aboutsummaryrefslogtreecommitdiff
path: root/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp
blob: c009cfcc516da88231ee9b46191da8162a95a80f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
//===----- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler --===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements bottom-up and top-down register pressure reduction list
// schedulers, using standard algorithms.  The basic approach uses a priority
// queue of available nodes to schedule.  One at a time, nodes are taken from
// the priority queue (thus in priority order), checked for legality to
// schedule, and emitted if legal.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "pre-RA-sched"
#include "llvm/CodeGen/SchedulerRegistry.h"
#include "ScheduleDAGSDNodes.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <climits>
using namespace llvm;

STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
STATISTIC(NumUnfolds,    "Number of nodes unfolded");
STATISTIC(NumDups,       "Number of duplicated nodes");
STATISTIC(NumPRCopies,   "Number of physical register copies");

static RegisterScheduler
  burrListDAGScheduler("list-burr",
                       "Bottom-up register reduction list scheduling",
                       createBURRListDAGScheduler);
static RegisterScheduler
  sourceListDAGScheduler("source",
                         "Similar to list-burr but schedules in source "
                         "order when possible",
                         createSourceListDAGScheduler);

static RegisterScheduler
  hybridListDAGScheduler("list-hybrid",
                         "Bottom-up register pressure aware list scheduling "
                         "which tries to balance latency and register pressure",
                         createHybridListDAGScheduler);

static RegisterScheduler
  ILPListDAGScheduler("list-ilp",
                      "Bottom-up register pressure aware list scheduling "
                      "which tries to balance ILP and register pressure",
                      createILPListDAGScheduler);

static cl::opt<bool> DisableSchedCycles(
  "disable-sched-cycles", cl::Hidden, cl::init(false),
  cl::desc("Disable cycle-level precision during preRA scheduling"));

// Temporary sched=list-ilp flags until the heuristics are robust.
// Some options are also available under sched=list-hybrid.
static cl::opt<bool> DisableSchedRegPressure(
  "disable-sched-reg-pressure", cl::Hidden, cl::init(false),
  cl::desc("Disable regpressure priority in sched=list-ilp"));
static cl::opt<bool> DisableSchedLiveUses(
  "disable-sched-live-uses", cl::Hidden, cl::init(true),
  cl::desc("Disable live use priority in sched=list-ilp"));
static cl::opt<bool> DisableSchedVRegCycle(
  "disable-sched-vrcycle", cl::Hidden, cl::init(false),
  cl::desc("Disable virtual register cycle interference checks"));
static cl::opt<bool> DisableSchedPhysRegJoin(
  "disable-sched-physreg-join", cl::Hidden, cl::init(false),
  cl::desc("Disable physreg def-use affinity"));
static cl::opt<bool> DisableSchedStalls(
  "disable-sched-stalls", cl::Hidden, cl::init(true),
  cl::desc("Disable no-stall priority in sched=list-ilp"));
static cl::opt<bool> DisableSchedCriticalPath(
  "disable-sched-critical-path", cl::Hidden, cl::init(false),
  cl::desc("Disable critical path priority in sched=list-ilp"));
static cl::opt<bool> DisableSchedHeight(
  "disable-sched-height", cl::Hidden, cl::init(false),
  cl::desc("Disable scheduled-height priority in sched=list-ilp"));
static cl::opt<bool> Disable2AddrHack(
  "disable-2addr-hack", cl::Hidden, cl::init(true),
  cl::desc("Disable scheduler's two-address hack"));

static cl::opt<int> MaxReorderWindow(
  "max-sched-reorder", cl::Hidden, cl::init(6),
  cl::desc("Number of instructions to allow ahead of the critical path "
           "in sched=list-ilp"));

static cl::opt<unsigned> AvgIPC(
  "sched-avg-ipc", cl::Hidden, cl::init(1),
  cl::desc("Average inst/cycle whan no target itinerary exists."));

namespace {
//===----------------------------------------------------------------------===//
/// ScheduleDAGRRList - The actual register reduction list scheduler
/// implementation.  This supports both top-down and bottom-up scheduling.
///
class ScheduleDAGRRList : public ScheduleDAGSDNodes {
private:
  /// NeedLatency - True if the scheduler will make use of latency information.
  ///
  bool NeedLatency;

  /// AvailableQueue - The priority queue to use for the available SUnits.
  SchedulingPriorityQueue *AvailableQueue;

  /// PendingQueue - This contains all of the instructions whose operands have
  /// been issued, but their results are not ready yet (due to the latency of
  /// the operation).  Once the operands becomes available, the instruction is
  /// added to the AvailableQueue.
  std::vector<SUnit*> PendingQueue;

  /// HazardRec - The hazard recognizer to use.
  ScheduleHazardRecognizer *HazardRec;

  /// CurCycle - The current scheduler state corresponds to this cycle.
  unsigned CurCycle;

  /// MinAvailableCycle - Cycle of the soonest available instruction.
  unsigned MinAvailableCycle;

  /// IssueCount - Count instructions issued in this cycle
  /// Currently valid only for bottom-up scheduling.
  unsigned IssueCount;

  /// LiveRegDefs - A set of physical registers and their definition
  /// that are "live". These nodes must be scheduled before any other nodes that
  /// modifies the registers can be scheduled.
  unsigned NumLiveRegs;
  std::vector<SUnit*> LiveRegDefs;
  std::vector<SUnit*> LiveRegGens;

  // Collect interferences between physical register use/defs.
  // Each interference is an SUnit and set of physical registers.
  SmallVector<SUnit*, 4> Interferences;
  typedef DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMapT;
  LRegsMapT LRegsMap;

  /// Topo - A topological ordering for SUnits which permits fast IsReachable
  /// and similar queries.
  ScheduleDAGTopologicalSort Topo;

  // Hack to keep track of the inverse of FindCallSeqStart without more crazy
  // DAG crawling.
  DenseMap<SUnit*, SUnit*> CallSeqEndForStart;

public:
  ScheduleDAGRRList(MachineFunction &mf, bool needlatency,
                    SchedulingPriorityQueue *availqueue,
                    CodeGenOpt::Level OptLevel)
    : ScheduleDAGSDNodes(mf),
      NeedLatency(needlatency), AvailableQueue(availqueue), CurCycle(0),
      Topo(SUnits, NULL) {

    const TargetMachine &tm = mf.getTarget();
    if (DisableSchedCycles || !NeedLatency)
      HazardRec = new ScheduleHazardRecognizer();
    else
      HazardRec = tm.getInstrInfo()->CreateTargetHazardRecognizer(&tm, this);
  }

  ~ScheduleDAGRRList() {
    delete HazardRec;
    delete AvailableQueue;
  }

  void Schedule();

  ScheduleHazardRecognizer *getHazardRec() { return HazardRec; }

  /// IsReachable - Checks if SU is reachable from TargetSU.
  bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
    return Topo.IsReachable(SU, TargetSU);
  }

  /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
  /// create a cycle.
  bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
    return Topo.WillCreateCycle(SU, TargetSU);
  }

  /// AddPred - adds a predecessor edge to SUnit SU.
  /// This returns true if this is a new predecessor.
  /// Updates the topological ordering if required.
  void AddPred(SUnit *SU, const SDep &D) {
    Topo.AddPred(SU, D.getSUnit());
    SU->addPred(D);
  }

  /// RemovePred - removes a predecessor edge from SUnit SU.
  /// This returns true if an edge was removed.
  /// Updates the topological ordering if required.
  void RemovePred(SUnit *SU, const SDep &D) {
    Topo.RemovePred(SU, D.getSUnit());
    SU->removePred(D);
  }

private:
  bool isReady(SUnit *SU) {
    return DisableSchedCycles || !AvailableQueue->hasReadyFilter() ||
      AvailableQueue->isReady(SU);
  }

  void ReleasePred(SUnit *SU, const SDep *PredEdge);
  void ReleasePredecessors(SUnit *SU);
  void ReleasePending();
  void AdvanceToCycle(unsigned NextCycle);
  void AdvancePastStalls(SUnit *SU);
  void EmitNode(SUnit *SU);
  void ScheduleNodeBottomUp(SUnit*);
  void CapturePred(SDep *PredEdge);
  void UnscheduleNodeBottomUp(SUnit*);
  void RestoreHazardCheckerBottomUp();
  void BacktrackBottomUp(SUnit*, SUnit*);
  SUnit *CopyAndMoveSuccessors(SUnit*);
  void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
                                const TargetRegisterClass*,
                                const TargetRegisterClass*,
                                SmallVector<SUnit*, 2>&);
  bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);

  void releaseInterferences(unsigned Reg = 0);

  SUnit *PickNodeToScheduleBottomUp();
  void ListScheduleBottomUp();

  /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
  /// Updates the topological ordering if required.
  SUnit *CreateNewSUnit(SDNode *N) {
    unsigned NumSUnits = SUnits.size();
    SUnit *NewNode = newSUnit(N);
    // Update the topological ordering.
    if (NewNode->NodeNum >= NumSUnits)
      Topo.InitDAGTopologicalSorting();
    return NewNode;
  }

  /// CreateClone - Creates a new SUnit from an existing one.
  /// Updates the topological ordering if required.
  SUnit *CreateClone(SUnit *N) {
    unsigned NumSUnits = SUnits.size();
    SUnit *NewNode = Clone(N);
    // Update the topological ordering.
    if (NewNode->NodeNum >= NumSUnits)
      Topo.InitDAGTopologicalSorting();
    return NewNode;
  }

  /// forceUnitLatencies - Register-pressure-reducing scheduling doesn't
  /// need actual latency information but the hybrid scheduler does.
  bool forceUnitLatencies() const {
    return !NeedLatency;
  }
};
}  // end anonymous namespace

/// GetCostForDef - Looks up the register class and cost for a given definition.
/// Typically this just means looking up the representative register class,
/// but for untyped values (MVT::Untyped) it means inspecting the node's
/// opcode to determine what register class is being generated.
static void GetCostForDef(const ScheduleDAGSDNodes::RegDefIter &RegDefPos,
                          const TargetLowering *TLI,
                          const TargetInstrInfo *TII,
                          const TargetRegisterInfo *TRI,
                          unsigned &RegClass, unsigned &Cost,
                          const MachineFunction &MF) {
  MVT VT = RegDefPos.GetValue();

  // Special handling for untyped values.  These values can only come from
  // the expansion of custom DAG-to-DAG patterns.
  if (VT == MVT::Untyped) {
    const SDNode *Node = RegDefPos.GetNode();

    // Special handling for CopyFromReg of untyped values.
    if (!Node->isMachineOpcode() && Node->getOpcode() == ISD::CopyFromReg) {
      unsigned Reg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
      const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(Reg);
      RegClass = RC->getID();
      Cost = 1;
      return;
    }

    unsigned Opcode = Node->getMachineOpcode();
    if (Opcode == TargetOpcode::REG_SEQUENCE) {
      unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
      const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
      RegClass = RC->getID();
      Cost = 1;
      return;
    }

    unsigned Idx = RegDefPos.GetIdx();
    const MCInstrDesc Desc = TII->get(Opcode);
    const TargetRegisterClass *RC = TII->getRegClass(Desc, Idx, TRI, MF);
    RegClass = RC->getID();
    // FIXME: Cost arbitrarily set to 1 because there doesn't seem to be a
    // better way to determine it.
    Cost = 1;
  } else {
    RegClass = TLI->getRepRegClassFor(VT)->getID();
    Cost = TLI->getRepRegClassCostFor(VT);
  }
}

/// Schedule - Schedule the DAG using list scheduling.
void ScheduleDAGRRList::Schedule() {
  DEBUG(dbgs()
        << "********** List Scheduling BB#" << BB->getNumber()
        << " '" << BB->getName() << "' **********\n");

  CurCycle = 0;
  IssueCount = 0;
  MinAvailableCycle = DisableSchedCycles ? 0 : UINT_MAX;
  NumLiveRegs = 0;
  // Allocate slots for each physical register, plus one for a special register
  // to track the virtual resource of a calling sequence.
  LiveRegDefs.resize(TRI->getNumRegs() + 1, NULL);
  LiveRegGens.resize(TRI->getNumRegs() + 1, NULL);
  CallSeqEndForStart.clear();
  assert(Interferences.empty() && LRegsMap.empty() && "stale Interferences");

  // Build the scheduling graph.
  BuildSchedGraph(NULL);

  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
          SUnits[su].dumpAll(this));
  Topo.InitDAGTopologicalSorting();

  AvailableQueue->initNodes(SUnits);

  HazardRec->Reset();

  // Execute the actual scheduling loop.
  ListScheduleBottomUp();

  AvailableQueue->releaseState();

  DEBUG({
      dbgs() << "*** Final schedule ***\n";
      dumpSchedule();
      dbgs() << '\n';
    });
}

//===----------------------------------------------------------------------===//
//  Bottom-Up Scheduling
//===----------------------------------------------------------------------===//

/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
  SUnit *PredSU = PredEdge->getSUnit();

#ifndef NDEBUG
  if (PredSU->NumSuccsLeft == 0) {
    dbgs() << "*** Scheduling failed! ***\n";
    PredSU->dump(this);
    dbgs() << " has been released too many times!\n";
    llvm_unreachable(0);
  }
#endif
  --PredSU->NumSuccsLeft;

  if (!forceUnitLatencies()) {
    // Updating predecessor's height. This is now the cycle when the
    // predecessor can be scheduled without causing a pipeline stall.
    PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge->getLatency());
  }

