)LazyResolverFn;
    }

    /// getGOTIndexForAddress - Return a new or existing index in the GOT for
    /// and address.  This function only manages slots, it does not manage the
    /// contents of the slots or the memory associated with the GOT.
    unsigned getGOTIndexForAddr(void* addr);

    /// JITCompilerFn - This function is called to resolve a stub to a compiled
    /// address.  If the LLVM Function corresponding to the stub has not yet
    /// been compiled, this function compiles it first.
    static void *JITCompilerFn(void *Stub);
  };
}

/// getJITResolver - This function returns the one instance of the JIT resolver.
///
static JITResolver &getJITResolver(MachineCodeEmitter *MCE = 0) {
  static JITResolver TheJITResolver(*MCE);
  return TheJITResolver;
}

#if (defined(__POWERPC__) || defined (__ppc__) || defined(_POWER)) && \
    defined(__APPLE__)
extern "C" void sys_icache_invalidate(const void *Addr, size_t len);
#endif

/// synchronizeICache - On some targets, the JIT emitted code must be
/// explicitly refetched to ensure correct execution.
static void synchronizeICache(const void *Addr, size_t len) {
#if (defined(__POWERPC__) || defined (__ppc__) || defined(_POWER)) && \
    defined(__APPLE__)
  sys_icache_invalidate(Addr, len);
#endif
}

/// getFunctionStub - This returns a pointer to a function stub, creating
/// one on demand as needed.
void *JITResolver::getFunctionStub(Function *F) {
  MutexGuard locked(TheJIT->lock);

  // If we already have a stub for this function, recycle it.
  void *&Stub = state.getFunctionToStubMap(locked)[F];
  if (Stub) return Stub;

  // Call the lazy resolver function unless we already KNOW it is an external
  // function, in which case we just skip the lazy resolution step.
  void *Actual = (void*)(intptr_t)LazyResolverFn;
  if (F->isExternal() && !F->hasNotBeenReadFromBytecode())
    Actual = TheJIT->getPointerToFunction(F);

  // Otherwise, codegen a new stub.  For now, the stub will call the lazy
  // resolver function.
  Stub = TheJIT->getJITInfo().emitFunctionStub(Actual, MCE);

  if (Actual != (void*)(intptr_t)LazyResolverFn) {
    // If we are getting the stub for an external function, we really want the
    // address of the stub in the GlobalAddressMap for the JIT, not the address
    // of the external function.
    TheJIT->updateGlobalMapping(F, Stub);
  }

  // Invalidate the icache if necessary.
  synchronizeICache(Stub, MCE.getCurrentPCValue()-(intptr_t)Stub);

  DEBUG(std::cerr << "JIT: Stub emitted at [" << Stub << "] for function '"
                  << F->getName() << "'\n");

  // Finally, keep track of the stub-to-Function mapping so that the
  // JITCompilerFn knows which function to compile!
  state.getStubToFunctionMap(locked)[Stub] = F;
  return Stub;
}

/// getExternalFunctionStub - Return a stub for the function at the
/// specified address, created lazily on demand.
void *JITResolver::getExternalFunctionStub(void *FnAddr) {
  // If we already have a stub for this function, recycle it.
  void *&Stub = ExternalFnToStubMap[FnAddr];
  if (Stub) return Stub;

  Stub = TheJIT->getJITInfo().emitFunctionStub(FnAddr, MCE);

  // Invalidate the icache if necessary.
  synchronizeICache(Stub, MCE.getCurrentPCValue()-(intptr_t)Stub);

  DEBUG(std::cerr << "JIT: Stub emitted at [" << Stub
        << "] for external function at '" << FnAddr << "'\n");
  return Stub;
}

unsigned JITResolver::getGOTIndexForAddr(void* addr) {
  unsigned idx = revGOTMap[addr];
  if (!idx) {
    idx = ++nextGOTIndex;
    revGOTMap[addr] = idx;
    DEBUG(std::cerr << "Adding GOT entry " << idx
          << " for addr " << addr << "\n");
    //    ((void**)MemMgr.getGOTBase())[idx] = addr;
  }
  return idx;
}

