1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
|
//===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SelectionDAG::LegalizeVectors method.
//
// The vector legalizer looks for vector operations which might need to be
// scalarized and legalizes them. This is a separate step from Legalize because
// scalarizing can introduce illegal types. For example, suppose we have an
// ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition
// on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
// operation, which introduces nodes with the illegal type i64 which must be
// expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
// the operation must be unrolled, which introduces nodes with the illegal
// type i8 which must be promoted.
//
// This does not legalize vector manipulations like ISD::BUILD_VECTOR,
// or operations that happen to take a vector which are custom-lowered;
// the legalization for such operations never produces nodes
// with illegal types, so it's okay to put off legalizing them until
// SelectionDAG::Legalize runs.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Target/TargetLowering.h"
using namespace llvm;
namespace {
class VectorLegalizer {
SelectionDAG& DAG;
const TargetLowering &TLI;
bool Changed; // Keep track of whether anything changed
/// LegalizedNodes - For nodes that are of legal width, and that have more
/// than one use, this map indicates what regularized operand to use. This
/// allows us to avoid legalizing the same thing more than once.
SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
// Adds a node to the translation cache
void AddLegalizedOperand(SDValue From, SDValue To) {
LegalizedNodes.insert(std::make_pair(From, To));
// If someone requests legalization of the new node, return itself.
if (From != To)
LegalizedNodes.insert(std::make_pair(To, To));
}
// Legalizes the given node
SDValue LegalizeOp(SDValue Op);
// Assuming the node is legal, "legalize" the results
SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
// Implements unrolling a VSETCC.
SDValue UnrollVSETCC(SDValue Op);
// Implements expansion for FNEG; falls back to UnrollVectorOp if FSUB
// isn't legal.
// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
// SINT_TO_FLOAT and SHR on vectors isn't legal.
SDValue ExpandUINT_TO_FLOAT(SDValue Op);
// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
SDValue ExpandSEXTINREG(SDValue Op);
// Implement vselect in terms of XOR, AND, OR when blend is not supported
// by the target.
SDValue ExpandVSELECT(SDValue Op);
SDValue ExpandSELECT(SDValue Op);
SDValue ExpandLoad(SDValue Op);
SDValue ExpandStore(SDValue Op);
SDValue ExpandFNEG(SDValue Op);
// Implements vector promotion; this is essentially just bitcasting the
// operands to a different type and bitcasting the result back to the
// original type.
SDValue PromoteVectorOp(SDValue Op);
// Implements [SU]INT_TO_FP vector promotion; this is a [zs]ext of the input
// operand to the next size up.
SDValue PromoteVectorOpINT_TO_FP(SDValue Op);
public:
bool Run();
VectorLegalizer(SelectionDAG& dag) :
DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {}
};
bool VectorLegalizer::Run() {
// Before we start legalizing vector nodes, check if there are any vectors.
bool HasVectors = false;
for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I) {
// Check if the values of the nodes contain vectors. We don't need to check
// the operands because we are going to check their values at some point.
for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
J != E; ++J)
HasVectors |= J->isVector();
// If we found a vector node we can start the legalization.
if (HasVectors)
break;
}
// If this basic block has no vectors then no need to legalize vectors.
if (!HasVectors)
return false;
// The legalize process is inherently a bottom-up recursive process (users
// legalize their uses before themselves). Given infinite stack space, we
// could just start legalizing on the root and traverse the whole graph. In
// practice however, this causes us to run out of stack space on large basic
// blocks. To avoid this problem, compute an ordering of the nodes where each
// node is only legalized after all of its operands are legalized.
DAG.AssignTopologicalOrder();
for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I)
LegalizeOp(SDValue(I, 0));
// Finally, it's possible the root changed. Get the new root.
SDValue OldRoot = DAG.getRoot();
assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
DAG.setRoot(LegalizedNodes[OldRoot]);
LegalizedNodes.clear();
// Remove dead nodes now.