  // If all the node's successors are scheduled, this node is ready
  // to be scheduled. Ignore the special EntrySU node.
  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
    PredSU->isAvailable = true;

    unsigned Height = PredSU->getHeight();
    if (Height < MinAvailableCycle)
      MinAvailableCycle = Height;

    if (isReady(PredSU)) {
      AvailableQueue->push(PredSU);
    }
    // CapturePred and others may have left the node in the pending queue, avoid
    // adding it twice.
    else if (!PredSU->isPending) {
      PredSU->isPending = true;
      PendingQueue.push_back(PredSU);
    }
  }
}

/// IsChainDependent - Test if Outer is reachable from Inner through
/// chain dependencies.
static bool IsChainDependent(SDNode *Outer, SDNode *Inner,
                             unsigned NestLevel,
                             const TargetInstrInfo *TII) {
  SDNode *N = Outer;
  for (;;) {
    if (N == Inner)
      return true;
    // For a TokenFactor, examine each operand. There may be multiple ways
    // to get to the CALLSEQ_BEGIN, but we need to find the path with the
    // most nesting in order to ensure that we find the corresponding match.
    if (N->getOpcode() == ISD::TokenFactor) {
      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
        if (IsChainDependent(N->getOperand(i).getNode(), Inner, NestLevel, TII))
          return true;
      return false;
    }
    // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
    if (N->isMachineOpcode()) {
      if (N->getMachineOpcode() ==
          (unsigned)TII->getCallFrameDestroyOpcode()) {
        ++NestLevel;
      } else if (N->getMachineOpcode() ==
                 (unsigned)TII->getCallFrameSetupOpcode()) {
        if (NestLevel == 0)
          return false;
        --NestLevel;
      }
    }
    // Otherwise, find the chain and continue climbing.
    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
      if (N->getOperand(i).getValueType() == MVT::Other) {
        N = N->getOperand(i).getNode();
        goto found_chain_operand;
      }
    return false;
  found_chain_operand:;
    if (N->getOpcode() == ISD::EntryToken)
      return false;
  }
}

/// FindCallSeqStart - Starting from the (lowered) CALLSEQ_END node, locate
/// the corresponding (lowered) CALLSEQ_BEGIN node.
///
/// NestLevel and MaxNested are used in recursion to indcate the current level
/// of nesting of CALLSEQ_BEGIN and CALLSEQ_END pairs, as well as the maximum
/// level seen so far.
///
/// TODO: It would be better to give CALLSEQ_END an explicit operand to point
/// to the corresponding CALLSEQ_BEGIN to avoid needing to search for it.
static SDNode *
FindCallSeqStart(SDNode *N, unsigned &NestLevel, unsigned &MaxNest,
                 const TargetInstrInfo *TII) {
  for (;;) {
    // For a TokenFactor, examine each operand. There may be multiple ways
    // to get to the CALLSEQ_BEGIN, but we need to find the path with the
    // most nesting in order to ensure that we find the corresponding match.
    if (N->getOpcode() == ISD::TokenFactor) {
      SDNode *Best = 0;
      unsigned BestMaxNest = MaxNest;
      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
        unsigned MyNestLevel = NestLevel;
        unsigned MyMaxNest = MaxNest;
        if (SDNode *New = FindCallSeqStart(N->getOperand(i).getNode(),
                                           MyNestLevel, MyMaxNest, TII))
          if (!Best || (MyMaxNest > BestMaxNest)) {
            Best = New;
            BestMaxNest = MyMaxNest;
          }
      }
      assert(Best);
      MaxNest = BestMaxNest;
      return Best;
    }
    // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
    if (N->isMachineOpcode()) {
      if (N->getMachineOpcode() ==
          (unsigned)TII->getCallFrameDestroyOpcode()) {
        ++NestLevel;
        MaxNest = std::max(MaxNest, NestLevel);
      } else if (N->getMachineOpcode() ==
                 (unsigned)TII->getCallFrameSetupOpcode()) {
        assert(NestLevel != 0);
        --NestLevel;
        if (NestLevel == 0)
          return N;
      }
    }
    // Otherwise, find the chain and continue climbing.
    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
      if (N->getOperand(i).getValueType() == MVT::Other) {
        N = N->getOperand(i).getNode();
        goto found_chain_operand;
      }
    return 0;
  found_chain_operand:;
    if (N->getOpcode() == ISD::EntryToken)
      return 0;
  }
}

/// Call ReleasePred for each predecessor, then update register live def/gen.
/// Always update LiveRegDefs for a register dependence even if the current SU
/// also defines the register. This effectively create one large live range
/// across a sequence of two-address node. This is important because the
/// entire chain must be scheduled together. Example:
///
/// flags = (3) add
/// flags = (2) addc flags
/// flags = (1) addc flags
///
/// results in
///
/// LiveRegDefs[flags] = 3
/// LiveRegGens[flags] = 1
///
/// If (2) addc is unscheduled, then (1) addc must also be unscheduled to avoid
/// interference on flags.
void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU) {
  // Bottom up: release predecessors
  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
       I != E; ++I) {
    ReleasePred(SU, &*I);
    if (I->isAssignedRegDep()) {
      // This is a physical register dependency and it's impossible or
      // expensive to copy the register. Make sure nothing that can
      // clobber the register is scheduled between the predecessor and
      // this node.
      SUnit *RegDef = LiveRegDefs[I->getReg()]; (void)RegDef;
      assert((!RegDef || RegDef == SU || RegDef == I->getSUnit()) &&
             "interference on register dependence");
      LiveRegDefs[I->getReg()] = I->getSUnit();
      if (!LiveRegGens[I->getReg()]) {
        ++NumLiveRegs;
        LiveRegGens[I->getReg()] = SU;
      }
    }
  }

  // If we're scheduling a lowered CALLSEQ_END, find the corresponding
  // CALLSEQ_BEGIN. Inject an artificial physical register dependence between
  // these nodes, to prevent other calls from being interscheduled with them.
  unsigned CallResource = TRI->getNumRegs();
  if (!LiveRegDefs[CallResource])
    for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode())
      if (Node->isMachineOpcode() &&
          Node->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
        unsigned NestLevel = 0;
        unsigned MaxNest = 0;
        SDNode *N = FindCallSeqStart(Node, NestLevel, MaxNest, TII);

        SUnit *Def = &SUnits[N->getNodeId()];
        CallSeqEndForStart[Def] = SU;

        ++NumLiveRegs;
        LiveRegDefs[CallResource] = Def;
        LiveRegGens[CallResource] = SU;
        break;
      }
}

/// Check to see if any of the pending instructions are ready to issue.  If
/// so, add them to the available queue.
void ScheduleDAGRRList::ReleasePending() {
  if (DisableSchedCycles) {
    assert(PendingQueue.empty() && "pending instrs not allowed in this mode");
    return;
  }

  // If the available queue is empty, it is safe to reset MinAvailableCycle.
  if (AvailableQueue->empty())
    MinAvailableCycle = UINT_MAX;

  // Check to see if any of the pending instructions are ready to issue.  If
  // so, add them to the available queue.
  for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
    unsigned ReadyCycle = PendingQueue[i]->getHeight();
    if (ReadyCycle < MinAvailableCycle)
      MinAvailableCycle = ReadyCycle;

    if (PendingQueue[i]->isAvailable) {
      if (!isReady(PendingQueue[i]))
          continue;
      AvailableQueue->push(PendingQueue[i]);
    }
    PendingQueue[i]->isPending = false;
    PendingQueue[i] = PendingQueue.back();
    PendingQueue.pop_back();
    --i; --e;
  }
}

/// Move the scheduler state forward by the specified number of Cycles.
void ScheduleDAGRRList::AdvanceToCycle(unsigned NextCycle) {
  if (NextCycle <= CurCycle)
    return;

  IssueCount = 0;
  AvailableQueue->setCurCycle(NextCycle);
  if (!HazardRec->isEnabled()) {
    // Bypass lots of virtual calls in case of long latency.
    CurCycle = NextCycle;
  }
  else {
    for (; CurCycle != NextCycle; ++CurCycle) {
      HazardRec->RecedeCycle();
    }
  }
  // FIXME: Instead of visiting the pending Q each time, set a dirty flag on the
  // available Q to release pending nodes at least once before popping.
  ReleasePending();
}

/// Move the scheduler state forward until the specified node's dependents are
/// ready and can be scheduled with no resource conflicts.
void ScheduleDAGRRList::AdvancePastStalls(SUnit *SU) {
  if (DisableSchedCycles)
    return;

  // FIXME: Nodes such as CopyFromReg probably should not advance the current
  // cycle. Otherwise, we can wrongly mask real stalls. If the non-machine node
  // has predecessors the cycle will be advanced when they are scheduled.
  // But given the crude nature of modeling latency though such nodes, we
  // currently need to treat these nodes like real instructions.
  // if (!SU->getNode() || !SU->getNode()->isMachineOpcode()) return;

  unsigned ReadyCycle = SU->getHeight();

  // Bump CurCycle to account for latency. We assume the latency of other
  // available instructions may be hidden by the stall (not a full pipe stall).
  // This updates the hazard recognizer's cycle before reserving resources for
  // this instruction.
  AdvanceToCycle(ReadyCycle);

  // Calls are scheduled in their preceding cycle, so don't conflict with
  // hazards from instructions after the call. EmitNode will reset the
  // scoreboard state before emitting the call.
  if (SU->isCall)
    return;

  // FIXME: For resource conflicts in very long non-pipelined stages, we
  // should probably skip ahead here to avoid useless scoreboard checks.
  int Stalls = 0;
  while (true) {
    ScheduleHazardRecognizer::HazardType HT =
      HazardRec->getHazardType(SU, -Stalls);

    if (HT == ScheduleHazardRecognizer::NoHazard)
      break;

    ++Stalls;
  }
  AdvanceToCycle(CurCycle + Stalls);
}

/// Record this SUnit in the HazardRecognizer.
/// Does not update CurCycle.
void ScheduleDAGRRList::EmitNode(SUnit *SU) {
  if (!HazardRec->isEnabled())
    return;

  // Check for phys reg copy.
  if (!SU->getNode())
    return;

  switch (SU->getNode()->getOpcode()) {
  default:
    assert(SU->getNode()->isMachineOpcode() &&
           "This target-independent node should not be scheduled.");
    break;
  case ISD::MERGE_VALUES:
  case ISD::TokenFactor:
  case ISD::LIFETIME_START:
  case ISD::LIFETIME_END:
  case ISD::CopyToReg:
  case ISD::CopyFromReg:
  case ISD::EH_LABEL:
    // Noops don't affect the scoreboard state. Copies are likely to be
    // removed.
    return;
  case ISD::INLINEASM:
    // For inline asm, clear the pipeline state.
    HazardRec->Reset();
    return;
  }
  if (SU->isCall) {
    // Calls are scheduled with their preceding instructions. For bottom-up
    // scheduling, clear the pipeline state before emitting.
    HazardRec->Reset();
  }

  HazardRec->EmitInstruction(SU);
}

static void resetVRegCycle(SUnit *SU);

/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
/// count of its predecessors. If a predecessor pending count is zero, add it to
/// the Available queue.
void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU) {
  DEBUG(dbgs() << "\n*** Scheduling [" << CurCycle << "]: ");
  DEBUG(SU->dump(this));

#ifndef NDEBUG
  if (CurCycle < SU->getHeight())
    DEBUG(dbgs() << "   Height [" << SU->getHeight()
          << "] pipeline stall!\n");
#endif

  // FIXME: Do not modify node height. It may interfere with
  // backtracking. Instead add a "ready cycle" to SUnit. Before scheduling the
  // node its ready cycle can aid heuristics, and after scheduling it can
  // indicate the scheduled cycle.
  SU->setHeightToAtLeast(CurCycle);

  // Reserve resources for the scheduled intruction.
  EmitNode(SU);

  Sequence.push_back(SU);

  AvailableQueue->scheduledNode(SU);

  // If HazardRec is disabled, and each inst counts as one cycle, then
  // advance CurCycle before ReleasePredecessors to avoid useless pushes to
  // PendingQueue for schedulers that implement HasReadyFilter.
  if (!HazardRec->isEnabled() && AvgIPC < 2)
    AdvanceToCycle(CurCycle + 1);

  // Update liveness of predecessors before successors to avoid treating a
  // two-address node as a live range def.
  ReleasePredecessors(SU);

  // Release all the implicit physical register defs that are live.
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
       I != E; ++I) {
    // LiveRegDegs[I->getReg()] != SU when SU is a two-address node.
    if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] == SU) {
      assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
      --NumLiveRegs;
      LiveRegDefs[I->getReg()] = NULL;
      LiveRegGens[I->getReg()] = NULL;
      releaseInterferences(I->getReg());
    }
  }
  // Release the special call resource dependence, if this is the beginning
  // of a call.
  unsigned CallResource = TRI->getNumRegs();
  if (LiveRegDefs[CallResource] == SU)
    for (const SDNode *SUNode = SU->getNode(); SUNode;
         SUNode = SUNode->getGluedNode()) {
      if (SUNode->isMachineOpcode() &&
          SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameSetupOpcode()) {
        assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
        --NumLiveRegs;
        LiveRegDefs[CallResource] = NULL;
        LiveRegGens[CallResource] = NULL;
        releaseInterferences(CallResource);
      }
    }

  resetVRegCycle(SU);

