aboutsummaryrefslogtreecommitdiff
path: root/lib/CodeGen/RegAllocPBQP.cpp
blob: 0dd921482696271d7a9589fece30c9baf5cb0db0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
//===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
// register allocator for LLVM. This allocator works by constructing a PBQP
// problem representing the register allocation problem under consideration,
// solving this using a PBQP solver, and mapping the solution back to a
// register assignment. If any variables are selected for spilling then spill
// code is inserted and the process repeated.
//
// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
// for register allocation. For more information on PBQP for register
// allocation, see the following papers:
//
//   (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
//   PBQP. In Proceedings of the 7th Joint Modular Languages Conference
//   (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
//
//   (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
//   architectures. In Proceedings of the Joint Conference on Languages,
//   Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
//   NY, USA, 139-148.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "regalloc"

#include "PBQP/HeuristicSolver.h"
#include "PBQP/Graph.h"
#include "PBQP/Heuristics/Briggs.h"
#include "RenderMachineFunction.h"
#include "Splitter.h"
#include "VirtRegMap.h"
#include "VirtRegRewriter.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include <limits>
#include <map>
#include <memory>
#include <set>
#include <vector>

using namespace llvm;

static RegisterRegAlloc
registerPBQPRepAlloc("pbqp", "PBQP register allocator",
                       llvm::createPBQPRegisterAllocator);

static cl::opt<bool>
pbqpCoalescing("pbqp-coalescing",
                cl::desc("Attempt coalescing during PBQP register allocation."),
                cl::init(false), cl::Hidden);

static cl::opt<bool>
pbqpPreSplitting("pbqp-pre-splitting",
                 cl::desc("Pre-splite before PBQP register allocation."),
                 cl::init(false), cl::Hidden);

namespace {

  ///
  /// PBQP based allocators solve the register allocation problem by mapping
  /// register allocation problems to Partitioned Boolean Quadratic
  /// Programming problems.
  class PBQPRegAlloc : public MachineFunctionPass {
  public:

    static char ID;

    /// Construct a PBQP register allocator.
    PBQPRegAlloc() : MachineFunctionPass(ID) {}

    /// Return the pass name.
    virtual const char* getPassName() const {
      return "PBQP Register Allocator";
    }

    /// PBQP analysis usage.
    virtual void getAnalysisUsage(AnalysisUsage &au) const {
      au.addRequired<SlotIndexes>();
      au.addPreserved<SlotIndexes>();
      au.addRequired<LiveIntervals>();
      //au.addRequiredID(SplitCriticalEdgesID);
      au.addRequired<RegisterCoalescer>();
      au.addRequired<CalculateSpillWeights>();
      au.addRequired<LiveStacks>();
      au.addPreserved<LiveStacks>();
      au.addRequired<MachineLoopInfo>();
      au.addPreserved<MachineLoopInfo>();
      if (pbqpPreSplitting)
        au.addRequired<LoopSplitter>();
      au.addRequired<VirtRegMap>();
      au.addRequired<RenderMachineFunction>();
      MachineFunctionPass::getAnalysisUsage(au);
    }

    /// Perform register allocation
    virtual bool runOnMachineFunction(MachineFunction &MF);

  private:

    class LIOrdering {
    public:
      bool operator()(const LiveInterval *li1, const LiveInterval *li2) const {
        return li1->reg < li2->reg;
      }
    };

    typedef std::map<const LiveInterval*, unsigned, LIOrdering> LI2NodeMap;
    typedef std::vector<const LiveInterval*> Node2LIMap;
    typedef std::vector<unsigned> AllowedSet;
    typedef std::vector<AllowedSet> AllowedSetMap;
    typedef std::set<unsigned> RegSet;
    typedef std::pair<unsigned, unsigned> RegPair;
    typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;

    typedef std::set<LiveInterval*, LIOrdering> LiveIntervalSet;

    typedef std::vector<PBQP::Graph::NodeItr> NodeVector;

    MachineFunction *mf;
    const TargetMachine *tm;
    const TargetRegisterInfo *tri;
    const TargetInstrInfo *tii;
    const MachineLoopInfo *loopInfo;
    MachineRegisterInfo *mri;

    LiveIntervals *lis;
    LiveStacks *lss;
    VirtRegMap *vrm;