DAG.RemoveDeadNodes();
return Changed;
}
SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
// Generic legalization: just pass the operand through.
for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
return Result.getValue(Op.getResNo());
}
SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
// Note that LegalizeOp may be reentered even from single-use nodes, which
// means that we always must cache transformed nodes.
DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
if (I != LegalizedNodes.end()) return I->second;
SDNode* Node = Op.getNode();
// Legalize the operands
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
Ops.push_back(LegalizeOp(Node->getOperand(i)));
SDValue Result =
SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops.data(), Ops.size()), 0);
if (Op.getOpcode() == ISD::LOAD) {
LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
ISD::LoadExtType ExtType = LD->getExtensionType();
if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) {
if (TLI.isLoadExtLegal(LD->getExtensionType(), LD->getMemoryVT()))
return TranslateLegalizeResults(Op, Result);
Changed = true;
return LegalizeOp(ExpandLoad(Op));
}
} else if (Op.getOpcode() == ISD::STORE) {
StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
EVT StVT = ST->getMemoryVT();
MVT ValVT = ST->getValue().getSimpleValueType();
if (StVT.isVector() && ST->isTruncatingStore())
switch (TLI.getTruncStoreAction(ValVT, StVT.getSimpleVT())) {
default: llvm_unreachable("This action is not supported yet!");
case TargetLowering::Legal:
return TranslateLegalizeResults(Op, Result);
case TargetLowering::Custom:
Changed = true;
return LegalizeOp(TLI.LowerOperation(Result, DAG));
case TargetLowering::Expand:
Changed = true;
return LegalizeOp(ExpandStore(Op));
}
}
bool HasVectorValue = false;
for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end();
J != E;
++J)
HasVectorValue |= J->isVector();
if (!HasVectorValue)
return TranslateLegalizeResults(Op, Result);
EVT QueryType;
switch (Op.getOpcode()) {
default:
return TranslateLegalizeResults(Op, Result);
case ISD::ADD:
case ISD::SUB:
case ISD::MUL:
case ISD::SDIV:
case ISD::UDIV:
case ISD::SREM:
case ISD::UREM:
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::FDIV:
case ISD::FREM:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
case ISD::ROTL:
case ISD::ROTR:
case ISD::CTLZ:
case ISD::CTTZ:
case ISD::CTLZ_ZERO_UNDEF:
case ISD::CTTZ_ZERO_UNDEF:
case ISD::CTPOP:
case ISD::SELECT:
case ISD::VSELECT:
case ISD::SELECT_CC:
case ISD::SETCC:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND:
case ISD::TRUNCATE:
case ISD::SIGN_EXTEND:
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::FNEG:
case ISD::FABS:
case ISD::FSQRT:
case ISD::FSIN:
case ISD::FCOS:
case ISD::FPOWI:
case ISD::FPOW:
case ISD::FLOG:
case ISD::FLOG2:
case ISD::FLOG10:
case ISD::FEXP:
case ISD::FEXP2:
case ISD::FCEIL:
case ISD::FTRUNC:
case ISD::FRINT:
case ISD::FNEARBYINT:
case ISD::FFLOOR:
case ISD::FP_ROUND:
case ISD::FP_EXTEND:
case ISD::FMA:
case ISD::SIGN_EXTEND_INREG:
QueryType = Node->getValueType(0);
break;
case ISD::FP_ROUND_INREG:
QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT();
break;
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
QueryType = Node->getOperand(0).getValueType();
break;
}
switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) {
case TargetLowering::Promote:
switch (Op.getOpcode()) {
default:
// "Promote" the operation by bitcasting
Result = PromoteVectorOp(Op);
Changed = true;
break;
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
// "Promote" the operation by extending the operand.