  SU->isScheduled = true;

  // Conditions under which the scheduler should eagerly advance the cycle:
  // (1) No available instructions
  // (2) All pipelines full, so available instructions must have hazards.
  //
  // If HazardRec is disabled, the cycle was pre-advanced before calling
  // ReleasePredecessors. In that case, IssueCount should remain 0.
  //
  // Check AvailableQueue after ReleasePredecessors in case of zero latency.
  if (HazardRec->isEnabled() || AvgIPC > 1) {
    if (SU->getNode() && SU->getNode()->isMachineOpcode())
      ++IssueCount;
    if ((HazardRec->isEnabled() && HazardRec->atIssueLimit())
        || (!HazardRec->isEnabled() && IssueCount == AvgIPC))
      AdvanceToCycle(CurCycle + 1);
  }
}

/// CapturePred - This does the opposite of ReleasePred. Since SU is being
/// unscheduled, incrcease the succ left count of its predecessors. Remove
/// them from AvailableQueue if necessary.
void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
  SUnit *PredSU = PredEdge->getSUnit();
  if (PredSU->isAvailable) {
    PredSU->isAvailable = false;
    if (!PredSU->isPending)
      AvailableQueue->remove(PredSU);
  }

  assert(PredSU->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
  ++PredSU->NumSuccsLeft;
}

/// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
/// its predecessor states to reflect the change.
void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
  DEBUG(dbgs() << "*** Unscheduling [" << SU->getHeight() << "]: ");
  DEBUG(SU->dump(this));

  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
       I != E; ++I) {
    CapturePred(&*I);
    if (I->isAssignedRegDep() && SU == LiveRegGens[I->getReg()]){
      assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
      assert(LiveRegDefs[I->getReg()] == I->getSUnit() &&
             "Physical register dependency violated?");
      --NumLiveRegs;
      LiveRegDefs[I->getReg()] = NULL;
      LiveRegGens[I->getReg()] = NULL;
      releaseInterferences(I->getReg());
    }
  }

  // Reclaim the special call resource dependence, if this is the beginning
  // of a call.
  unsigned CallResource = TRI->getNumRegs();
  for (const SDNode *SUNode = SU->getNode(); SUNode;
       SUNode = SUNode->getGluedNode()) {
    if (SUNode->isMachineOpcode() &&
        SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameSetupOpcode()) {
      ++NumLiveRegs;
      LiveRegDefs[CallResource] = SU;
      LiveRegGens[CallResource] = CallSeqEndForStart[SU];
    }
  }

  // Release the special call resource dependence, if this is the end
  // of a call.
  if (LiveRegGens[CallResource] == SU)
    for (const SDNode *SUNode = SU->getNode(); SUNode;
         SUNode = SUNode->getGluedNode()) {
      if (SUNode->isMachineOpcode() &&
          SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
        assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
        --NumLiveRegs;
        LiveRegDefs[CallResource] = NULL;
        LiveRegGens[CallResource] = NULL;
        releaseInterferences(CallResource);
      }
    }

  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
       I != E; ++I) {
    if (I->isAssignedRegDep()) {
      if (!LiveRegDefs[I->getReg()])
        ++NumLiveRegs;
      // This becomes the nearest def. Note that an earlier def may still be
      // pending if this is a two-address node.
      LiveRegDefs[I->getReg()] = SU;
      if (LiveRegGens[I->getReg()] == NULL ||
          I->getSUnit()->getHeight() < LiveRegGens[I->getReg()]->getHeight())
        LiveRegGens[I->getReg()] = I->getSUnit();
    }
  }
  if (SU->getHeight() < MinAvailableCycle)
    MinAvailableCycle = SU->getHeight();

  SU->setHeightDirty();
  SU->isScheduled = false;
  SU->isAvailable = true;
  if (!DisableSchedCycles && AvailableQueue->hasReadyFilter()) {
    // Don't make available until backtracking is complete.
    SU->isPending = true;
    PendingQueue.push_back(SU);
  }
  else {
    AvailableQueue->push(SU);
  }
  AvailableQueue->unscheduledNode(SU);
}

/// After backtracking, the hazard checker needs to be restored to a state
/// corresponding the current cycle.
void ScheduleDAGRRList::RestoreHazardCheckerBottomUp() {
  HazardRec->Reset();

  unsigned LookAhead = std::min((unsigned)Sequence.size(),
                                HazardRec->getMaxLookAhead());
  if (LookAhead == 0)
    return;

  std::vector<SUnit*>::const_iterator I = (Sequence.end() - LookAhead);
  unsigned HazardCycle = (*I)->getHeight();
  for (std::vector<SUnit*>::const_iterator E = Sequence.end(); I != E; ++I) {
    SUnit *SU = *I;
    for (; SU->getHeight() > HazardCycle; ++HazardCycle) {
      HazardRec->RecedeCycle();
    }
    EmitNode(SU);
  }
}

/// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
/// BTCycle in order to schedule a specific node.
void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, SUnit *BtSU) {
  SUnit *OldSU = Sequence.back();
  while (true) {
    Sequence.pop_back();
    // FIXME: use ready cycle instead of height
    CurCycle = OldSU->getHeight();
    UnscheduleNodeBottomUp(OldSU);
    AvailableQueue->setCurCycle(CurCycle);
    if (OldSU == BtSU)
      break;
    OldSU = Sequence.back();
  }

  assert(!SU->isSucc(OldSU) && "Something is wrong!");

  RestoreHazardCheckerBottomUp();

  ReleasePending();

  ++NumBacktracks;
}

static bool isOperandOf(const SUnit *SU, SDNode *N) {
  for (const SDNode *SUNode = SU->getNode(); SUNode;
       SUNode = SUNode->getGluedNode()) {
    if (SUNode->isOperandOf(N))
      return true;
  }
  return false;
}

/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
/// successors to the newly created node.
SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
  SDNode *N = SU->getNode();
  if (!N)
    return NULL;

  if (SU->getNode()->getGluedNode())
    return NULL;

  SUnit *NewSU;
  bool TryUnfold = false;
  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
    EVT VT = N->getValueType(i);
    if (VT == MVT::Glue)
      return NULL;
    else if (VT == MVT::Other)
      TryUnfold = true;
  }
  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    const SDValue &Op = N->getOperand(i);
    EVT VT = Op.getNode()->getValueType(Op.getResNo());
    if (VT == MVT::Glue)
      return NULL;
  }

  if (TryUnfold) {
    SmallVector<SDNode*, 2> NewNodes;
    if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
      return NULL;

    // unfolding an x86 DEC64m operation results in store, dec, load which
    // can't be handled here so quit
    if (NewNodes.size() == 3)
      return NULL;

    DEBUG(dbgs() << "Unfolding SU #" << SU->NodeNum << "\n");
    assert(NewNodes.size() == 2 && "Expected a load folding node!");

    N = NewNodes[1];
    SDNode *LoadNode = NewNodes[0];
    unsigned NumVals = N->getNumValues();
    unsigned OldNumVals = SU->getNode()->getNumValues();
    for (unsigned i = 0; i != NumVals; ++i)
      DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
    DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
                                   SDValue(LoadNode, 1));

    // LoadNode may already exist. This can happen when there is another
    // load from the same location and producing the same type of value
    // but it has different alignment or volatileness.
    bool isNewLoad = true;
    SUnit *LoadSU;
    if (LoadNode->getNodeId() != -1) {
      LoadSU = &SUnits[LoadNode->getNodeId()];
      isNewLoad = false;
    } else {
      LoadSU = CreateNewSUnit(LoadNode);
      LoadNode->setNodeId(LoadSU->NodeNum);

      InitNumRegDefsLeft(LoadSU);
      computeLatency(LoadSU);
    }

    SUnit *NewSU = CreateNewSUnit(N);
    assert(N->getNodeId() == -1 && "Node already inserted!");
    N->setNodeId(NewSU->NodeNum);

    const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
    for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
      if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
        NewSU->isTwoAddress = true;
        break;
      }
    }
    if (MCID.isCommutable())
      NewSU->isCommutable = true;

    InitNumRegDefsLeft(NewSU);
    computeLatency(NewSU);

    // Record all the edges to and from the old SU, by category.
    SmallVector<SDep, 4> ChainPreds;
    SmallVector<SDep, 4> ChainSuccs;
    SmallVector<SDep, 4> LoadPreds;
    SmallVector<SDep, 4> NodePreds;
    SmallVector<SDep, 4> NodeSuccs;
    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
         I != E; ++I) {
      if (I->isCtrl())
        ChainPreds.push_back(*I);
      else if (isOperandOf(I->getSUnit(), LoadNode))
        LoadPreds.push_back(*I);
      else
        NodePreds.push_back(*I);
    }
    for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
         I != E; ++I) {
      if (I->isCtrl())
        ChainSuccs.push_back(*I);
      else
        NodeSuccs.push_back(*I);
    }

    // Now assign edges to the newly-created nodes.
    for (unsigned i = 0, e = ChainPreds.size(); i != e; ++i) {
      const SDep &Pred = ChainPreds[i];
      RemovePred(SU, Pred);
      if (isNewLoad)
        AddPred(LoadSU, Pred);
    }
    for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
      const SDep &Pred = LoadPreds[i];
      RemovePred(SU, Pred);
      if (isNewLoad)
        AddPred(LoadSU, Pred);
    }
    for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
      const SDep &Pred = NodePreds[i];
      RemovePred(SU, Pred);
      AddPred(NewSU, Pred);
    }
    for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
      SDep D = NodeSuccs[i];
      SUnit *SuccDep = D.getSUnit();
      D.setSUnit(SU);
      RemovePred(SuccDep, D);
      D.setSUnit(NewSU);
      AddPred(SuccDep, D);
      // Balance register pressure.
      if (AvailableQueue->tracksRegPressure() && SuccDep->isScheduled
          && !D.isCtrl() && NewSU->NumRegDefsLeft > 0)
        --NewSU->NumRegDefsLeft;
    }
    for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
      SDep D = ChainSuccs[i];
      SUnit *SuccDep = D.getSUnit();
      D.setSUnit(SU);
      RemovePred(SuccDep, D);
      if (isNewLoad) {
        D.setSUnit(LoadSU);
        AddPred(SuccDep, D);
      }
    }

    // Add a data dependency to reflect that NewSU reads the value defined
    // by LoadSU.
    SDep D(LoadSU, SDep::Data, 0);
    D.setLatency(LoadSU->Latency);
    AddPred(NewSU, D);

    if (isNewLoad)
      AvailableQueue->addNode(LoadSU);
    AvailableQueue->addNode(NewSU);

    ++NumUnfolds;

    if (NewSU->NumSuccsLeft == 0) {
      NewSU->isAvailable = true;
      return NewSU;
    }
    SU = NewSU;
  }

  DEBUG(dbgs() << "    Duplicating SU #" << SU->NodeNum << "\n");
  NewSU = CreateClone(SU);

  // New SUnit has the exact same predecessors.
  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
       I != E; ++I)
    if (!I->isArtificial())
      AddPred(NewSU, *I);

  // Only copy scheduled successors. Cut them from old node's successor
  // list and move them over.
  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
       I != E; ++I) {
    if (I->isArtificial())
      continue;
    SUnit *SuccSU = I->getSUnit();
    if (SuccSU->isScheduled) {
      SDep D = *I;
      D.setSUnit(NewSU);
      AddPred(SuccSU, D);
      D.setSUnit(SU);
      DelDeps.push_back(std::make_pair(SuccSU, D));
    }
  }
  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
    RemovePred(DelDeps[i].first, DelDeps[i].second);

  AvailableQueue->updateNode(SU);
  AvailableQueue->addNode(NewSU);

  ++NumDups;
  return NewSU;
}

/// InsertCopiesAndMoveSuccs - Insert register copies and move all
/// scheduled successors of the given SUnit to the last copy.
void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
                                               const TargetRegisterClass *DestRC,
                                               const TargetRegisterClass *SrcRC,
                                               SmallVector<SUnit*, 2> &Copies) {
  SUnit *CopyFromSU = CreateNewSUnit(NULL);
  CopyFromSU->CopySrcRC = SrcRC;
  CopyFromSU->CopyDstRC = DestRC;

  SUnit *CopyToSU = CreateNewSUnit(NULL);
  CopyToSU->CopySrcRC = DestRC;
  CopyToSU->CopyDstRC = SrcRC;

  // Only copy scheduled successors. Cut them from old node's successor
  // list and move them over.
  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
       I != E; ++I) {
    if (I->isArtificial())
      continue;
    SUnit *SuccSU = I->getSUnit();
    if (SuccSU->isScheduled) {
      SDep D = *I;
      D.setSUnit(CopyToSU);
      AddPred(SuccSU, D);
      DelDeps.push_back(std::make_pair(SuccSU, *I));
    }
    else {
      // Avoid scheduling the def-side copy before other successors. Otherwise
      // we could introduce another physreg interference on the copy and
      // continue inserting copies indefinitely.
      AddPred(SuccSU, SDep(CopyFromSU, SDep::Artificial));
    }
  }
  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
    RemovePred(DelDeps[i].first, DelDeps[i].second);