/// JITCompilerFn - This function is called when a lazy compilation stub has
/// been entered.  It looks up which function this stub corresponds to, compiles
/// it if necessary, then returns the resultant function pointer.
void *JITResolver::JITCompilerFn(void *Stub) {
  JITResolver &JR = getJITResolver();

  MutexGuard locked(TheJIT->lock);

  // The address given to us for the stub may not be exactly right, it might be
  // a little bit after the stub.  As such, use upper_bound to find it.
  std::map<void*, Function*>::iterator I =
    JR.state.getStubToFunctionMap(locked).upper_bound(Stub);
  assert(I != JR.state.getStubToFunctionMap(locked).begin() &&
         "This is not a known stub!");
  Function *F = (--I)->second;

  // If disabled, emit a useful error message and abort.
  if (TheJIT->isLazyCompilationDisabled()) {
    std::cerr << "LLVM JIT requested to do lazy compilation of function '"
              << F->getName() << "' when lazy compiles are disabled!\n";
    abort();
  }
  
  // We might like to remove the stub from the StubToFunction map.
  // We can't do that! Multiple threads could be stuck, waiting to acquire the
  // lock above. As soon as the 1st function finishes compiling the function,
  // the next one will be released, and needs to be able to find the function it
  // needs to call.
  //JR.state.getStubToFunctionMap(locked).erase(I);

  DEBUG(std::cerr << "JIT: Lazily resolving function '" << F->getName()
                  << "' In stub ptr = " << Stub << " actual ptr = "
                  << I->first << "\n");

  void *Result = TheJIT->getPointerToFunction(F);

  // We don't need to reuse this stub in the future, as F is now compiled.
  JR.state.getFunctionToStubMap(locked).erase(F);

  // FIXME: We could rewrite all references to this stub if we knew them.

  // What we will do is set the compiled function address to map to the
  // same GOT entry as the stub so that later clients may update the GOT
  // if they see it still using the stub address.
  // Note: this is done so the Resolver doesn't have to manage GOT memory
  // Do this without allocating map space if the target isn't using a GOT
  if(JR.revGOTMap.find(Stub) != JR.revGOTMap.end())
    JR.revGOTMap[Result] = JR.revGOTMap[Stub];

  return Result;
}


//===----------------------------------------------------------------------===//
// JITEmitter code.
//
namespace {
  /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
  /// used to output functions to memory for execution.
  class JITEmitter : public MachineCodeEmitter {
    JITMemoryManager MemMgr;

    // When outputting a function stub in the context of some other function, we
    // save BufferBegin/BufferEnd/CurBufferPtr here.
    unsigned char *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;

    /// Relocations - These are the relocations that the function needs, as
    /// emitted.
    std::vector<MachineRelocation> Relocations;
    
    /// MBBLocations - This vector is a mapping from MBB ID's to their address.
    /// It is filled in by the StartMachineBasicBlock callback and queried by
    /// the getMachineBasicBlockAddress callback.
    std::vector<intptr_t> MBBLocations;

    /// ConstantPool - The constant pool for the current function.
    ///
    MachineConstantPool *ConstantPool;

    /// ConstantPoolBase - A pointer to the first entry in the constant pool.
    ///
    void *ConstantPoolBase;

    /// JumpTable - The jump tables for the current function.
    ///
    MachineJumpTableInfo *JumpTable;
    