Result = PromoteVectorOpINT_TO_FP(Op);
Changed = true;
break;
}
break;
case TargetLowering::Legal: break;
case TargetLowering::Custom: {
SDValue Tmp1 = TLI.LowerOperation(Op, DAG);
if (Tmp1.getNode()) {
Result = Tmp1;
break;
}
// FALL THROUGH
}
case TargetLowering::Expand:
if (Node->getOpcode() == ISD::SIGN_EXTEND_INREG)
Result = ExpandSEXTINREG(Op);
else if (Node->getOpcode() == ISD::VSELECT)
Result = ExpandVSELECT(Op);
else if (Node->getOpcode() == ISD::SELECT)
Result = ExpandSELECT(Op);
else if (Node->getOpcode() == ISD::UINT_TO_FP)
Result = ExpandUINT_TO_FLOAT(Op);
else if (Node->getOpcode() == ISD::FNEG)
Result = ExpandFNEG(Op);
else if (Node->getOpcode() == ISD::SETCC)
Result = UnrollVSETCC(Op);
else
Result = DAG.UnrollVectorOp(Op.getNode());
break;
}
// Make sure that the generated code is itself legal.
if (Result != Op) {
Result = LegalizeOp(Result);
Changed = true;
}
// Note that LegalizeOp may be reentered even from single-use nodes, which
// means that we always must cache transformed nodes.
AddLegalizedOperand(Op, Result);
return Result;
}
SDValue VectorLegalizer::PromoteVectorOp(SDValue Op) {
// Vector "promotion" is basically just bitcasting and doing the operation
// in a different type. For example, x86 promotes ISD::AND on v2i32 to
// v1i64.
MVT VT = Op.getSimpleValueType();
assert(Op.getNode()->getNumValues() == 1 &&
"Can't promote a vector with multiple results!");
MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
DebugLoc dl = Op.getDebugLoc();
SmallVector<SDValue, 4> Operands(Op.getNumOperands());
for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
if (Op.getOperand(j).getValueType().isVector())
Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
else
Operands[j] = Op.getOperand(j);
}
Op = DAG.getNode(Op.getOpcode(), dl, NVT, &Operands[0], Operands.size());
return DAG.getNode(ISD::BITCAST, dl, VT, Op);
}
SDValue VectorLegalizer::PromoteVectorOpINT_TO_FP(SDValue Op) {
// INT_TO_FP operations may require the input operand be promoted even
// when the type is otherwise legal.
EVT VT = Op.getOperand(0).getValueType();
assert(Op.getNode()->getNumValues() == 1 &&
"Can't promote a vector with multiple results!");
// Normal getTypeToPromoteTo() doesn't work here, as that will promote
// by widening the vector w/ the same element width and twice the number
// of elements. We want the other way around, the same number of elements,
// each twice the width.
//
// Increase the bitwidth of the element to the next pow-of-two
// (which is greater than 8 bits).
unsigned NumElts = VT.getVectorNumElements();
EVT EltVT = VT.getVectorElementType();
EltVT = EVT::getIntegerVT(*DAG.getContext(), 2 * EltVT.getSizeInBits());
assert(EltVT.isSimple() && "Promoting to a non-simple vector type!");
// Build a new vector type and check if it is legal.
MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
DebugLoc dl = Op.getDebugLoc();
SmallVector<SDValue, 4> Operands(Op.getNumOperands());
unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND :
ISD::SIGN_EXTEND;
for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
if (Op.getOperand(j).getValueType().isVector())
Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j));
else
Operands[j] = Op.getOperand(j);
}
return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), &Operands[0],
Operands.size());
}
SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
DebugLoc dl = Op.getDebugLoc();
LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
SDValue Chain = LD->getChain();
SDValue BasePTR = LD->getBasePtr();
EVT SrcVT = LD->getMemoryVT();
ISD::LoadExtType ExtType = LD->getExtensionType();
SmallVector<SDValue, 8> Vals;
SmallVector<SDValue, 8> LoadChains;
unsigned NumElem = SrcVT.getVectorNumElements();
EVT SrcEltVT = SrcVT.getScalarType();
EVT DstEltVT = Op.getNode()->getValueType(0).getScalarType();
if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
// When elements in a vector is not byte-addressable, we cannot directly
// load each element by advancing pointer, which could only address bytes.