  SDep FromDep(SU, SDep::Data, Reg);
  FromDep.setLatency(SU->Latency);
  AddPred(CopyFromSU, FromDep);
  SDep ToDep(CopyFromSU, SDep::Data, 0);
  ToDep.setLatency(CopyFromSU->Latency);
  AddPred(CopyToSU, ToDep);

  AvailableQueue->updateNode(SU);
  AvailableQueue->addNode(CopyFromSU);
  AvailableQueue->addNode(CopyToSU);
  Copies.push_back(CopyFromSU);
  Copies.push_back(CopyToSU);

  ++NumPRCopies;
}

/// getPhysicalRegisterVT - Returns the ValueType of the physical register
/// definition of the specified node.
/// FIXME: Move to SelectionDAG?
static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
                                 const TargetInstrInfo *TII) {
  const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
  assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
  unsigned NumRes = MCID.getNumDefs();
  for (const uint16_t *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
    if (Reg == *ImpDef)
      break;
    ++NumRes;
  }
  return N->getValueType(NumRes);
}

/// CheckForLiveRegDef - Return true and update live register vector if the
/// specified register def of the specified SUnit clobbers any "live" registers.
static void CheckForLiveRegDef(SUnit *SU, unsigned Reg,
                               std::vector<SUnit*> &LiveRegDefs,
                               SmallSet<unsigned, 4> &RegAdded,
                               SmallVector<unsigned, 4> &LRegs,
                               const TargetRegisterInfo *TRI) {
  for (MCRegAliasIterator AliasI(Reg, TRI, true); AliasI.isValid(); ++AliasI) {

    // Check if Ref is live.
    if (!LiveRegDefs[*AliasI]) continue;

    // Allow multiple uses of the same def.
    if (LiveRegDefs[*AliasI] == SU) continue;

    // Add Reg to the set of interfering live regs.
    if (RegAdded.insert(*AliasI)) {
      LRegs.push_back(*AliasI);
    }
  }
}

/// CheckForLiveRegDefMasked - Check for any live physregs that are clobbered
/// by RegMask, and add them to LRegs.
static void CheckForLiveRegDefMasked(SUnit *SU, const uint32_t *RegMask,
                                     std::vector<SUnit*> &LiveRegDefs,
                                     SmallSet<unsigned, 4> &RegAdded,
                                     SmallVector<unsigned, 4> &LRegs) {
  // Look at all live registers. Skip Reg0 and the special CallResource.
  for (unsigned i = 1, e = LiveRegDefs.size()-1; i != e; ++i) {
    if (!LiveRegDefs[i]) continue;
    if (LiveRegDefs[i] == SU) continue;
    if (!MachineOperand::clobbersPhysReg(RegMask, i)) continue;
    if (RegAdded.insert(i))
      LRegs.push_back(i);
  }
}

/// getNodeRegMask - Returns the register mask attached to an SDNode, if any.
static const uint32_t *getNodeRegMask(const SDNode *N) {
  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
    if (const RegisterMaskSDNode *Op =
        dyn_cast<RegisterMaskSDNode>(N->getOperand(i).getNode()))
      return Op->getRegMask();
  return NULL;
}

/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
/// scheduling of the given node to satisfy live physical register dependencies.
/// If the specific node is the last one that's available to schedule, do
/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
bool ScheduleDAGRRList::
DelayForLiveRegsBottomUp(SUnit *SU, SmallVector<unsigned, 4> &LRegs) {
  if (NumLiveRegs == 0)
    return false;

  SmallSet<unsigned, 4> RegAdded;
  // If this node would clobber any "live" register, then it's not ready.
  //
  // If SU is the currently live definition of the same register that it uses,
  // then we are free to schedule it.
  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
       I != E; ++I) {
    if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] != SU)
      CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs,
                         RegAdded, LRegs, TRI);
  }

  for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
    if (Node->getOpcode() == ISD::INLINEASM) {
      // Inline asm can clobber physical defs.
      unsigned NumOps = Node->getNumOperands();
      if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
        --NumOps;  // Ignore the glue operand.

      for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
        unsigned Flags =
          cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
        unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);

        ++i; // Skip the ID value.
        if (InlineAsm::isRegDefKind(Flags) ||
            InlineAsm::isRegDefEarlyClobberKind(Flags) ||
            InlineAsm::isClobberKind(Flags)) {
          // Check for def of register or earlyclobber register.
          for (; NumVals; --NumVals, ++i) {
            unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
            if (TargetRegisterInfo::isPhysicalRegister(Reg))
              CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
          }
        } else
          i += NumVals;
      }
      continue;
    }

    if (!Node->isMachineOpcode())
      continue;
    // If we're in the middle of scheduling a call, don't begin scheduling
    // another call. Also, don't allow any physical registers to be live across
    // the call.
    if (Node->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
      // Check the special calling-sequence resource.
      unsigned CallResource = TRI->getNumRegs();
      if (LiveRegDefs[CallResource]) {
        SDNode *Gen = LiveRegGens[CallResource]->getNode();
        while (SDNode *Glued = Gen->getGluedNode())
          Gen = Glued;
        if (!IsChainDependent(Gen, Node, 0, TII) && RegAdded.insert(CallResource))
          LRegs.push_back(CallResource);
      }
    }
    if (const uint32_t *RegMask = getNodeRegMask(Node))
      CheckForLiveRegDefMasked(SU, RegMask, LiveRegDefs, RegAdded, LRegs);

    const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
    if (!MCID.ImplicitDefs)
      continue;
    for (const uint16_t *Reg = MCID.getImplicitDefs(); *Reg; ++Reg)
      CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
  }

  return !LRegs.empty();
}

void ScheduleDAGRRList::releaseInterferences(unsigned Reg) {
  // Add the nodes that aren't ready back onto the available list.
  for (unsigned i = Interferences.size(); i > 0; --i) {
    SUnit *SU = Interferences[i-1];
    LRegsMapT::iterator LRegsPos = LRegsMap.find(SU);
    if (Reg) {
      SmallVector<unsigned, 4> &LRegs = LRegsPos->second;
      if (std::find(LRegs.begin(), LRegs.end(), Reg) == LRegs.end())
        continue;
    }
    SU->isPending = false;
    // The interfering node may no longer be available due to backtracking.
    // Furthermore, it may have been made available again, in which case it is
    // now already in the AvailableQueue.
    if (SU->isAvailable && !SU->NodeQueueId) {
      DEBUG(dbgs() << "    Repushing SU #" << SU->NodeNum << '\n');
      AvailableQueue->push(SU);
    }
    if (i < Interferences.size())
      Interferences[i-1] = Interferences.back();
    Interferences.pop_back();
    LRegsMap.erase(LRegsPos);
  }
}

/// Return a node that can be scheduled in this cycle. Requirements:
/// (1) Ready: latency has been satisfied
/// (2) No Hazards: resources are available
/// (3) No Interferences: may unschedule to break register interferences.
SUnit *ScheduleDAGRRList::PickNodeToScheduleBottomUp() {
  SUnit *CurSU = AvailableQueue->empty() ? 0 : AvailableQueue->pop();
  while (CurSU) {
    SmallVector<unsigned, 4> LRegs;
    if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
      break;
    DEBUG(dbgs() << "    Interfering reg " <<
          (LRegs[0] == TRI->getNumRegs() ? "CallResource"
           : TRI->getName(LRegs[0]))
           << " SU #" << CurSU->NodeNum << '\n');
    std::pair<LRegsMapT::iterator, bool> LRegsPair =
      LRegsMap.insert(std::make_pair(CurSU, LRegs));
    if (LRegsPair.second) {
      CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
      Interferences.push_back(CurSU);
    }
    else {
      assert(CurSU->isPending && "Intereferences are pending");
      // Update the interference with current live regs.
      LRegsPair.first->second = LRegs;
    }
    CurSU = AvailableQueue->pop();
  }
  if (CurSU)
    return CurSU;

  // All candidates are delayed due to live physical reg dependencies.
  // Try backtracking, code duplication, or inserting cross class copies
  // to resolve it.
  for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
    SUnit *TrySU = Interferences[i];
    SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];

    // Try unscheduling up to the point where it's safe to schedule
    // this node.
    SUnit *BtSU = NULL;
    unsigned LiveCycle = UINT_MAX;
    for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
      unsigned Reg = LRegs[j];
      if (LiveRegGens[Reg]->getHeight() < LiveCycle) {
        BtSU = LiveRegGens[Reg];
        LiveCycle = BtSU->getHeight();
      }
    }
    if (!WillCreateCycle(TrySU, BtSU))  {
      // BacktrackBottomUp mutates Interferences!
      BacktrackBottomUp(TrySU, BtSU);

      // Force the current node to be scheduled before the node that
      // requires the physical reg dep.
      if (BtSU->isAvailable) {
        BtSU->isAvailable = false;
        if (!BtSU->isPending)
          AvailableQueue->remove(BtSU);
      }
      DEBUG(dbgs() << "ARTIFICIAL edge from SU(" << BtSU->NodeNum << ") to SU("
            << TrySU->NodeNum << ")\n");
      AddPred(TrySU, SDep(BtSU, SDep::Artificial));

      // If one or more successors has been unscheduled, then the current
      // node is no longer available.
      if (!TrySU->isAvailable)
        CurSU = AvailableQueue->pop();
      else {
        AvailableQueue->remove(TrySU);
        CurSU = TrySU;
      }
      // Interferences has been mutated. We must break.
      break;
    }
  }

  if (!CurSU) {
    // Can't backtrack. If it's too expensive to copy the value, then try
    // duplicate the nodes that produces these "too expensive to copy"
    // values to break the dependency. In case even that doesn't work,
    // insert cross class copies.
    // If it's not too expensive, i.e. cost != -1, issue copies.
    SUnit *TrySU = Interferences[0];
    SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
    assert(LRegs.size() == 1 && "Can't handle this yet!");
    unsigned Reg = LRegs[0];
    SUnit *LRDef = LiveRegDefs[Reg];
    EVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
    const TargetRegisterClass *RC =
      TRI->getMinimalPhysRegClass(Reg, VT);
    const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);

    // If cross copy register class is the same as RC, then it must be possible
    // copy the value directly. Do not try duplicate the def.
    // If cross copy register class is not the same as RC, then it's possible to
    // copy the value but it require cross register class copies and it is
    // expensive.
    // If cross copy register class is null, then it's not possible to copy
    // the value at all.
    SUnit *NewDef = 0;
    if (DestRC != RC) {
      NewDef = CopyAndMoveSuccessors(LRDef);
      if (!DestRC && !NewDef)
        report_fatal_error("Can't handle live physical register dependency!");
    }
    if (!NewDef) {
      // Issue copies, these can be expensive cross register class copies.
      SmallVector<SUnit*, 2> Copies;
      InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
      DEBUG(dbgs() << "    Adding an edge from SU #" << TrySU->NodeNum
            << " to SU #" << Copies.front()->NodeNum << "\n");
      AddPred(TrySU, SDep(Copies.front(), SDep::Artificial));
      NewDef = Copies.back();
    }

    DEBUG(dbgs() << "    Adding an edge from SU #" << NewDef->NodeNum
          << " to SU #" << TrySU->NodeNum << "\n");
    LiveRegDefs[Reg] = NewDef;
    AddPred(NewDef, SDep(TrySU, SDep::Artificial));
    TrySU->isAvailable = false;
    CurSU = NewDef;
  }
  assert(CurSU && "Unable to resolve live physical register dependencies!");
  return CurSU;
}

/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
/// schedulers.
void ScheduleDAGRRList::ListScheduleBottomUp() {
  // Release any predecessors of the special Exit node.
  ReleasePredecessors(&ExitSU);

  // Add root to Available queue.
  if (!SUnits.empty()) {
    SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
    assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
    RootSU->isAvailable = true;
    AvailableQueue->push(RootSU);
  }

  // While Available queue is not empty, grab the node with the highest
  // priority. If it is not ready put it back.  Schedule the node.
  Sequence.reserve(SUnits.size());
  while (!AvailableQueue->empty() || !Interferences.empty()) {
    DEBUG(dbgs() << "\nExamining Available:\n";
          AvailableQueue->dump(this));

    // Pick the best node to schedule taking all constraints into
    // consideration.
    SUnit *SU = PickNodeToScheduleBottomUp();

    AdvancePastStalls(SU);

    ScheduleNodeBottomUp(SU);

    while (AvailableQueue->empty() && !PendingQueue.empty()) {
      // Advance the cycle to free resources. Skip ahead to the next ready SU.
      assert(MinAvailableCycle < UINT_MAX && "MinAvailableCycle uninitialized");
      AdvanceToCycle(std::max(CurCycle + 1, MinAvailableCycle));
    }
  }

  // Reverse the order if it is bottom up.
  std::reverse(Sequence.begin(), Sequence.end());

#ifndef NDEBUG
  VerifyScheduledSequence(/*isBottomUp=*/true);
#endif
}

//===----------------------------------------------------------------------===//
//                RegReductionPriorityQueue Definition
//===----------------------------------------------------------------------===//
//
// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
// to reduce register pressure.
//
namespace {
class RegReductionPQBase;

struct queue_sort : public std::binary_function<SUnit*, SUnit*, bool> {
  bool isReady(SUnit* SU, unsigned CurCycle) const { return true; }
};