    LI2NodeMap li2Node;
    Node2LIMap node2LI;
    AllowedSetMap allowedSets;
    LiveIntervalSet vregIntervalsToAlloc,
                    emptyVRegIntervals;
    NodeVector problemNodes;


    /// Builds a PBQP cost vector.
    template <typename RegContainer>
    PBQP::Vector buildCostVector(unsigned vReg,
                                 const RegContainer &allowed,
                                 const CoalesceMap &cealesces,
                                 PBQP::PBQPNum spillCost) const;

    /// \brief Builds a PBQP interference matrix.
    ///
    /// @return Either a pointer to a non-zero PBQP matrix representing the
    ///         allocation option costs, or a null pointer for a zero matrix.
    ///
    /// Expects allowed sets for two interfering LiveIntervals. These allowed
    /// sets should contain only allocable registers from the LiveInterval's
    /// register class, with any interfering pre-colored registers removed.
    template <typename RegContainer>
    PBQP::Matrix* buildInterferenceMatrix(const RegContainer &allowed1,
                                          const RegContainer &allowed2) const;

    ///
    /// Expects allowed sets for two potentially coalescable LiveIntervals,
    /// and an estimated benefit due to coalescing. The allowed sets should
    /// contain only allocable registers from the LiveInterval's register
    /// classes, with any interfering pre-colored registers removed.
    template <typename RegContainer>
    PBQP::Matrix* buildCoalescingMatrix(const RegContainer &allowed1,
                                        const RegContainer &allowed2,
                                        PBQP::PBQPNum cBenefit) const;

    /// \brief Finds coalescing opportunities and returns them as a map.
    ///
    /// Any entries in the map are guaranteed coalescable, even if their
    /// corresponding live intervals overlap.
    CoalesceMap findCoalesces();

    /// \brief Finds the initial set of vreg intervals to allocate.
    void findVRegIntervalsToAlloc();

    /// \brief Constructs a PBQP problem representation of the register
    /// allocation problem for this function.
    ///
    /// @return a PBQP solver object for the register allocation problem.
    PBQP::Graph constructPBQPProblem();

    /// \brief Adds a stack interval if the given live interval has been
    /// spilled. Used to support stack slot coloring.
    void addStackInterval(const LiveInterval *spilled,MachineRegisterInfo* mri);

    /// \brief Given a solved PBQP problem maps this solution back to a register
    /// assignment.
    bool mapPBQPToRegAlloc(const PBQP::Solution &solution);

    /// \brief Postprocessing before final spilling. Sets basic block "live in"
    /// variables.
    void finalizeAlloc() const;

  };

  char PBQPRegAlloc::ID = 0;
}


template <typename RegContainer>
PBQP::Vector PBQPRegAlloc::buildCostVector(unsigned vReg,
                                           const RegContainer &allowed,
                                           const CoalesceMap &coalesces,
                                           PBQP::PBQPNum spillCost) const {

  typedef typename RegContainer::const_iterator AllowedItr;

  // Allocate vector. Additional element (0th) used for spill option
  PBQP::Vector v(allowed.size() + 1, 0);

  v[0] = spillCost;

  // Iterate over the allowed registers inserting coalesce benefits if there
  // are any.
  unsigned ai = 0;
  for (AllowedItr itr = allowed.begin(), end = allowed.end();
       itr != end; ++itr, ++ai) {

    unsigned pReg = *itr;

    CoalesceMap::const_iterator cmItr =
      coalesces.find(RegPair(vReg, pReg));

    // No coalesce - on to the next preg.
    if (cmItr == coalesces.end())
      continue;

    // We have a coalesce - insert the benefit.
    v[ai + 1] = -cmItr->second;
  }

  return v;
}

template <typename RegContainer>
PBQP::Matrix* PBQPRegAlloc::buildInterferenceMatrix(
      const RegContainer &allowed1, const RegContainer &allowed2) const {

  typedef typename RegContainer::const_iterator RegContainerIterator;

  // Construct a PBQP matrix representing the cost of allocation options. The
  // rows and columns correspond to the allocation options for the two live
  // intervals.  Elements will be infinite where corresponding registers alias,
  // since we cannot allocate aliasing registers to interfering live intervals.
  // All other elements (non-aliasing combinations) will have zero cost. Note
  // that the spill option (element 0,0) has zero cost, since we can allocate
  // both intervals to memory safely (the cost for each individual allocation
  // to memory is accounted for by the cost vectors for each live interval).
  PBQP::Matrix *m =
    new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);