// Instead, we load all significant words, mask bits off, and concatenate
// them to form each element. Finally, they are extended to destination
// scalar type to build the destination vector.
EVT WideVT = TLI.getPointerTy();
assert(WideVT.isRound() &&
"Could not handle the sophisticated case when the widest integer is"
" not power of 2.");
assert(WideVT.bitsGE(SrcEltVT) &&
"Type is not legalized?");
unsigned WideBytes = WideVT.getStoreSize();
unsigned Offset = 0;
unsigned RemainingBytes = SrcVT.getStoreSize();
SmallVector<SDValue, 8> LoadVals;
while (RemainingBytes > 0) {
SDValue ScalarLoad;
unsigned LoadBytes = WideBytes;
if (RemainingBytes >= LoadBytes) {
ScalarLoad = DAG.getLoad(WideVT, dl, Chain, BasePTR,
LD->getPointerInfo().getWithOffset(Offset),
LD->isVolatile(), LD->isNonTemporal(),
LD->isInvariant(), LD->getAlignment());
} else {
EVT LoadVT = WideVT;
while (RemainingBytes < LoadBytes) {
LoadBytes >>= 1; // Reduce the load size by half.
LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
}
ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
LD->getPointerInfo().getWithOffset(Offset),
LoadVT, LD->isVolatile(),
LD->isNonTemporal(), LD->getAlignment());
}
RemainingBytes -= LoadBytes;
Offset += LoadBytes;
BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
DAG.getIntPtrConstant(LoadBytes));
LoadVals.push_back(ScalarLoad.getValue(0));
LoadChains.push_back(ScalarLoad.getValue(1));
}
// Extract bits, pack and extend/trunc them into destination type.
unsigned SrcEltBits = SrcEltVT.getSizeInBits();
SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, WideVT);
unsigned BitOffset = 0;
unsigned WideIdx = 0;
unsigned WideBits = WideVT.getSizeInBits();
for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
SDValue Lo, Hi, ShAmt;
if (BitOffset < WideBits) {
ShAmt = DAG.getConstant(BitOffset, TLI.getShiftAmountTy(WideVT));
Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
}
BitOffset += SrcEltBits;
if (BitOffset >= WideBits) {
WideIdx++;
Offset -= WideBits;
if (Offset > 0) {
ShAmt = DAG.getConstant(SrcEltBits - Offset,
TLI.getShiftAmountTy(WideVT));
Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask);
}
}
if (Hi.getNode())
Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);
switch (ExtType) {
default: llvm_unreachable("Unknown extended-load op!");
case ISD::EXTLOAD:
Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
break;
case ISD::ZEXTLOAD:
Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
break;
case ISD::SEXTLOAD:
ShAmt = DAG.getConstant(WideBits - SrcEltBits,
TLI.getShiftAmountTy(WideVT));
Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
break;
}
Vals.push_back(Lo);
}
} else {
unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8;
for (unsigned Idx=0; Idx<NumElem; Idx++) {
SDValue ScalarLoad = DAG.getExtLoad(ExtType, dl,
Op.getNode()->getValueType(0).getScalarType(),
Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride),
SrcVT.getScalarType(),
LD->isVolatile(), LD->isNonTemporal(),
LD->getAlignment());
BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
DAG.getIntPtrConstant(Stride));
Vals.push_back(ScalarLoad.getValue(0));
LoadChains.push_back(ScalarLoad.getValue(1));
}
}
SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&LoadChains[0], LoadChains.size());
SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl,
Op.getNode()->getValueType(0), &Vals[0], Vals.size());
AddLegalizedOperand(Op.getValue(0), Value);
AddLegalizedOperand(Op.getValue(1), NewChain);
return (Op.getResNo() ? NewChain : Value);
}
SDValue VectorLegalizer::ExpandStore(SDValue Op) {
DebugLoc dl = Op.getDebugLoc();
StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
SDValue Chain = ST->getChain();
SDValue BasePTR = ST->getBasePtr();
SDValue Value = ST->getValue();
EVT StVT = ST->getMemoryVT();
unsigned Alignment = ST->getAlignment();
bool isVolatile = ST->isVolatile();
bool isNonTemporal = ST->isNonTemporal();
unsigned NumElem = StVT.getVectorNumElements();
// The type of the data we want to save
EVT RegVT = Value.getValueType();
EVT RegSclVT = RegVT.getScalarType();
// The type of data as saved in memory.