#ifndef NDEBUG
template<class SF>
struct reverse_sort : public queue_sort {
  SF &SortFunc;
  reverse_sort(SF &sf) : SortFunc(sf) {}
  reverse_sort(const reverse_sort &RHS) : SortFunc(RHS.SortFunc) {}

  bool operator()(SUnit* left, SUnit* right) const {
    // reverse left/right rather than simply !SortFunc(left, right)
    // to expose different paths in the comparison logic.
    return SortFunc(right, left);
  }
};
#endif // NDEBUG

/// bu_ls_rr_sort - Priority function for bottom up register pressure
// reduction scheduler.
struct bu_ls_rr_sort : public queue_sort {
  enum {
    IsBottomUp = true,
    HasReadyFilter = false
  };

  RegReductionPQBase *SPQ;
  bu_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
  bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}

  bool operator()(SUnit* left, SUnit* right) const;
};

// src_ls_rr_sort - Priority function for source order scheduler.
struct src_ls_rr_sort : public queue_sort {
  enum {
    IsBottomUp = true,
    HasReadyFilter = false
  };

  RegReductionPQBase *SPQ;
  src_ls_rr_sort(RegReductionPQBase *spq)
    : SPQ(spq) {}
  src_ls_rr_sort(const src_ls_rr_sort &RHS)
    : SPQ(RHS.SPQ) {}

  bool operator()(SUnit* left, SUnit* right) const;
};

// hybrid_ls_rr_sort - Priority function for hybrid scheduler.
struct hybrid_ls_rr_sort : public queue_sort {
  enum {
    IsBottomUp = true,
    HasReadyFilter = false
  };

  RegReductionPQBase *SPQ;
  hybrid_ls_rr_sort(RegReductionPQBase *spq)
    : SPQ(spq) {}
  hybrid_ls_rr_sort(const hybrid_ls_rr_sort &RHS)
    : SPQ(RHS.SPQ) {}

  bool isReady(SUnit *SU, unsigned CurCycle) const;

  bool operator()(SUnit* left, SUnit* right) const;
};

// ilp_ls_rr_sort - Priority function for ILP (instruction level parallelism)
// scheduler.
struct ilp_ls_rr_sort : public queue_sort {
  enum {
    IsBottomUp = true,
    HasReadyFilter = false
  };

  RegReductionPQBase *SPQ;
  ilp_ls_rr_sort(RegReductionPQBase *spq)
    : SPQ(spq) {}
  ilp_ls_rr_sort(const ilp_ls_rr_sort &RHS)
    : SPQ(RHS.SPQ) {}

  bool isReady(SUnit *SU, unsigned CurCycle) const;

  bool operator()(SUnit* left, SUnit* right) const;
};

class RegReductionPQBase : public SchedulingPriorityQueue {
protected:
  std::vector<SUnit*> Queue;
  unsigned CurQueueId;
  bool TracksRegPressure;
  bool SrcOrder;

  // SUnits - The SUnits for the current graph.
  std::vector<SUnit> *SUnits;

  MachineFunction &MF;
  const TargetInstrInfo *TII;
  const TargetRegisterInfo *TRI;
  const TargetLowering *TLI;
  ScheduleDAGRRList *scheduleDAG;

  // SethiUllmanNumbers - The SethiUllman number for each node.
  std::vector<unsigned> SethiUllmanNumbers;

  /// RegPressure - Tracking current reg pressure per register class.
  ///
  std::vector<unsigned> RegPressure;

  /// RegLimit - Tracking the number of allocatable registers per register
  /// class.
  std::vector<unsigned> RegLimit;

public:
  RegReductionPQBase(MachineFunction &mf,
                     bool hasReadyFilter,
                     bool tracksrp,
                     bool srcorder,
                     const TargetInstrInfo *tii,
                     const TargetRegisterInfo *tri,
                     const TargetLowering *tli)
    : SchedulingPriorityQueue(hasReadyFilter),
      CurQueueId(0), TracksRegPressure(tracksrp), SrcOrder(srcorder),
      MF(mf), TII(tii), TRI(tri), TLI(tli), scheduleDAG(NULL) {
    if (TracksRegPressure) {
      unsigned NumRC = TRI->getNumRegClasses();
      RegLimit.resize(NumRC);
      RegPressure.resize(NumRC);
      std::fill(RegLimit.begin(), RegLimit.end(), 0);
      std::fill(RegPressure.begin(), RegPressure.end(), 0);
      for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
             E = TRI->regclass_end(); I != E; ++I)
        RegLimit[(*I)->getID()] = tri->getRegPressureLimit(*I, MF);
    }
  }

  void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
    scheduleDAG = scheduleDag;
  }

  ScheduleHazardRecognizer* getHazardRec() {
    return scheduleDAG->getHazardRec();
  }

  void initNodes(std::vector<SUnit> &sunits);

  void addNode(const SUnit *SU);

  void updateNode(const SUnit *SU);

  void releaseState() {
    SUnits = 0;
    SethiUllmanNumbers.clear();
    std::fill(RegPressure.begin(), RegPressure.end(), 0);
  }

  unsigned getNodePriority(const SUnit *SU) const;

  unsigned getNodeOrdering(const SUnit *SU) const {
    if (!SU->getNode()) return 0;

    return scheduleDAG->DAG->GetOrdering(SU->getNode());
  }

  bool empty() const { return Queue.empty(); }

  void push(SUnit *U) {
    assert(!U->NodeQueueId && "Node in the queue already");
    U->NodeQueueId = ++CurQueueId;
    Queue.push_back(U);
  }

  void remove(SUnit *SU) {
    assert(!Queue.empty() && "Queue is empty!");
    assert(SU->NodeQueueId != 0 && "Not in queue!");
    std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(),
                                                 SU);
    if (I != prior(Queue.end()))
      std::swap(*I, Queue.back());
    Queue.pop_back();
    SU->NodeQueueId = 0;
  }

  bool tracksRegPressure() const { return TracksRegPressure; }

  void dumpRegPressure() const;

  bool HighRegPressure(const SUnit *SU) const;

  bool MayReduceRegPressure(SUnit *SU) const;

  int RegPressureDiff(SUnit *SU, unsigned &LiveUses) const;

  void scheduledNode(SUnit *SU);

  void unscheduledNode(SUnit *SU);

protected:
  bool canClobber(const SUnit *SU, const SUnit *Op);
  void AddPseudoTwoAddrDeps();
  void PrescheduleNodesWithMultipleUses();
  void CalculateSethiUllmanNumbers();
};

template<class SF>
static SUnit *popFromQueueImpl(std::vector<SUnit*> &Q, SF &Picker) {
  std::vector<SUnit *>::iterator Best = Q.begin();
  for (std::vector<SUnit *>::iterator I = llvm::next(Q.begin()),
         E = Q.end(); I != E; ++I)
    if (Picker(*Best, *I))
      Best = I;
  SUnit *V = *Best;
  if (Best != prior(Q.end()))
    std::swap(*Best, Q.back());
  Q.pop_back();
  return V;
}

template<class SF>
SUnit *popFromQueue(std::vector<SUnit*> &Q, SF &Picker, ScheduleDAG *DAG) {
#ifndef NDEBUG
  if (DAG->StressSched) {
    reverse_sort<SF> RPicker(Picker);
    return popFromQueueImpl(Q, RPicker);
  }
#endif
  (void)DAG;
  return popFromQueueImpl(Q, Picker);
}

template<class SF>
class RegReductionPriorityQueue : public RegReductionPQBase {
  SF Picker;

public:
  RegReductionPriorityQueue(MachineFunction &mf,
                            bool tracksrp,
                            bool srcorder,
                            const TargetInstrInfo *tii,
                            const TargetRegisterInfo *tri,
                            const TargetLowering *tli)
    : RegReductionPQBase(mf, SF::HasReadyFilter, tracksrp, srcorder,
                         tii, tri, tli),
      Picker(this) {}

  bool isBottomUp() const { return SF::IsBottomUp; }

  bool isReady(SUnit *U) const {
    return Picker.HasReadyFilter && Picker.isReady(U, getCurCycle());
  }

  SUnit *pop() {
    if (Queue.empty()) return NULL;

    SUnit *V = popFromQueue(Queue, Picker, scheduleDAG);
    V->NodeQueueId = 0;
    return V;
  }

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  void dump(ScheduleDAG *DAG) const {
    // Emulate pop() without clobbering NodeQueueIds.
    std::vector<SUnit*> DumpQueue = Queue;
    SF DumpPicker = Picker;
    while (!DumpQueue.empty()) {
      SUnit *SU = popFromQueue(DumpQueue, DumpPicker, scheduleDAG);
      dbgs() << "Height " << SU->getHeight() << ": ";
      SU->dump(DAG);
    }
  }
#endif
};

typedef RegReductionPriorityQueue<bu_ls_rr_sort>
BURegReductionPriorityQueue;

typedef RegReductionPriorityQueue<src_ls_rr_sort>
SrcRegReductionPriorityQueue;

typedef RegReductionPriorityQueue<hybrid_ls_rr_sort>
HybridBURRPriorityQueue;

typedef RegReductionPriorityQueue<ilp_ls_rr_sort>
ILPBURRPriorityQueue;
} // end anonymous namespace

//===----------------------------------------------------------------------===//
//           Static Node Priority for Register Pressure Reduction
//===----------------------------------------------------------------------===//

// Check for special nodes that bypass scheduling heuristics.
// Currently this pushes TokenFactor nodes down, but may be used for other
// pseudo-ops as well.
//
// Return -1 to schedule right above left, 1 for left above right.
// Return 0 if no bias exists.
static int checkSpecialNodes(const SUnit *left, const SUnit *right) {
  bool LSchedLow = left->isScheduleLow;
  bool RSchedLow = right->isScheduleLow;
  if (LSchedLow != RSchedLow)
    return LSchedLow < RSchedLow ? 1 : -1;
  return 0;
}

/// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
/// Smaller number is the higher priority.
static unsigned
CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
  unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
  if (SethiUllmanNumber != 0)
    return SethiUllmanNumber;

  unsigned Extra = 0;
  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
       I != E; ++I) {
    if (I->isCtrl()) continue;  // ignore chain preds
    SUnit *PredSU = I->getSUnit();
    unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU, SUNumbers);
    if (PredSethiUllman > SethiUllmanNumber) {
      SethiUllmanNumber = PredSethiUllman;
      Extra = 0;
    } else if (PredSethiUllman == SethiUllmanNumber)
      ++Extra;
  }

  SethiUllmanNumber += Extra;

  if (SethiUllmanNumber == 0)
    SethiUllmanNumber = 1;

  return SethiUllmanNumber;
}

/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
/// scheduling units.
void RegReductionPQBase::CalculateSethiUllmanNumbers() {
  SethiUllmanNumbers.assign(SUnits->size(), 0);

  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
    CalcNodeSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
}

void RegReductionPQBase::addNode(const SUnit *SU) {
  unsigned SUSize = SethiUllmanNumbers.size();
  if (SUnits->size() > SUSize)
    SethiUllmanNumbers.resize(SUSize*2, 0);
  CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
}

void RegReductionPQBase::updateNode(const SUnit *SU) {
  SethiUllmanNumbers[SU->NodeNum] = 0;
  CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
}

// Lower priority means schedule further down. For bottom-up scheduling, lower
// priority SUs are scheduled before higher priority SUs.
unsigned RegReductionPQBase::getNodePriority(const SUnit *SU) const {
  assert(SU->NodeNum < SethiUllmanNumbers.size());
  unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
  if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
    // CopyToReg should be close to its uses to facilitate coalescing and
    // avoid spilling.
    return 0;
  if (Opc == TargetOpcode::EXTRACT_SUBREG ||
      Opc == TargetOpcode::SUBREG_TO_REG ||
      Opc == TargetOpcode::INSERT_SUBREG)
    // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
    // close to their uses to facilitate coalescing.
    return 0;
  if (SU->NumSuccs == 0 && SU->NumPreds != 0)
    // If SU does not have a register use, i.e. it doesn't produce a value
    // that would be consumed (e.g. store), then it terminates a chain of
    // computation.  Give it a large SethiUllman number so it will be
    // scheduled right before its predecessors that it doesn't lengthen
    // their live ranges.
    return 0xffff;
  if (SU->NumPreds == 0 && SU->NumSuccs != 0)
    // If SU does not have a register def, schedule it close to its uses
    // because it does not lengthen any live ranges.
    return 0;
#if 1
  return SethiUllmanNumbers[SU->NodeNum];
#else
  unsigned Priority = SethiUllmanNumbers[SU->NodeNum];
  if (SU->isCallOp) {
    // FIXME: This assumes all of the defs are used as call operands.
    int NP = (int)Priority - SU->getNode()->getNumValues();
    return (NP > 0) ? NP : 0;
  }
  return Priority;
#endif
}