  // Assume this is a zero matrix until proven otherwise.  Zero matrices occur
  // between interfering live ranges with non-overlapping register sets (e.g.
  // non-overlapping reg classes, or disjoint sets of allowed regs within the
  // same class). The term "overlapping" is used advisedly: sets which do not
  // intersect, but contain registers which alias, will have non-zero matrices.
  // We optimize zero matrices away to improve solver speed.
  bool isZeroMatrix = true;


  // Row index. Starts at 1, since the 0th row is for the spill option, which
  // is always zero.
  unsigned ri = 1;

  // Iterate over allowed sets, insert infinities where required.
  for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
       a1Itr != a1End; ++a1Itr) {

    // Column index, starts at 1 as for row index.
    unsigned ci = 1;
    unsigned reg1 = *a1Itr;

    for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
         a2Itr != a2End; ++a2Itr) {

      unsigned reg2 = *a2Itr;

      // If the row/column regs are identical or alias insert an infinity.
      if (tri->regsOverlap(reg1, reg2)) {
        (*m)[ri][ci] = std::numeric_limits<PBQP::PBQPNum>::infinity();
        isZeroMatrix = false;
      }

      ++ci;
    }

    ++ri;
  }

  // If this turns out to be a zero matrix...
  if (isZeroMatrix) {
    // free it and return null.
    delete m;
    return 0;
  }

  // ...otherwise return the cost matrix.
  return m;
}

template <typename RegContainer>
PBQP::Matrix* PBQPRegAlloc::buildCoalescingMatrix(
      const RegContainer &allowed1, const RegContainer &allowed2,
      PBQP::PBQPNum cBenefit) const {

  typedef typename RegContainer::const_iterator RegContainerIterator;

  // Construct a PBQP Matrix representing the benefits of coalescing. As with
  // interference matrices the rows and columns represent allowed registers
  // for the LiveIntervals which are (potentially) to be coalesced. The amount
  // -cBenefit will be placed in any element representing the same register
  // for both intervals.
  PBQP::Matrix *m =
    new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);

  // Reset costs to zero.
  m->reset(0);

  // Assume the matrix is zero till proven otherwise. Zero matrices will be
  // optimized away as in the interference case.
  bool isZeroMatrix = true;

  // Row index. Starts at 1, since the 0th row is for the spill option, which
  // is always zero.
  unsigned ri = 1;

  // Iterate over the allowed sets, insert coalescing benefits where
  // appropriate.
  for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
       a1Itr != a1End; ++a1Itr) {

    // Column index, starts at 1 as for row index.
    unsigned ci = 1;
    unsigned reg1 = *a1Itr;

    for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
         a2Itr != a2End; ++a2Itr) {

      // If the row and column represent the same register insert a beneficial
      // cost to preference this allocation - it would allow us to eliminate a
      // move instruction.
      if (reg1 == *a2Itr) {
        (*m)[ri][ci] = -cBenefit;
        isZeroMatrix = false;
      }

      ++ci;
    }

    ++ri;
  }

  // If this turns out to be a zero matrix...
  if (isZeroMatrix) {
    // ...free it and return null.
    delete m;
    return 0;
  }

  return m;
}

PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {

  typedef MachineFunction::const_iterator MFIterator;
  typedef MachineBasicBlock::const_iterator MBBIterator;
  typedef LiveInterval::const_vni_iterator VNIIterator;

  CoalesceMap coalescesFound;

  // To find coalesces we need to iterate over the function looking for
  // copy instructions.
  for (MFIterator bbItr = mf->begin(), bbEnd = mf->end();
       bbItr != bbEnd; ++bbItr) {

    const MachineBasicBlock *mbb = &*bbItr;

    for (MBBIterator iItr = mbb->begin(), iEnd = mbb->end();
         iItr != iEnd; ++iItr) {

      const MachineInstr *instr = &*iItr;

      // If this isn't a copy then continue to the next instruction.
      if (!instr->isCopy())
        continue;

      unsigned srcReg = instr->getOperand(1).getReg();
      unsigned dstReg = instr->getOperand(0).getReg();