EVT MemSclVT = StVT.getScalarType();
// Cast floats into integers
unsigned ScalarSize = MemSclVT.getSizeInBits();
// Round odd types to the next pow of two.
if (!isPowerOf2_32(ScalarSize))
ScalarSize = NextPowerOf2(ScalarSize);
// Store Stride in bytes
unsigned Stride = ScalarSize/8;
// Extract each of the elements from the original vector
// and save them into memory individually.
SmallVector<SDValue, 8> Stores;
for (unsigned Idx = 0; Idx < NumElem; Idx++) {
SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
RegSclVT, Value, DAG.getIntPtrConstant(Idx));
// This scalar TruncStore may be illegal, but we legalize it later.
SDValue Store = DAG.getTruncStore(Chain, dl, Ex, BasePTR,
ST->getPointerInfo().getWithOffset(Idx*Stride), MemSclVT,
isVolatile, isNonTemporal, Alignment);
BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
DAG.getIntPtrConstant(Stride));
Stores.push_back(Store);
}
SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&Stores[0], Stores.size());
AddLegalizedOperand(Op, TF);
return TF;
}
SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
// Lower a select instruction where the condition is a scalar and the
// operands are vectors. Lower this select to VSELECT and implement it
// using XOR AND OR. The selector bit is broadcasted.
EVT VT = Op.getValueType();
DebugLoc DL = Op.getDebugLoc();
SDValue Mask = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
SDValue Op2 = Op.getOperand(2);
assert(VT.isVector() && !Mask.getValueType().isVector()
&& Op1.getValueType() == Op2.getValueType() && "Invalid type");
unsigned NumElem = VT.getVectorNumElements();
// If we can't even use the basic vector operations of
// AND,OR,XOR, we will have to scalarize the op.
// Notice that the operation may be 'promoted' which means that it is
// 'bitcasted' to another type which is handled.
// Also, we need to be able to construct a splat vector using BUILD_VECTOR.
if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand)
return DAG.UnrollVectorOp(Op.getNode());
// Generate a mask operand.
EVT MaskTy = TLI.getSetCCResultType(VT);
assert(MaskTy.isVector() && "Invalid CC type");
assert(MaskTy.getSizeInBits() == Op1.getValueType().getSizeInBits()
&& "Invalid mask size");
// What is the size of each element in the vector mask.
EVT BitTy = MaskTy.getScalarType();
Mask = DAG.getNode(ISD::SELECT, DL, BitTy, Mask,
DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), BitTy),
DAG.getConstant(0, BitTy));
// Broadcast the mask so that the entire vector is all-one or all zero.
SmallVector<SDValue, 8> Ops(NumElem, Mask);
Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, &Ops[0], Ops.size());
// Bitcast the operands to be the same type as the mask.
// This is needed when we select between FP types because
// the mask is a vector of integers.
Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
SDValue AllOnes = DAG.getConstant(
APInt::getAllOnesValue(BitTy.getSizeInBits()), MaskTy);
SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
}
SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
EVT VT = Op.getValueType();
// Make sure that the SRA and SHL instructions are available.
if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
return DAG.UnrollVectorOp(Op.getNode());
DebugLoc DL = Op.getDebugLoc();
EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();
unsigned BW = VT.getScalarType().getSizeInBits();
unsigned OrigBW = OrigTy.getScalarType().getSizeInBits();
SDValue ShiftSz = DAG.getConstant(BW - OrigBW, VT);
Op = Op.getOperand(0);
Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz);
return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
}
SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
// Implement VSELECT in terms of XOR, AND, OR
// on platforms which do not support blend natively.
EVT VT = Op.getOperand(0).getValueType();
DebugLoc DL = Op.getDebugLoc();
SDValue Mask = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
SDValue Op2 = Op.getOperand(2);
// If we can't even use the basic vector operations of
// AND,OR,XOR, we will have to scalarize the op.
// Notice that the operation may be 'promoted' which means that it is
// 'bitcasted' to another type which is handled.
// This operation also isn't safe with AND, OR, XOR when the boolean
// type is 0/1 as we need an all ones vector constant to mask with.
// FIXME: Sign extend 1 to all ones if thats legal on the target.
if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
TLI.getBooleanContents(true) !=
TargetLowering::ZeroOrNegativeOneBooleanContent)
return DAG.UnrollVectorOp(Op.getNode());
assert(VT.getSizeInBits() == Op1.getValueType().getSizeInBits()
&& "Invalid mask size");
// Bitcast the operands to be the same type as the mask.
// This is needed when we select between FP types because
// the mask is a vector of integers.
Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
SDValue AllOnes = DAG.getConstant(
APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), VT);
SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
}
SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
EVT VT = Op.getOperand(0).getValueType();
DebugLoc DL = Op.getDebugLoc();
// Make sure that the SINT_TO_FP and SRL instructions are available.
if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand ||
TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand)
return DAG.UnrollVectorOp(Op.getNode());
EVT SVT = VT.getScalarType();
assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) &&
"Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
unsigned BW = SVT.getSizeInBits();
SDValue HalfWord = DAG.getConstant(BW/2, VT);
// Constants to clear the upper part of the word.
// Notice that we can also use SHL+SHR, but using a constant is slightly
// faster on x86.
uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF;
SDValue HalfWordMask = DAG.getConstant(HWMask, VT);
// Two to the power of half-word-size.
SDValue TWOHW = DAG.getConstantFP((1<<(BW/2)), Op.getValueType());
// Clear upper part of LO, lower HI
SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord);
SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask);
// Convert hi and lo to floats
// Convert the hi part back to the upper values
SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI);
fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW);
SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO);
// Add the two halves
return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
}
SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
SDValue Zero = DAG.getConstantFP(-0.0, Op.getValueType());
return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
Zero, Op.getOperand(0));
}
return DAG.UnrollVectorOp(Op.getNode());
}
SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
EVT VT = Op.getValueType();
unsigned NumElems = VT.getVectorNumElements();
EVT EltVT = VT.getVectorElementType();
SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
EVT TmpEltVT = LHS.getValueType().getVectorElementType();
DebugLoc dl = Op.getDebugLoc();
SmallVector<SDValue, 8> Ops(NumElems);
for (unsigned i = 0; i < NumElems; ++i) {
SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
DAG.getIntPtrConstant(i));
SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
DAG.getIntPtrConstant(i));
Ops[i] = DAG.getNode(ISD::SETCC, dl, TLI.getSetCCResultType(TmpEltVT),
LHSElem, RHSElem, CC);
Ops[i] = DAG.getNode(ISD::SELECT, dl, EltVT, Ops[i],
DAG.getConstant(APInt::getAllOnesValue
(EltVT.getSizeInBits()), EltVT),
DAG.getConstant(0, EltVT));
}
return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], NumElems);
}
}
bool SelectionDAG::LegalizeVectors() {
return VectorLegalizer(*this).Run();
}
|