//===----------------------------------------------------------------------===//
//                     Register Pressure Tracking
//===----------------------------------------------------------------------===//

void RegReductionPQBase::dumpRegPressure() const {
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
         E = TRI->regclass_end(); I != E; ++I) {
    const TargetRegisterClass *RC = *I;
    unsigned Id = RC->getID();
    unsigned RP = RegPressure[Id];
    if (!RP) continue;
    DEBUG(dbgs() << RC->getName() << ": " << RP << " / " << RegLimit[Id]
          << '\n');
  }
#endif
}

bool RegReductionPQBase::HighRegPressure(const SUnit *SU) const {
  if (!TLI)
    return false;

  for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
       I != E; ++I) {
    if (I->isCtrl())
      continue;
    SUnit *PredSU = I->getSUnit();
    // NumRegDefsLeft is zero when enough uses of this node have been scheduled
    // to cover the number of registers defined (they are all live).
    if (PredSU->NumRegDefsLeft == 0) {
      continue;
    }
    for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
         RegDefPos.IsValid(); RegDefPos.Advance()) {
      unsigned RCId, Cost;
      GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);

      if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
        return true;
    }
  }
  return false;
}

bool RegReductionPQBase::MayReduceRegPressure(SUnit *SU) const {
  const SDNode *N = SU->getNode();

  if (!N->isMachineOpcode() || !SU->NumSuccs)
    return false;

  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
  for (unsigned i = 0; i != NumDefs; ++i) {
    MVT VT = N->getSimpleValueType(i);
    if (!N->hasAnyUseOfValue(i))
      continue;
    unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
    if (RegPressure[RCId] >= RegLimit[RCId])
      return true;
  }
  return false;
}

// Compute the register pressure contribution by this instruction by count up
// for uses that are not live and down for defs. Only count register classes
// that are already under high pressure. As a side effect, compute the number of
// uses of registers that are already live.
//
// FIXME: This encompasses the logic in HighRegPressure and MayReduceRegPressure
// so could probably be factored.
int RegReductionPQBase::RegPressureDiff(SUnit *SU, unsigned &LiveUses) const {
  LiveUses = 0;
  int PDiff = 0;
  for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
       I != E; ++I) {
    if (I->isCtrl())
      continue;
    SUnit *PredSU = I->getSUnit();
    // NumRegDefsLeft is zero when enough uses of this node have been scheduled
    // to cover the number of registers defined (they are all live).
    if (PredSU->NumRegDefsLeft == 0) {
      if (PredSU->getNode()->isMachineOpcode())
        ++LiveUses;
      continue;
    }
    for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
         RegDefPos.IsValid(); RegDefPos.Advance()) {
      MVT VT = RegDefPos.GetValue();
      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
      if (RegPressure[RCId] >= RegLimit[RCId])
        ++PDiff;
    }
  }
  const SDNode *N = SU->getNode();

  if (!N || !N->isMachineOpcode() || !SU->NumSuccs)
    return PDiff;

  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
  for (unsigned i = 0; i != NumDefs; ++i) {
    MVT VT = N->getSimpleValueType(i);
    if (!N->hasAnyUseOfValue(i))
      continue;
    unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
    if (RegPressure[RCId] >= RegLimit[RCId])
      --PDiff;
  }
  return PDiff;
}

void RegReductionPQBase::scheduledNode(SUnit *SU) {
  if (!TracksRegPressure)
    return;

  if (!SU->getNode())
    return;

  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
       I != E; ++I) {
    if (I->isCtrl())
      continue;
    SUnit *PredSU = I->getSUnit();
    // NumRegDefsLeft is zero when enough uses of this node have been scheduled
    // to cover the number of registers defined (they are all live).
    if (PredSU->NumRegDefsLeft == 0) {
      continue;
    }
    // FIXME: The ScheduleDAG currently loses information about which of a
    // node's values is consumed by each dependence. Consequently, if the node
    // defines multiple register classes, we don't know which to pressurize
    // here. Instead the following loop consumes the register defs in an
    // arbitrary order. At least it handles the common case of clustered loads
    // to the same class. For precise liveness, each SDep needs to indicate the
    // result number. But that tightly couples the ScheduleDAG with the
    // SelectionDAG making updates tricky. A simpler hack would be to attach a
    // value type or register class to SDep.
    //
    // The most important aspect of register tracking is balancing the increase
    // here with the reduction further below. Note that this SU may use multiple
    // defs in PredSU. The can't be determined here, but we've already
    // compensated by reducing NumRegDefsLeft in PredSU during
    // ScheduleDAGSDNodes::AddSchedEdges.
    --PredSU->NumRegDefsLeft;
    unsigned SkipRegDefs = PredSU->NumRegDefsLeft;
    for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
         RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
      if (SkipRegDefs)
        continue;

      unsigned RCId, Cost;
      GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
      RegPressure[RCId] += Cost;
      break;
    }
  }

  // We should have this assert, but there may be dead SDNodes that never
  // materialize as SUnits, so they don't appear to generate liveness.
  //assert(SU->NumRegDefsLeft == 0 && "not all regdefs have scheduled uses");
  int SkipRegDefs = (int)SU->NumRegDefsLeft;
  for (ScheduleDAGSDNodes::RegDefIter RegDefPos(SU, scheduleDAG);
       RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
    if (SkipRegDefs > 0)
      continue;
    unsigned RCId, Cost;
    GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
    if (RegPressure[RCId] < Cost) {
      // Register pressure tracking is imprecise. This can happen. But we try
      // hard not to let it happen because it likely results in poor scheduling.
      DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") has too many regdefs\n");
      RegPressure[RCId] = 0;
    }
    else {
      RegPressure[RCId] -= Cost;
    }
  }
  dumpRegPressure();
}

void RegReductionPQBase::unscheduledNode(SUnit *SU) {
  if (!TracksRegPressure)
    return;

  const SDNode *N = SU->getNode();
  if (!N) return;

  if (!N->isMachineOpcode()) {
    if (N->getOpcode() != ISD::CopyToReg)
      return;
  } else {
    unsigned Opc = N->getMachineOpcode();
    if (Opc == TargetOpcode::EXTRACT_SUBREG ||
        Opc == TargetOpcode::INSERT_SUBREG ||
        Opc == TargetOpcode::SUBREG_TO_REG ||
        Opc == TargetOpcode::REG_SEQUENCE ||
        Opc == TargetOpcode::IMPLICIT_DEF)
      return;
  }

  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
       I != E; ++I) {
    if (I->isCtrl())
      continue;
    SUnit *PredSU = I->getSUnit();
    // NumSuccsLeft counts all deps. Don't compare it with NumSuccs which only
    // counts data deps.
    if (PredSU->NumSuccsLeft != PredSU->Succs.size())
      continue;
    const SDNode *PN = PredSU->getNode();
    if (!PN->isMachineOpcode()) {
      if (PN->getOpcode() == ISD::CopyFromReg) {
        MVT VT = PN->getSimpleValueType(0);
        unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
        RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
      }
      continue;
    }
    unsigned POpc = PN->getMachineOpcode();
    if (POpc == TargetOpcode::IMPLICIT_DEF)
      continue;
    if (POpc == TargetOpcode::EXTRACT_SUBREG ||
        POpc == TargetOpcode::INSERT_SUBREG ||
        POpc == TargetOpcode::SUBREG_TO_REG) {
      MVT VT = PN->getSimpleValueType(0);
      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
      RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
      continue;
    }
    unsigned NumDefs = TII->get(PN->getMachineOpcode()).getNumDefs();
    for (unsigned i = 0; i != NumDefs; ++i) {
      MVT VT = PN->getSimpleValueType(i);
      if (!PN->hasAnyUseOfValue(i))
        continue;
      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
      if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT))
        // Register pressure tracking is imprecise. This can happen.
        RegPressure[RCId] = 0;
      else
        RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
    }
  }

  // Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses()
  // may transfer data dependencies to CopyToReg.
  if (SU->NumSuccs && N->isMachineOpcode()) {
    unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
    for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
      MVT VT = N->getSimpleValueType(i);
      if (VT == MVT::Glue || VT == MVT::Other)
        continue;
      if (!N->hasAnyUseOfValue(i))
        continue;
      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
      RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
    }
  }

  dumpRegPressure();
}

//===----------------------------------------------------------------------===//
//           Dynamic Node Priority for Register Pressure Reduction
//===----------------------------------------------------------------------===//

/// closestSucc - Returns the scheduled cycle of the successor which is
/// closest to the current cycle.
static unsigned closestSucc(const SUnit *SU) {
  unsigned MaxHeight = 0;
  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
       I != E; ++I) {
    if (I->isCtrl()) continue;  // ignore chain succs
    unsigned Height = I->getSUnit()->getHeight();
    // If there are bunch of CopyToRegs stacked up, they should be considered
    // to be at the same position.
    if (I->getSUnit()->getNode() &&
        I->getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
      Height = closestSucc(I->getSUnit())+1;
    if (Height > MaxHeight)
      MaxHeight = Height;
  }
  return MaxHeight;
}

/// calcMaxScratches - Returns an cost estimate of the worse case requirement
/// for scratch registers, i.e. number of data dependencies.
static unsigned calcMaxScratches(const SUnit *SU) {
  unsigned Scratches = 0;
  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
       I != E; ++I) {
    if (I->isCtrl()) continue;  // ignore chain preds
    Scratches++;
  }
  return Scratches;
}

/// hasOnlyLiveInOpers - Return true if SU has only value predecessors that are
/// CopyFromReg from a virtual register.
static bool hasOnlyLiveInOpers(const SUnit *SU) {
  bool RetVal = false;
  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
       I != E; ++I) {
    if (I->isCtrl()) continue;
    const SUnit *PredSU = I->getSUnit();
    if (PredSU->getNode() &&
        PredSU->getNode()->getOpcode() == ISD::CopyFromReg) {
      unsigned Reg =
        cast<RegisterSDNode>(PredSU->getNode()->getOperand(1))->getReg();
      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
        RetVal = true;
        continue;
      }
    }
    return false;
  }
  return RetVal;
}

/// hasOnlyLiveOutUses - Return true if SU has only value successors that are
/// CopyToReg to a virtual register. This SU def is probably a liveout and
/// it has no other use. It should be scheduled closer to the terminator.
static bool hasOnlyLiveOutUses(const SUnit *SU) {
  bool RetVal = false;
  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
       I != E; ++I) {
    if (I->isCtrl()) continue;
    const SUnit *SuccSU = I->getSUnit();
    if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg) {
      unsigned Reg =
        cast<RegisterSDNode>(SuccSU->getNode()->getOperand(1))->getReg();
      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
        RetVal = true;
        continue;
      }
    }
    return false;
  }
  return RetVal;
}

// Set isVRegCycle for a node with only live in opers and live out uses. Also
// set isVRegCycle for its CopyFromReg operands.
//
// This is only relevant for single-block loops, in which case the VRegCycle
// node is likely an induction variable in which the operand and target virtual
// registers should be coalesced (e.g. pre/post increment values). Setting the
// isVRegCycle flag helps the scheduler prioritize other uses of the same
// CopyFromReg so that this node becomes the virtual register "kill". This
// avoids interference between the values live in and out of the block and
// eliminates a copy inside the loop.
static void initVRegCycle(SUnit *SU) {
  if (DisableSchedVRegCycle)
    return;

  if (!hasOnlyLiveInOpers(SU) || !hasOnlyLiveOutUses(SU))
    return;

  DEBUG(dbgs() << "VRegCycle: SU(" << SU->NodeNum << ")\n");

  SU->isVRegCycle = true;

  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
       I != E; ++I) {
    if (I->isCtrl()) continue;
    I->getSUnit()->isVRegCycle = true;
  }
}

// After scheduling the definition of a VRegCycle, clear the isVRegCycle flag of
// CopyFromReg operands. We should no longer penalize other uses of this VReg.
static void resetVRegCycle(SUnit *SU) {
  if (!SU->isVRegCycle)
    return;

  for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
       I != E; ++I) {
    if (I->isCtrl()) continue;  // ignore chain preds
    SUnit *PredSU = I->getSUnit();
    if (PredSU->isVRegCycle) {
      assert(PredSU->getNode()->getOpcode() == ISD::CopyFromReg &&
             "VRegCycle def must be CopyFromReg");
      I->getSUnit()->isVRegCycle = 0;
    }
  }
}

// Return true if this SUnit uses a CopyFromReg node marked as a VRegCycle. This
// means a node that defines the VRegCycle has not been scheduled yet.
static bool hasVRegCycleUse(const SUnit *SU) {
  // If this SU also defines the VReg, don't hoist it as a "use".
  if (SU->isVRegCycle)
    return false;

  for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
       I != E; ++I) {
    if (I->isCtrl()) continue;  // ignore chain preds
    if (I->getSUnit()->isVRegCycle &&
        I->getSUnit()->getNode()->getOpcode() == ISD::CopyFromReg) {
      DEBUG(dbgs() << "  VReg cycle use: SU (" << SU->NodeNum << ")\n");
      return true;
    }
  }
  return false;
}

// Check for either a dependence (latency) or resource (hazard) stall.
//
// Note: The ScheduleHazardRecognizer interface requires a non-const SU.
static bool BUHasStall(SUnit *SU, int Height, RegReductionPQBase *SPQ) {
  if ((int)SPQ->getCurCycle() < Height) return true;
  if (SPQ->getHazardRec()->getHazardType(SU, 0)
      != ScheduleHazardRecognizer::NoHazard)
    return true;
  return false;
}