      // If the registers are already the same our job is nice and easy.
      if (dstReg == srcReg)
        continue;

      bool srcRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(srcReg),
           dstRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(dstReg);

      // If both registers are physical then we can't coalesce.
      if (srcRegIsPhysical && dstRegIsPhysical)
        continue;

      // If it's a copy that includes two virtual register but the source and
      // destination classes differ then we can't coalesce.
      if (!srcRegIsPhysical && !dstRegIsPhysical &&
          mri->getRegClass(srcReg) != mri->getRegClass(dstReg))
        continue;

      // If one is physical and one is virtual, check that the physical is
      // allocatable in the class of the virtual.
      if (srcRegIsPhysical && !dstRegIsPhysical) {
        const TargetRegisterClass *dstRegClass = mri->getRegClass(dstReg);
        if (std::find(dstRegClass->allocation_order_begin(*mf),
                      dstRegClass->allocation_order_end(*mf), srcReg) ==
            dstRegClass->allocation_order_end(*mf))
          continue;
      }
      if (!srcRegIsPhysical && dstRegIsPhysical) {
        const TargetRegisterClass *srcRegClass = mri->getRegClass(srcReg);
        if (std::find(srcRegClass->allocation_order_begin(*mf),
                      srcRegClass->allocation_order_end(*mf), dstReg) ==
            srcRegClass->allocation_order_end(*mf))
          continue;
      }

      // If we've made it here we have a copy with compatible register classes.
      // We can probably coalesce, but we need to consider overlap.
      const LiveInterval *srcLI = &lis->getInterval(srcReg),
                         *dstLI = &lis->getInterval(dstReg);

      if (srcLI->overlaps(*dstLI)) {
        // Even in the case of an overlap we might still be able to coalesce,
        // but we need to make sure that no definition of either range occurs
        // while the other range is live.

        // Otherwise start by assuming we're ok.
        bool badDef = false;

        // Test all defs of the source range.
        for (VNIIterator
               vniItr = srcLI->vni_begin(), vniEnd = srcLI->vni_end();
               vniItr != vniEnd; ++vniItr) {

          // If we find a poorly defined def we err on the side of caution.
          if (!(*vniItr)->def.isValid()) {
            badDef = true;
            break;
          }

          // If we find a def that kills the coalescing opportunity then
          // record it and break from the loop.
          if (dstLI->liveAt((*vniItr)->def)) {
            badDef = true;
            break;
          }
        }

        // If we have a bad def give up, continue to the next instruction.
        if (badDef)
          continue;

        // Otherwise test definitions of the destination range.
        for (VNIIterator
               vniItr = dstLI->vni_begin(), vniEnd = dstLI->vni_end();
               vniItr != vniEnd; ++vniItr) {

          // We want to make sure we skip the copy instruction itself.
          if ((*vniItr)->getCopy() == instr)
            continue;

          if (!(*vniItr)->def.isValid()) {
            badDef = true;
            break;
          }

          if (srcLI->liveAt((*vniItr)->def)) {
            badDef = true;
            break;
          }
        }

        // As before a bad def we give up and continue to the next instr.
        if (badDef)
          continue;
      }

      // If we make it to here then either the ranges didn't overlap, or they
      // did, but none of their definitions would prevent us from coalescing.
      // We're good to go with the coalesce.

      float cBenefit = std::pow(10.0f, (float)loopInfo->getLoopDepth(mbb)) / 5.0;

      coalescesFound[RegPair(srcReg, dstReg)] = cBenefit;
      coalescesFound[RegPair(dstReg, srcReg)] = cBenefit;
    }

  }

  return coalescesFound;
}

void PBQPRegAlloc::findVRegIntervalsToAlloc() {

  // Iterate over all live ranges.
  for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
       itr != end; ++itr) {

    // Ignore physical ones.
    if (TargetRegisterInfo::isPhysicalRegister(itr->first))
      continue;

    LiveInterval *li = itr->second;

    // If this live interval is non-empty we will use pbqp to allocate it.
    // Empty intervals we allocate in a simple post-processing stage in
    // finalizeAlloc.
    if (!li->empty()) {
      vregIntervalsToAlloc.insert(li);
    }
    else {
      emptyVRegIntervals.insert(li);
    }
  }
}