    /// JumpTableBase - A pointer to the first entry in the jump table.
    ///
    void *JumpTableBase;
public:
    JITEmitter(JIT &jit) : MemMgr(jit.getJITInfo().needsGOT()) {
      TheJIT = &jit;
      DEBUG(if (MemMgr.isManagingGOT()) std::cerr << "JIT is managing a GOT\n");
    }

    virtual void startFunction(MachineFunction &F);
    virtual bool finishFunction(MachineFunction &F);
    
    void emitConstantPool(MachineConstantPool *MCP);
    void initJumpTableInfo(MachineJumpTableInfo *MJTI);
    void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
    
    virtual void startFunctionStub(unsigned StubSize, unsigned Alignment = 1);
    virtual void* finishFunctionStub(const Function *F);

    virtual void addRelocation(const MachineRelocation &MR) {
      Relocations.push_back(MR);
    }
    
    virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
      if (MBBLocations.size() <= (unsigned)MBB->getNumber())
        MBBLocations.resize((MBB->getNumber()+1)*2);
      MBBLocations[MBB->getNumber()] = getCurrentPCValue();
    }

    virtual intptr_t getConstantPoolEntryAddress(unsigned Entry) const;
    virtual intptr_t getJumpTableEntryAddress(unsigned Entry) const;
    
    virtual intptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const {
      assert(MBBLocations.size() > (unsigned)MBB->getNumber() && 
             MBBLocations[MBB->getNumber()] && "MBB not emitted!");
      return MBBLocations[MBB->getNumber()];
    }

    /// deallocateMemForFunction - Deallocate all memory for the specified
    /// function body.
    void deallocateMemForFunction(Function *F) {
      MemMgr.deallocateMemForFunction(F);
    }
  private:
    void *getPointerToGlobal(GlobalValue *GV, void *Reference, bool NoNeedStub);
  };
}

void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
                                     bool DoesntNeedStub) {
  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
    /// FIXME: If we straightened things out, this could actually emit the
    /// global immediately instead of queuing it for codegen later!
    return TheJIT->getOrEmitGlobalVariable(GV);
  }

  // If we have already compiled the function, return a pointer to its body.
  Function *F = cast<Function>(V);
  void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
  if (ResultPtr) return ResultPtr;

  if (F->isExternal() && !F->hasNotBeenReadFromBytecode()) {
    // If this is an external function pointer, we can force the JIT to
    // 'compile' it, which really just adds it to the map.
    if (DoesntNeedStub)
      return TheJIT->getPointerToFunction(F);

    return getJITResolver(this).getFunctionStub(F);
  }

  // Okay, the function has not been compiled yet, if the target callback
  // mechanism is capable of rewriting the instruction directly, prefer to do
  // that instead of emitting a stub.
  if (DoesntNeedStub)
    return getJITResolver(this).AddCallbackAtLocation(F, Reference);

  // Otherwise, we have to emit a lazy resolving stub.
  return getJITResolver(this).getFunctionStub(F);
}

void JITEmitter::startFunction(MachineFunction &F) {
  uintptr_t ActualSize;
  BufferBegin = CurBufferPtr = MemMgr.startFunctionBody(ActualSize);
  BufferEnd = BufferBegin+ActualSize;
  
  // Ensure the constant pool/jump table info is at least 4-byte aligned.
  emitAlignment(16);

  emitConstantPool(F.getConstantPool());
  initJumpTableInfo(F.getJumpTableInfo());

  // About to start emitting the machine code for the function.
  emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
  TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);

  MBBLocations.clear();
}

bool JITEmitter::finishFunction(MachineFunction &F) {
  if (CurBufferPtr == BufferEnd) {
    // FIXME: Allocate more space, then try again.
    std::cerr << "JIT: Ran out of space for generated machine code!\n";
    abort();
  }
  
  emitJumpTableInfo(F.getJumpTableInfo());
  
  // FnStart is the start of the text, not the start of the constant pool and
  // other per-function data.
  unsigned char *FnStart =
    (unsigned char *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
  unsigned char *FnEnd   = CurBufferPtr;
  
  MemMgr.endFunctionBody(F.getFunction(), BufferBegin, FnEnd);
  NumBytes += FnEnd-FnStart;

  if (!Relocations.empty()) {
    NumRelos += Relocations.size();

    // Resolve the relocations to concrete pointers.
    for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
      MachineRelocation &MR = Relocations[i];
      void *ResultPtr;
      if (MR.isString()) {
        ResultPtr = TheJIT->getPointerToNamedFunction(MR.getString());