// Return -1 if left has higher priority, 1 if right has higher priority.
// Return 0 if latency-based priority is equivalent.
static int BUCompareLatency(SUnit *left, SUnit *right, bool checkPref,
                            RegReductionPQBase *SPQ) {
  // Scheduling an instruction that uses a VReg whose postincrement has not yet
  // been scheduled will induce a copy. Model this as an extra cycle of latency.
  int LPenalty = hasVRegCycleUse(left) ? 1 : 0;
  int RPenalty = hasVRegCycleUse(right) ? 1 : 0;
  int LHeight = (int)left->getHeight() + LPenalty;
  int RHeight = (int)right->getHeight() + RPenalty;

  bool LStall = (!checkPref || left->SchedulingPref == Sched::ILP) &&
    BUHasStall(left, LHeight, SPQ);
  bool RStall = (!checkPref || right->SchedulingPref == Sched::ILP) &&
    BUHasStall(right, RHeight, SPQ);

  // If scheduling one of the node will cause a pipeline stall, delay it.
  // If scheduling either one of the node will cause a pipeline stall, sort
  // them according to their height.
  if (LStall) {
    if (!RStall)
      return 1;
    if (LHeight != RHeight)
      return LHeight > RHeight ? 1 : -1;
  } else if (RStall)
    return -1;

  // If either node is scheduling for latency, sort them by height/depth
  // and latency.
  if (!checkPref || (left->SchedulingPref == Sched::ILP ||
                     right->SchedulingPref == Sched::ILP)) {
    // If neither instruction stalls (!LStall && !RStall) and HazardRecognizer
    // is enabled, grouping instructions by cycle, then its height is already
    // covered so only its depth matters. We also reach this point if both stall
    // but have the same height.
    if (!SPQ->getHazardRec()->isEnabled()) {
      if (LHeight != RHeight)
        return LHeight > RHeight ? 1 : -1;
    }
    int LDepth = left->getDepth() - LPenalty;
    int RDepth = right->getDepth() - RPenalty;
    if (LDepth != RDepth) {
      DEBUG(dbgs() << "  Comparing latency of SU (" << left->NodeNum
            << ") depth " << LDepth << " vs SU (" << right->NodeNum
            << ") depth " << RDepth << "\n");
      return LDepth < RDepth ? 1 : -1;
    }
    if (left->Latency != right->Latency)
      return left->Latency > right->Latency ? 1 : -1;
  }
  return 0;
}

static bool BURRSort(SUnit *left, SUnit *right, RegReductionPQBase *SPQ) {
  // Schedule physical register definitions close to their use. This is
  // motivated by microarchitectures that can fuse cmp+jump macro-ops. But as
  // long as shortening physreg live ranges is generally good, we can defer
  // creating a subtarget hook.
  if (!DisableSchedPhysRegJoin) {
    bool LHasPhysReg = left->hasPhysRegDefs;
    bool RHasPhysReg = right->hasPhysRegDefs;
    if (LHasPhysReg != RHasPhysReg) {
      #ifndef NDEBUG
      const char *const PhysRegMsg[] = {" has no physreg"," defines a physreg"};
      #endif
      DEBUG(dbgs() << "  SU (" << left->NodeNum << ") "
            << PhysRegMsg[LHasPhysReg] << " SU(" << right->NodeNum << ") "
            << PhysRegMsg[RHasPhysReg] << "\n");
      return LHasPhysReg < RHasPhysReg;
    }
  }

  // Prioritize by Sethi-Ulmann number and push CopyToReg nodes down.
  unsigned LPriority = SPQ->getNodePriority(left);
  unsigned RPriority = SPQ->getNodePriority(right);

  // Be really careful about hoisting call operands above previous calls.
  // Only allows it if it would reduce register pressure.
  if (left->isCall && right->isCallOp) {
    unsigned RNumVals = right->getNode()->getNumValues();
    RPriority = (RPriority > RNumVals) ? (RPriority - RNumVals) : 0;
  }
  if (right->isCall && left->isCallOp) {
    unsigned LNumVals = left->getNode()->getNumValues();
    LPriority = (LPriority > LNumVals) ? (LPriority - LNumVals) : 0;
  }

  if (LPriority != RPriority)
    return LPriority > RPriority;

  // One or both of the nodes are calls and their sethi-ullman numbers are the
  // same, then keep source order.
  if (left->isCall || right->isCall) {
    unsigned LOrder = SPQ->getNodeOrdering(left);
    unsigned ROrder = SPQ->getNodeOrdering(right);

    // Prefer an ordering where the lower the non-zero order number, the higher
    // the preference.
    if ((LOrder || ROrder) && LOrder != ROrder)
      return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
  }

  // Try schedule def + use closer when Sethi-Ullman numbers are the same.
  // e.g.
  // t1 = op t2, c1
  // t3 = op t4, c2
  //
  // and the following instructions are both ready.
  // t2 = op c3
  // t4 = op c4
  //
  // Then schedule t2 = op first.
  // i.e.
  // t4 = op c4
  // t2 = op c3
  // t1 = op t2, c1
  // t3 = op t4, c2
  //
  // This creates more short live intervals.
  unsigned LDist = closestSucc(left);
  unsigned RDist = closestSucc(right);
  if (LDist != RDist)
    return LDist < RDist;

  // How many registers becomes live when the node is scheduled.
  unsigned LScratch = calcMaxScratches(left);
  unsigned RScratch = calcMaxScratches(right);
  if (LScratch != RScratch)
    return LScratch > RScratch;

  // Comparing latency against a call makes little sense unless the node
  // is register pressure-neutral.
  if ((left->isCall && RPriority > 0) || (right->isCall && LPriority > 0))
    return (left->NodeQueueId > right->NodeQueueId);

  // Do not compare latencies when one or both of the nodes are calls.
  if (!DisableSchedCycles &&
      !(left->isCall || right->isCall)) {
    int result = BUCompareLatency(left, right, false /*checkPref*/, SPQ);
    if (result != 0)
      return result > 0;
  }
  else {
    if (left->getHeight() != right->getHeight())
      return left->getHeight() > right->getHeight();

    if (left->getDepth() != right->getDepth())
      return left->getDepth() < right->getDepth();
  }

  assert(left->NodeQueueId && right->NodeQueueId &&
         "NodeQueueId cannot be zero");
  return (left->NodeQueueId > right->NodeQueueId);
}

// Bottom up
bool bu_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
  if (int res = checkSpecialNodes(left, right))
    return res > 0;

  return BURRSort(left, right, SPQ);
}

// Source order, otherwise bottom up.
bool src_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
  if (int res = checkSpecialNodes(left, right))
    return res > 0;

  unsigned LOrder = SPQ->getNodeOrdering(left);
  unsigned ROrder = SPQ->getNodeOrdering(right);

  // Prefer an ordering where the lower the non-zero order number, the higher
  // the preference.
  if ((LOrder || ROrder) && LOrder != ROrder)
    return LOrder != 0 && (LOrder < ROrder || ROrder == 0);

  return BURRSort(left, right, SPQ);
}

// If the time between now and when the instruction will be ready can cover
// the spill code, then avoid adding it to the ready queue. This gives long
// stalls highest priority and allows hoisting across calls. It should also
// speed up processing the available queue.
bool hybrid_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
  static const unsigned ReadyDelay = 3;

  if (SPQ->MayReduceRegPressure(SU)) return true;

  if (SU->getHeight() > (CurCycle + ReadyDelay)) return false;

  if (SPQ->getHazardRec()->getHazardType(SU, -ReadyDelay)
      != ScheduleHazardRecognizer::NoHazard)
    return false;

  return true;
}

// Return true if right should be scheduled with higher priority than left.
bool hybrid_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
  if (int res = checkSpecialNodes(left, right))
    return res > 0;

  if (left->isCall || right->isCall)
    // No way to compute latency of calls.
    return BURRSort(left, right, SPQ);

  bool LHigh = SPQ->HighRegPressure(left);
  bool RHigh = SPQ->HighRegPressure(right);
  // Avoid causing spills. If register pressure is high, schedule for
  // register pressure reduction.
  if (LHigh && !RHigh) {
    DEBUG(dbgs() << "  pressure SU(" << left->NodeNum << ") > SU("
          << right->NodeNum << ")\n");
    return true;
  }
  else if (!LHigh && RHigh) {
    DEBUG(dbgs() << "  pressure SU(" << right->NodeNum << ") > SU("
          << left->NodeNum << ")\n");
    return false;
  }
  if (!LHigh && !RHigh) {
    int result = BUCompareLatency(left, right, true /*checkPref*/, SPQ);
    if (result != 0)
      return result > 0;
  }
  return BURRSort(left, right, SPQ);
}

// Schedule as many instructions in each cycle as possible. So don't make an
// instruction available unless it is ready in the current cycle.
bool ilp_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
  if (SU->getHeight() > CurCycle) return false;

  if (SPQ->getHazardRec()->getHazardType(SU, 0)
      != ScheduleHazardRecognizer::NoHazard)
    return false;

  return true;
}

static bool canEnableCoalescing(SUnit *SU) {
  unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
  if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
    // CopyToReg should be close to its uses to facilitate coalescing and
    // avoid spilling.
    return true;

  if (Opc == TargetOpcode::EXTRACT_SUBREG ||
      Opc == TargetOpcode::SUBREG_TO_REG ||
      Opc == TargetOpcode::INSERT_SUBREG)
    // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
    // close to their uses to facilitate coalescing.
    return true;

  if (SU->NumPreds == 0 && SU->NumSuccs != 0)
    // If SU does not have a register def, schedule it close to its uses
    // because it does not lengthen any live ranges.
    return true;

  return false;
}

// list-ilp is currently an experimental scheduler that allows various
// heuristics to be enabled prior to the normal register reduction logic.
bool ilp_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
  if (int res = checkSpecialNodes(left, right))
    return res > 0;

  if (left->isCall || right->isCall)
    // No way to compute latency of calls.
    return BURRSort(left, right, SPQ);

  unsigned LLiveUses = 0, RLiveUses = 0;
  int LPDiff = 0, RPDiff = 0;
  if (!DisableSchedRegPressure || !DisableSchedLiveUses) {
    LPDiff = SPQ->RegPressureDiff(left, LLiveUses);
    RPDiff = SPQ->RegPressureDiff(right, RLiveUses);
  }
  if (!DisableSchedRegPressure && LPDiff != RPDiff) {
    DEBUG(dbgs() << "RegPressureDiff SU(" << left->NodeNum << "): " << LPDiff
          << " != SU(" << right->NodeNum << "): " << RPDiff << "\n");
    return LPDiff > RPDiff;
  }

  if (!DisableSchedRegPressure && (LPDiff > 0 || RPDiff > 0)) {
    bool LReduce = canEnableCoalescing(left);
    bool RReduce = canEnableCoalescing(right);
    if (LReduce && !RReduce) return false;
    if (RReduce && !LReduce) return true;
  }

  if (!DisableSchedLiveUses && (LLiveUses != RLiveUses)) {
    DEBUG(dbgs() << "Live uses SU(" << left->NodeNum << "): " << LLiveUses
          << " != SU(" << right->NodeNum << "): " << RLiveUses << "\n");
    return LLiveUses < RLiveUses;
  }

  if (!DisableSchedStalls) {
    bool LStall = BUHasStall(left, left->getHeight(), SPQ);
    bool RStall = BUHasStall(right, right->getHeight(), SPQ);
    if (LStall != RStall)
      return left->getHeight() > right->getHeight();
  }

  if (!DisableSchedCriticalPath) {
    int spread = (int)left->getDepth() - (int)right->getDepth();
    if (std::abs(spread) > MaxReorderWindow) {
      DEBUG(dbgs() << "Depth of SU(" << left->NodeNum << "): "
            << left->getDepth() << " != SU(" << right->NodeNum << "): "
            << right->getDepth() << "\n");
      return left->getDepth() < right->getDepth();
    }
  }

  if (!DisableSchedHeight && left->getHeight() != right->getHeight()) {
    int spread = (int)left->getHeight() - (int)right->getHeight();
    if (std::abs(spread) > MaxReorderWindow)
      return left->getHeight() > right->getHeight();
  }

  return BURRSort(left, right, SPQ);
}

void RegReductionPQBase::initNodes(std::vector<SUnit> &sunits) {
  SUnits = &sunits;
  // Add pseudo dependency edges for two-address nodes.
  if (!Disable2AddrHack)
    AddPseudoTwoAddrDeps();
  // Reroute edges to nodes with multiple uses.
  if (!TracksRegPressure && !SrcOrder)
    PrescheduleNodesWithMultipleUses();
  // Calculate node priorities.
  CalculateSethiUllmanNumbers();

  // For single block loops, mark nodes that look like canonical IV increments.
  if (scheduleDAG->BB->isSuccessor(scheduleDAG->BB)) {
    for (unsigned i = 0, e = sunits.size(); i != e; ++i) {
      initVRegCycle(&sunits[i]);
    }
  }
}

//===----------------------------------------------------------------------===//
//                    Preschedule for Register Pressure
//===----------------------------------------------------------------------===//

bool RegReductionPQBase::canClobber(const SUnit *SU, const SUnit *Op) {
  if (SU->isTwoAddress) {
    unsigned Opc = SU->getNode()->getMachineOpcode();
    const MCInstrDesc &MCID = TII->get(Opc);
    unsigned NumRes = MCID.getNumDefs();
    unsigned NumOps = MCID.getNumOperands() - NumRes;
    for (unsigned i = 0; i != NumOps; ++i) {
      if (MCID.getOperandConstraint(i+NumRes, MCOI::TIED_TO) != -1) {
        SDNode *DU = SU->getNode()->getOperand(i).getNode();
        if (DU->getNodeId() != -1 &&
            Op->OrigNode == &(*SUnits)[DU->getNodeId()])
          return true;
      }
    }
  }
  return false;
}