PBQP::Graph PBQPRegAlloc::constructPBQPProblem() {

  typedef std::vector<const LiveInterval*> LIVector;
  typedef std::vector<unsigned> RegVector;

  // This will store the physical intervals for easy reference.
  LIVector physIntervals;

  // Start by clearing the old node <-> live interval mappings & allowed sets
  li2Node.clear();
  node2LI.clear();
  allowedSets.clear();

  // Populate physIntervals, update preg use:
  for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
       itr != end; ++itr) {

    if (TargetRegisterInfo::isPhysicalRegister(itr->first)) {
      physIntervals.push_back(itr->second);
      mri->setPhysRegUsed(itr->second->reg);
    }
  }

  // Iterate over vreg intervals, construct live interval <-> node number
  //  mappings.
  for (LiveIntervalSet::const_iterator
       itr = vregIntervalsToAlloc.begin(), end = vregIntervalsToAlloc.end();
       itr != end; ++itr) {
    const LiveInterval *li = *itr;

    li2Node[li] = node2LI.size();
    node2LI.push_back(li);
  }

  // Get the set of potential coalesces.
  CoalesceMap coalesces;

  if (pbqpCoalescing) {
    coalesces = findCoalesces();
  }

  // Construct a PBQP solver for this problem
  PBQP::Graph problem;
  problemNodes.resize(vregIntervalsToAlloc.size());

  // Resize allowedSets container appropriately.
  allowedSets.resize(vregIntervalsToAlloc.size());

  // Iterate over virtual register intervals to compute allowed sets...
  for (unsigned node = 0; node < node2LI.size(); ++node) {

    // Grab pointers to the interval and its register class.
    const LiveInterval *li = node2LI[node];
    const TargetRegisterClass *liRC = mri->getRegClass(li->reg);

    // Start by assuming all allocable registers in the class are allowed...
    RegVector liAllowed(liRC->allocation_order_begin(*mf),
                        liRC->allocation_order_end(*mf));

    // Eliminate the physical registers which overlap with this range, along
    // with all their aliases.
    for (LIVector::iterator pItr = physIntervals.begin(),
       pEnd = physIntervals.end(); pItr != pEnd; ++pItr) {

      if (!li->overlaps(**pItr))
        continue;

      unsigned pReg = (*pItr)->reg;

      // If we get here then the live intervals overlap, but we're still ok
      // if they're coalescable.
      if (coalesces.find(RegPair(li->reg, pReg)) != coalesces.end())
        continue;

      // If we get here then we have a genuine exclusion.

      // Remove the overlapping reg...
      RegVector::iterator eraseItr =
        std::find(liAllowed.begin(), liAllowed.end(), pReg);

      if (eraseItr != liAllowed.end())
        liAllowed.erase(eraseItr);

      const unsigned *aliasItr = tri->getAliasSet(pReg);

      if (aliasItr != 0) {
        // ...and its aliases.
        for (; *aliasItr != 0; ++aliasItr) {
          RegVector::iterator eraseItr =
            std::find(liAllowed.begin(), liAllowed.end(), *aliasItr);

          if (eraseItr != liAllowed.end()) {
            liAllowed.erase(eraseItr);
          }
        }
      }
    }

    // Copy the allowed set into a member vector for use when constructing cost
    // vectors & matrices, and mapping PBQP solutions back to assignments.
    allowedSets[node] = AllowedSet(liAllowed.begin(), liAllowed.end());

    // Set the spill cost to the interval weight, or epsilon if the
    // interval weight is zero
    PBQP::PBQPNum spillCost = (li->weight != 0.0) ?
        li->weight : std::numeric_limits<PBQP::PBQPNum>::min();

    // Build a cost vector for this interval.
    problemNodes[node] =
      problem.addNode(
        buildCostVector(li->reg, allowedSets[node], coalesces, spillCost));

  }


  // Now add the cost matrices...
  for (unsigned node1 = 0; node1 < node2LI.size(); ++node1) {
    const LiveInterval *li = node2LI[node1];

    // Test for live range overlaps and insert interference matrices.
    for (unsigned node2 = node1 + 1; node2 < node2LI.size(); ++node2) {
      const LiveInterval *li2 = node2LI[node2];

      CoalesceMap::const_iterator cmItr =
        coalesces.find(RegPair(li->reg, li2->reg));