        // If the target REALLY wants a stub for this function, emit it now.
        if (!MR.doesntNeedFunctionStub())
          ResultPtr = getJITResolver(this).getExternalFunctionStub(ResultPtr);
      } else if (MR.isGlobalValue()) {
        ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
                                       BufferBegin+MR.getMachineCodeOffset(),
                                       MR.doesntNeedFunctionStub());
      } else if (MR.isBasicBlock()) {
        ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
      } else if (MR.isConstantPoolIndex()){
        ResultPtr=(void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
      } else {
        assert(MR.isJumpTableIndex());
        ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
      }

      MR.setResultPointer(ResultPtr);

      // if we are managing the GOT and the relocation wants an index,
      // give it one
      if (MemMgr.isManagingGOT() && MR.isGOTRelative()) {
        unsigned idx = getJITResolver(this).getGOTIndexForAddr(ResultPtr);
        MR.setGOTIndex(idx);
        if (((void**)MemMgr.getGOTBase())[idx] != ResultPtr) {
          DEBUG(std::cerr << "GOT was out of date for " << ResultPtr
                << " pointing at " << ((void**)MemMgr.getGOTBase())[idx]
                << "\n");
          ((void**)MemMgr.getGOTBase())[idx] = ResultPtr;
        }
      }
    }

    TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
                                  Relocations.size(), MemMgr.getGOTBase());
  }

  // Update the GOT entry for F to point to the new code.
  if(MemMgr.isManagingGOT()) {
    unsigned idx = getJITResolver(this).getGOTIndexForAddr((void*)BufferBegin);
    if (((void**)MemMgr.getGOTBase())[idx] != (void*)BufferBegin) {
      DEBUG(std::cerr << "GOT was out of date for " << (void*)BufferBegin
            << " pointing at " << ((void**)MemMgr.getGOTBase())[idx] << "\n");
      ((void**)MemMgr.getGOTBase())[idx] = (void*)BufferBegin;
    }
  }

  // Invalidate the icache if necessary.
  synchronizeICache(FnStart, FnEnd-FnStart);

  DEBUG(std::cerr << "JIT: Finished CodeGen of [" << (void*)FnStart
                  << "] Function: " << F.getFunction()->getName()
                  << ": " << (FnEnd-FnStart) << " bytes of text, "
                  << Relocations.size() << " relocations\n");
  Relocations.clear();
  return false;
}

void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
  if (Constants.empty()) return;

  MachineConstantPoolEntry CPE = Constants.back();
  unsigned Size = CPE.Offset;
  const Type *Ty = CPE.isMachineConstantPoolEntry()
    ? CPE.Val.MachineCPVal->getType() : CPE.Val.ConstVal->getType();
  Size += TheJIT->getTargetData()->getTypeSize(Ty);

  ConstantPoolBase = allocateSpace(Size, 1 << MCP->getConstantPoolAlignment());
  ConstantPool = MCP;

  if (ConstantPoolBase == 0) return;  // Buffer overflow.

  // Initialize the memory for all of the constant pool entries.
  for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
    void *CAddr = (char*)ConstantPoolBase+Constants[i].Offset;
    if (Constants[i].isMachineConstantPoolEntry()) {
      // FIXME: add support to lower machine constant pool values into bytes!
      std::cerr << "Initialize memory with machine specific constant pool entry"
                << " has not been implemented!\n";
      abort();
    }
    TheJIT->InitializeMemory(Constants[i].Val.ConstVal, CAddr);
  }
}

void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
  if (JT.empty()) return;
  
  unsigned NumEntries = 0;
  for (unsigned i = 0, e = JT.size(); i != e; ++i)
    NumEntries += JT[i].MBBs.size();

  unsigned EntrySize = MJTI->getEntrySize();