/// canClobberReachingPhysRegUse - True if SU would clobber one of it's
/// successor's explicit physregs whose definition can reach DepSU.
/// i.e. DepSU should not be scheduled above SU.
static bool canClobberReachingPhysRegUse(const SUnit *DepSU, const SUnit *SU,
                                         ScheduleDAGRRList *scheduleDAG,
                                         const TargetInstrInfo *TII,
                                         const TargetRegisterInfo *TRI) {
  const uint16_t *ImpDefs
    = TII->get(SU->getNode()->getMachineOpcode()).getImplicitDefs();
  const uint32_t *RegMask = getNodeRegMask(SU->getNode());
  if(!ImpDefs && !RegMask)
    return false;

  for (SUnit::const_succ_iterator SI = SU->Succs.begin(), SE = SU->Succs.end();
       SI != SE; ++SI) {
    SUnit *SuccSU = SI->getSUnit();
    for (SUnit::const_pred_iterator PI = SuccSU->Preds.begin(),
           PE = SuccSU->Preds.end(); PI != PE; ++PI) {
      if (!PI->isAssignedRegDep())
        continue;

      if (RegMask && MachineOperand::clobbersPhysReg(RegMask, PI->getReg()) &&
          scheduleDAG->IsReachable(DepSU, PI->getSUnit()))
        return true;

      if (ImpDefs)
        for (const uint16_t *ImpDef = ImpDefs; *ImpDef; ++ImpDef)
          // Return true if SU clobbers this physical register use and the
          // definition of the register reaches from DepSU. IsReachable queries
          // a topological forward sort of the DAG (following the successors).
          if (TRI->regsOverlap(*ImpDef, PI->getReg()) &&
              scheduleDAG->IsReachable(DepSU, PI->getSUnit()))
            return true;
    }
  }
  return false;
}

/// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
/// physical register defs.
static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
                                  const TargetInstrInfo *TII,
                                  const TargetRegisterInfo *TRI) {
  SDNode *N = SuccSU->getNode();
  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
  const uint16_t *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
  assert(ImpDefs && "Caller should check hasPhysRegDefs");
  for (const SDNode *SUNode = SU->getNode(); SUNode;
       SUNode = SUNode->getGluedNode()) {
    if (!SUNode->isMachineOpcode())
      continue;
    const uint16_t *SUImpDefs =
      TII->get(SUNode->getMachineOpcode()).getImplicitDefs();
    const uint32_t *SURegMask = getNodeRegMask(SUNode);
    if (!SUImpDefs && !SURegMask)
      continue;
    for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
      EVT VT = N->getValueType(i);
      if (VT == MVT::Glue || VT == MVT::Other)
        continue;
      if (!N->hasAnyUseOfValue(i))
        continue;
      unsigned Reg = ImpDefs[i - NumDefs];
      if (SURegMask && MachineOperand::clobbersPhysReg(SURegMask, Reg))
        return true;
      if (!SUImpDefs)
        continue;
      for (;*SUImpDefs; ++SUImpDefs) {
        unsigned SUReg = *SUImpDefs;
        if (TRI->regsOverlap(Reg, SUReg))
          return true;
      }
    }
  }
  return false;
}

/// PrescheduleNodesWithMultipleUses - Nodes with multiple uses
/// are not handled well by the general register pressure reduction
/// heuristics. When presented with code like this:
///
///      N
///    / |
///   /  |
///  U  store
///  |
/// ...
///
/// the heuristics tend to push the store up, but since the
/// operand of the store has another use (U), this would increase
/// the length of that other use (the U->N edge).
///
/// This function transforms code like the above to route U's
/// dependence through the store when possible, like this:
///
///      N
///      ||
///      ||
///     store
///       |
///       U
///       |
///      ...
///
/// This results in the store being scheduled immediately
/// after N, which shortens the U->N live range, reducing
/// register pressure.
///
void RegReductionPQBase::PrescheduleNodesWithMultipleUses() {
  // Visit all the nodes in topological order, working top-down.
  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
    SUnit *SU = &(*SUnits)[i];
    // For now, only look at nodes with no data successors, such as stores.
    // These are especially important, due to the heuristics in
    // getNodePriority for nodes with no data successors.
    if (SU->NumSuccs != 0)
      continue;
    // For now, only look at nodes with exactly one data predecessor.
    if (SU->NumPreds != 1)
      continue;
    // Avoid prescheduling copies to virtual registers, which don't behave
    // like other nodes from the perspective of scheduling heuristics.
    if (SDNode *N = SU->getNode())
      if (N->getOpcode() == ISD::CopyToReg &&
          TargetRegisterInfo::isVirtualRegister
            (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
        continue;

    // Locate the single data predecessor.
    SUnit *PredSU = 0;
    for (SUnit::const_pred_iterator II = SU->Preds.begin(),
         EE = SU->Preds.end(); II != EE; ++II)
      if (!II->isCtrl()) {
        PredSU = II->getSUnit();
        break;
      }
    assert(PredSU);

    // Don't rewrite edges that carry physregs, because that requires additional
    // support infrastructure.
    if (PredSU->hasPhysRegDefs)
      continue;
    // Short-circuit the case where SU is PredSU's only data successor.
    if (PredSU->NumSuccs == 1)
      continue;
    // Avoid prescheduling to copies from virtual registers, which don't behave
    // like other nodes from the perspective of scheduling heuristics.
    if (SDNode *N = SU->getNode())
      if (N->getOpcode() == ISD::CopyFromReg &&
          TargetRegisterInfo::isVirtualRegister
            (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
        continue;

    // Perform checks on the successors of PredSU.
    for (SUnit::const_succ_iterator II = PredSU->Succs.begin(),
         EE = PredSU->Succs.end(); II != EE; ++II) {
      SUnit *PredSuccSU = II->getSUnit();
      if (PredSuccSU == SU) continue;
      // If PredSU has another successor with no data successors, for
      // now don't attempt to choose either over the other.
      if (PredSuccSU->NumSuccs == 0)
        goto outer_loop_continue;
      // Don't break physical register dependencies.
      if (SU->hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs)
        if (canClobberPhysRegDefs(PredSuccSU, SU, TII, TRI))
          goto outer_loop_continue;
      // Don't introduce graph cycles.
      if (scheduleDAG->IsReachable(SU, PredSuccSU))
        goto outer_loop_continue;
    }

    // Ok, the transformation is safe and the heuristics suggest it is
    // profitable. Update the graph.
    DEBUG(dbgs() << "    Prescheduling SU #" << SU->NodeNum
                 << " next to PredSU #" << PredSU->NodeNum
                 << " to guide scheduling in the presence of multiple uses\n");
    for (unsigned i = 0; i != PredSU->Succs.size(); ++i) {
      SDep Edge = PredSU->Succs[i];
      assert(!Edge.isAssignedRegDep());
      SUnit *SuccSU = Edge.getSUnit();
      if (SuccSU != SU) {
        Edge.setSUnit(PredSU);
        scheduleDAG->RemovePred(SuccSU, Edge);
        scheduleDAG->AddPred(SU, Edge);
        Edge.setSUnit(SU);
        scheduleDAG->AddPred(SuccSU, Edge);
        --i;
      }
    }
  outer_loop_continue:;
  }
}

/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
/// it as a def&use operand. Add a pseudo control edge from it to the other
/// node (if it won't create a cycle) so the two-address one will be scheduled
/// first (lower in the schedule). If both nodes are two-address, favor the
/// one that has a CopyToReg use (more likely to be a loop induction update).
/// If both are two-address, but one is commutable while the other is not
/// commutable, favor the one that's not commutable.
void RegReductionPQBase::AddPseudoTwoAddrDeps() {
  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
    SUnit *SU = &(*SUnits)[i];
    if (!SU->isTwoAddress)
      continue;

    SDNode *Node = SU->getNode();
    if (!Node || !Node->isMachineOpcode() || SU->getNode()->getGluedNode())
      continue;

    bool isLiveOut = hasOnlyLiveOutUses(SU);
    unsigned Opc = Node->getMachineOpcode();
    const MCInstrDesc &MCID = TII->get(Opc);
    unsigned NumRes = MCID.getNumDefs();
    unsigned NumOps = MCID.getNumOperands() - NumRes;
    for (unsigned j = 0; j != NumOps; ++j) {
      if (MCID.getOperandConstraint(j+NumRes, MCOI::TIED_TO) == -1)
        continue;
      SDNode *DU = SU->getNode()->getOperand(j).getNode();
      if (DU->getNodeId() == -1)
        continue;
      const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
      if (!DUSU) continue;
      for (SUnit::const_succ_iterator I = DUSU->Succs.begin(),
           E = DUSU->Succs.end(); I != E; ++I) {
        if (I->isCtrl()) continue;
        SUnit *SuccSU = I->getSUnit();
        if (SuccSU == SU)
          continue;
        // Be conservative. Ignore if nodes aren't at roughly the same
        // depth and height.
        if (SuccSU->getHeight() < SU->getHeight() &&
            (SU->getHeight() - SuccSU->getHeight()) > 1)
          continue;
        // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge
        // constrains whatever is using the copy, instead of the copy
        // itself. In the case that the copy is coalesced, this
        // preserves the intent of the pseudo two-address heurietics.
        while (SuccSU->Succs.size() == 1 &&
               SuccSU->getNode()->isMachineOpcode() &&
               SuccSU->getNode()->getMachineOpcode() ==
                 TargetOpcode::COPY_TO_REGCLASS)
          SuccSU = SuccSU->Succs.front().getSUnit();
        // Don't constrain non-instruction nodes.
        if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
          continue;
        // Don't constrain nodes with physical register defs if the
        // predecessor can clobber them.
        if (SuccSU->hasPhysRegDefs && SU->hasPhysRegClobbers) {
          if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
            continue;
        }
        // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG;
        // these may be coalesced away. We want them close to their uses.
        unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
        if (SuccOpc == TargetOpcode::EXTRACT_SUBREG ||
            SuccOpc == TargetOpcode::INSERT_SUBREG ||
            SuccOpc == TargetOpcode::SUBREG_TO_REG)
          continue;
        if (!canClobberReachingPhysRegUse(SuccSU, SU, scheduleDAG, TII, TRI) &&
            (!canClobber(SuccSU, DUSU) ||
             (isLiveOut && !hasOnlyLiveOutUses(SuccSU)) ||
             (!SU->isCommutable && SuccSU->isCommutable)) &&
            !scheduleDAG->IsReachable(SuccSU, SU)) {
          DEBUG(dbgs() << "    Adding a pseudo-two-addr edge from SU #"
                       << SU->NodeNum << " to SU #" << SuccSU->NodeNum << "\n");
          scheduleDAG->AddPred(SU, SDep(SuccSU, SDep::Artificial));
        }
      }
    }
  }
}

//===----------------------------------------------------------------------===//
//                         Public Constructor Functions
//===----------------------------------------------------------------------===//

llvm::ScheduleDAGSDNodes *
llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
                                 CodeGenOpt::Level OptLevel) {
  const TargetMachine &TM = IS->TM;
  const TargetInstrInfo *TII = TM.getInstrInfo();
  const TargetRegisterInfo *TRI = TM.getRegisterInfo();

  BURegReductionPriorityQueue *PQ =
    new BURegReductionPriorityQueue(*IS->MF, false, false, TII, TRI, 0);
  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
  PQ->setScheduleDAG(SD);
  return SD;
}

llvm::ScheduleDAGSDNodes *
llvm::createSourceListDAGScheduler(SelectionDAGISel *IS,
                                   CodeGenOpt::Level OptLevel) {
  const TargetMachine &TM = IS->TM;
  const TargetInstrInfo *TII = TM.getInstrInfo();
  const TargetRegisterInfo *TRI = TM.getRegisterInfo();

  SrcRegReductionPriorityQueue *PQ =
    new SrcRegReductionPriorityQueue(*IS->MF, false, true, TII, TRI, 0);
  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
  PQ->setScheduleDAG(SD);
  return SD;
}

llvm::ScheduleDAGSDNodes *
llvm::createHybridListDAGScheduler(SelectionDAGISel *IS,
                                   CodeGenOpt::Level OptLevel) {
  const TargetMachine &TM = IS->TM;
  const TargetInstrInfo *TII = TM.getInstrInfo();
  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
  const TargetLowering *TLI = &IS->getTargetLowering();

  HybridBURRPriorityQueue *PQ =
    new HybridBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);

  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
  PQ->setScheduleDAG(SD);
  return SD;
}

llvm::ScheduleDAGSDNodes *
llvm::createILPListDAGScheduler(SelectionDAGISel *IS,
                                CodeGenOpt::Level OptLevel) {
  const TargetMachine &TM = IS->TM;
  const TargetInstrInfo *TII = TM.getInstrInfo();
  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
  const TargetLowering *TLI = &IS->getTargetLowering();

  ILPBURRPriorityQueue *PQ =
    new ILPBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
  PQ->setScheduleDAG(SD);
  return SD;
}