      PBQP::Matrix *m = 0;

      if (cmItr != coalesces.end()) {
        m = buildCoalescingMatrix(allowedSets[node1], allowedSets[node2],
                                  cmItr->second);
      }
      else if (li->overlaps(*li2)) {
        m = buildInterferenceMatrix(allowedSets[node1], allowedSets[node2]);
      }

      if (m != 0) {
        problem.addEdge(problemNodes[node1],
                        problemNodes[node2],
                        *m);

        delete m;
      }
    }
  }

  assert(problem.getNumNodes() == allowedSets.size());
/*
  std::cerr << "Allocating for " << problem.getNumNodes() << " nodes, "
            << problem.getNumEdges() << " edges.\n";

  problem.printDot(std::cerr);
*/
  // We're done, PBQP problem constructed - return it.
  return problem;
}

void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled,
                                    MachineRegisterInfo* mri) {
  int stackSlot = vrm->getStackSlot(spilled->reg);

  if (stackSlot == VirtRegMap::NO_STACK_SLOT)
    return;

  const TargetRegisterClass *RC = mri->getRegClass(spilled->reg);
  LiveInterval &stackInterval = lss->getOrCreateInterval(stackSlot, RC);

  VNInfo *vni;
  if (stackInterval.getNumValNums() != 0)
    vni = stackInterval.getValNumInfo(0);
  else
    vni = stackInterval.getNextValue(
      SlotIndex(), 0, false, lss->getVNInfoAllocator());

  LiveInterval &rhsInterval = lis->getInterval(spilled->reg);
  stackInterval.MergeRangesInAsValue(rhsInterval, vni);
}

bool PBQPRegAlloc::mapPBQPToRegAlloc(const PBQP::Solution &solution) {

  // Set to true if we have any spills
  bool anotherRoundNeeded = false;

  // Clear the existing allocation.
  vrm->clearAllVirt();

  // Iterate over the nodes mapping the PBQP solution to a register assignment.
  for (unsigned node = 0; node < node2LI.size(); ++node) {
    unsigned virtReg = node2LI[node]->reg,
             allocSelection = solution.getSelection(problemNodes[node]);


    // If the PBQP solution is non-zero it's a physical register...
    if (allocSelection != 0) {
      // Get the physical reg, subtracting 1 to account for the spill option.
      unsigned physReg = allowedSets[node][allocSelection - 1];

      DEBUG(dbgs() << "VREG " << virtReg << " -> "
                   << tri->getName(physReg) << "\n");

      assert(physReg != 0);

      // Add to the virt reg map and update the used phys regs.
      vrm->assignVirt2Phys(virtReg, physReg);
    }
    // ...Otherwise it's a spill.
    else {

      // Make sure we ignore this virtual reg on the next round
      // of allocation
      vregIntervalsToAlloc.erase(&lis->getInterval(virtReg));

      // Insert spill ranges for this live range
      const LiveInterval *spillInterval = node2LI[node];
      double oldSpillWeight = spillInterval->weight;
      SmallVector<LiveInterval*, 8> spillIs;
      std::vector<LiveInterval*> newSpills =
        lis->addIntervalsForSpills(*spillInterval, spillIs, loopInfo, *vrm);
      addStackInterval(spillInterval, mri);

      (void) oldSpillWeight;
      DEBUG(dbgs() << "VREG " << virtReg << " -> SPILLED (Cost: "
                   << oldSpillWeight << ", New vregs: ");

      // Copy any newly inserted live intervals into the list of regs to
      // allocate.
      for (std::vector<LiveInterval*>::const_iterator
           itr = newSpills.begin(), end = newSpills.end();
           itr != end; ++itr) {

        assert(!(*itr)->empty() && "Empty spill range.");

        DEBUG(dbgs() << (*itr)->reg << " ");

        vregIntervalsToAlloc.insert(*itr);
      }

      DEBUG(dbgs() << ")\n");

      // We need another round if spill intervals were added.
      anotherRoundNeeded |= !newSpills.empty();
    }
  }

  return !anotherRoundNeeded;
}

void PBQPRegAlloc::finalizeAlloc() const {
  typedef LiveIntervals::iterator LIIterator;
  typedef LiveInterval::Ranges::const_iterator LRIterator;