  // Just allocate space for all the jump tables now.  We will fix up the actual
  // MBB entries in the tables after we emit the code for each block, since then
  // we will know the final locations of the MBBs in memory.
  JumpTable = MJTI;
  JumpTableBase = allocateSpace(NumEntries * EntrySize, MJTI->getAlignment());
}

void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
  if (JT.empty() || JumpTableBase == 0) return;

  assert(MJTI->getEntrySize() == sizeof(void*) && "Cross JIT'ing?");
  
  // For each jump table, map each target in the jump table to the address of 
  // an emitted MachineBasicBlock.
  intptr_t *SlotPtr = (intptr_t*)JumpTableBase;

  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
    const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
    // Store the address of the basic block for this jump table slot in the
    // memory we allocated for the jump table in 'initJumpTableInfo'
    for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
      *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
  }
}

void JITEmitter::startFunctionStub(unsigned StubSize, unsigned Alignment) {
  SavedBufferBegin = BufferBegin;
  SavedBufferEnd = BufferEnd;
  SavedCurBufferPtr = CurBufferPtr;
  
  BufferBegin = CurBufferPtr = MemMgr.allocateStub(StubSize, Alignment);
  BufferEnd = BufferBegin+StubSize+1;
}

void *JITEmitter::finishFunctionStub(const Function *F) {
  NumBytes += getCurrentPCOffset();
  std::swap(SavedBufferBegin, BufferBegin);
  BufferEnd = SavedBufferEnd;
  CurBufferPtr = SavedCurBufferPtr;
  return SavedBufferBegin;
}

// getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
// in the constant pool that was last emitted with the 'emitConstantPool'
// method.
//
intptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
  assert(ConstantNum < ConstantPool->getConstants().size() &&
         "Invalid ConstantPoolIndex!");
  return (intptr_t)ConstantPoolBase +
         ConstantPool->getConstants()[ConstantNum].Offset;
}

// getJumpTableEntryAddress - Return the address of the JumpTable with index
// 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
//
intptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
  const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
  assert(Index < JT.size() && "Invalid jump table index!");
  
  unsigned Offset = 0;
  unsigned EntrySize = JumpTable->getEntrySize();
  
  for (unsigned i = 0; i < Index; ++i)
    Offset += JT[i].MBBs.size() * EntrySize;
  
  return (intptr_t)((char *)JumpTableBase + Offset);
}

//===----------------------------------------------------------------------===//
//  Public interface to this file
//===----------------------------------------------------------------------===//

MachineCodeEmitter *JIT::createEmitter(JIT &jit) {
  return new JITEmitter(jit);
}

// getPointerToNamedFunction - This function is used as a global wrapper to
// JIT::getPointerToNamedFunction for the purpose of resolving symbols when
// bugpoint is debugging the JIT. In that scenario, we are loading an .so and
// need to resolve function(s) that are being mis-codegenerated, so we need to
// resolve their addresses at runtime, and this is the way to do it.
extern "C" {
  void *getPointerToNamedFunction(const char *Name) {
    if (Function *F = TheJIT->FindFunctionNamed(Name))
      return TheJIT->getPointerToFunction(F);
    return TheJIT->getPointerToNamedFunction(Name);
  }
}

// getPointerToFunctionOrStub - If the specified function has been
// code-gen'd, return a pointer to the function.  If not, compile it, or use
// a stub to implement lazy compilation if available.
//
void *JIT::getPointerToFunctionOrStub(Function *F) {
  // If we have already code generated the function, just return the address.
  if (void *Addr = getPointerToGlobalIfAvailable(F))
    return Addr;
  
  // Get a stub if the target supports it
  return getJITResolver(MCE).getFunctionStub(F);
}

/// freeMachineCodeForFunction - release machine code memory for given Function.
///
void JIT::freeMachineCodeForFunction(Function *F) {
  // Delete translation for this from the ExecutionEngine, so it will get
  // retranslated next time it is used.
  updateGlobalMapping(F, 0);

  // Free the actual memory for the function body and related stuff.
  assert(dynamic_cast<JITEmitter*>(MCE) && "Unexpected MCE?");
  dynamic_cast<JITEmitter*>(MCE)->deallocateMemForFunction(F);
}