  // First allocate registers for the empty intervals.
  for (LiveIntervalSet::const_iterator
         itr = emptyVRegIntervals.begin(), end = emptyVRegIntervals.end();
         itr != end; ++itr) {
    LiveInterval *li = *itr;

    unsigned physReg = vrm->getRegAllocPref(li->reg);

    if (physReg == 0) {
      const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
      physReg = *liRC->allocation_order_begin(*mf);
    }

    vrm->assignVirt2Phys(li->reg, physReg);
  }

  // Finally iterate over the basic blocks to compute and set the live-in sets.
  SmallVector<MachineBasicBlock*, 8> liveInMBBs;
  MachineBasicBlock *entryMBB = &*mf->begin();

  for (LIIterator liItr = lis->begin(), liEnd = lis->end();
       liItr != liEnd; ++liItr) {

    const LiveInterval *li = liItr->second;
    unsigned reg = 0;

    // Get the physical register for this interval
    if (TargetRegisterInfo::isPhysicalRegister(li->reg)) {
      reg = li->reg;
    }
    else if (vrm->isAssignedReg(li->reg)) {
      reg = vrm->getPhys(li->reg);
    }
    else {
      // Ranges which are assigned a stack slot only are ignored.
      continue;
    }

    if (reg == 0) {
      // Filter out zero regs - they're for intervals that were spilled.
      continue;
    }

    // Iterate over the ranges of the current interval...
    for (LRIterator lrItr = li->begin(), lrEnd = li->end();
         lrItr != lrEnd; ++lrItr) {

      // Find the set of basic blocks which this range is live into...
      if (lis->findLiveInMBBs(lrItr->start, lrItr->end,  liveInMBBs)) {
        // And add the physreg for this interval to their live-in sets.
        for (unsigned i = 0; i < liveInMBBs.size(); ++i) {
          if (liveInMBBs[i] != entryMBB) {
            if (!liveInMBBs[i]->isLiveIn(reg)) {
              liveInMBBs[i]->addLiveIn(reg);
            }
          }
        }
        liveInMBBs.clear();
      }
    }
  }

}

bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {

  mf = &MF;
  tm = &mf->getTarget();
  tri = tm->getRegisterInfo();
  tii = tm->getInstrInfo();
  mri = &mf->getRegInfo(); 

  lis = &getAnalysis<LiveIntervals>();
  lss = &getAnalysis<LiveStacks>();
  loopInfo = &getAnalysis<MachineLoopInfo>();
  RenderMachineFunction *rmf = &getAnalysis<RenderMachineFunction>();

  vrm = &getAnalysis<VirtRegMap>();


  DEBUG(dbgs() << "PBQP Register Allocating for " << mf->getFunction()->getName() << "\n");

  // Allocator main loop:
  //
  // * Map current regalloc problem to a PBQP problem
  // * Solve the PBQP problem
  // * Map the solution back to a register allocation
  // * Spill if necessary
  //
  // This process is continued till no more spills are generated.

  // Find the vreg intervals in need of allocation.
  findVRegIntervalsToAlloc();

  // If there are non-empty intervals allocate them using pbqp.
  if (!vregIntervalsToAlloc.empty()) {

    bool pbqpAllocComplete = false;
    unsigned round = 0;

    while (!pbqpAllocComplete) {
      DEBUG(dbgs() << "  PBQP Regalloc round " << round << ":\n");

      PBQP::Graph problem = constructPBQPProblem();
      PBQP::Solution solution =
        PBQP::HeuristicSolver<PBQP::Heuristics::Briggs>::solve(problem);

      pbqpAllocComplete = mapPBQPToRegAlloc(solution);

      ++round;
    }
  }

  // Finalise allocation, allocate empty ranges.
  finalizeAlloc();

  rmf->renderMachineFunction("After PBQP register allocation.", vrm);

  vregIntervalsToAlloc.clear();
  emptyVRegIntervals.clear();
  li2Node.clear();
  node2LI.clear();
  allowedSets.clear();
  problemNodes.clear();

  DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");

  // Run rewriter
  std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());

  rewriter->runOnMachineFunction(*mf, *vrm, lis);

  return true;
}

FunctionPass* llvm::createPBQPRegisterAllocator() {
  return new PBQPRegAlloc();
}


#undef DEBUG_TYPE