aboutsummaryrefslogtreecommitdiff
path: root/lib/CodeGen/RegAllocBasic.cpp
blob: a67a6169beed735cb43bb40f0b5863b74ede3606 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
//===-- RegAllocBasic.cpp - Basic Register Allocator ----------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the RABasic function pass, which provides a minimal
// implementation of the basic register allocator.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "regalloc"
#include "RegAllocBase.h"
#include "LiveDebugVariables.h"
#include "LiveRangeEdit.h"
#include "RenderMachineFunction.h"
#include "Spiller.h"
#include "VirtRegMap.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Function.h"
#include "llvm/PassAnalysisSupport.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

#include <cstdlib>
#include <queue>

using namespace llvm;

static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator",
                                      createBasicRegisterAllocator);

namespace {
  struct CompSpillWeight {
    bool operator()(LiveInterval *A, LiveInterval *B) const {
      return A->weight < B->weight;
    }
  };
}

namespace {
/// RABasic provides a minimal implementation of the basic register allocation
/// algorithm. It prioritizes live virtual registers by spill weight and spills
/// whenever a register is unavailable. This is not practical in production but
/// provides a useful baseline both for measuring other allocators and comparing
/// the speed of the basic algorithm against other styles of allocators.
class RABasic : public MachineFunctionPass, public RegAllocBase
{
  // context
  MachineFunction *MF;

  // analyses
  LiveStacks *LS;
  RenderMachineFunction *RMF;

  // state
  std::auto_ptr<Spiller> SpillerInstance;
  std::priority_queue<LiveInterval*, std::vector<LiveInterval*>,
                      CompSpillWeight> Queue;
public:
  RABasic();

  /// Return the pass name.
  virtual const char* getPassName() const {
    return "Basic Register Allocator";
  }

  /// RABasic analysis usage.
  virtual void getAnalysisUsage(AnalysisUsage &AU) const;

  virtual void releaseMemory();

  virtual Spiller &spiller() { return *SpillerInstance; }

  virtual float getPriority(LiveInterval *LI) { return LI->weight; }

  virtual void enqueue(LiveInterval *LI) {
    Queue.push(LI);
  }

  virtual LiveInterval *dequeue() {
    if (Queue.empty())
      return 0;
    LiveInterval *LI = Queue.top();
    Queue.pop();
    return LI;
  }

  virtual unsigned selectOrSplit(LiveInterval &VirtReg,
                                 SmallVectorImpl<LiveInterval*> &SplitVRegs);

  /// Perform register allocation.
  virtual bool runOnMachineFunction(MachineFunction &mf);

  static char ID;
};

char RABasic::ID = 0;

} // end anonymous namespace

RABasic::RABasic(): MachineFunctionPass(ID) {
  initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
  initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
  initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
  initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
  initializeLiveStacksPass(*PassRegistry::getPassRegistry());
  initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
  initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
  initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
  initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry());
}

void RABasic::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  AU.addRequired<AliasAnalysis>();
  AU.addPreserved<AliasAnalysis>();
  AU.addRequired<LiveIntervals>();
  AU.addPreserved<SlotIndexes>();
  AU.addRequired<LiveDebugVariables>();
  AU.addPreserved<LiveDebugVariables>();
  if (StrongPHIElim)
    AU.addRequiredID(StrongPHIEliminationID);
  AU.addRequiredTransitiveID(RegisterCoalescerPassID);
  AU.addRequired<CalculateSpillWeights>();
  AU.addRequired<LiveStacks>();
  AU.addPreserved<LiveStacks>();
  AU.addRequiredID(MachineDominatorsID);
  AU.addPreservedID(MachineDominatorsID);
  AU.addRequired<MachineLoopInfo>();
  AU.addPreserved<MachineLoopInfo>();
  AU.addRequired<VirtRegMap>();
  AU.addPreserved<VirtRegMap>();
  DEBUG(AU.addRequired<RenderMachineFunction>());
  MachineFunctionPass::getAnalysisUsage(AU);
}

void RABasic::releaseMemory() {
  SpillerInstance.reset(0);
  RegAllocBase::releaseMemory();
}

// Driver for the register assignment and splitting heuristics.
// Manages iteration over the LiveIntervalUnions.
//
// This is a minimal implementation of register assignment and splitting that
// spills whenever we run out of registers.
//
// selectOrSplit can only be called once per live virtual register. We then do a
// single interference test for each register the correct class until we find an
// available register. So, the number of interference tests in the worst case is
// |vregs| * |machineregs|. And since the number of interference tests is
// minimal, there is no value in caching them outside the scope of
// selectOrSplit().
unsigned RABasic::selectOrSplit(LiveInterval &VirtReg,
                                SmallVectorImpl<LiveInterval*> &SplitVRegs) {
  // Populate a list of physical register spill candidates.
  SmallVector<unsigned, 8> PhysRegSpillCands;

  // Check for an available register in this class.
  ArrayRef<unsigned> Order =
    RegClassInfo.getOrder(MRI->getRegClass(VirtReg.reg));
  for (ArrayRef<unsigned>::iterator I = Order.begin(), E = Order.end(); I != E;
       ++I) {
    unsigned PhysReg = *I;

    // Check interference and as a side effect, intialize queries for this
    // VirtReg and its aliases.
    unsigned interfReg = checkPhysRegInterference(VirtReg, PhysReg);
    if (interfReg == 0) {
      // Found an available register.
      return PhysReg;
    }
    Queries[interfReg].collectInterferingVRegs(1);
    LiveInterval *interferingVirtReg =
      Queries[interfReg].interferingVRegs().front();

    // The current VirtReg must either be spillable, or one of its interferences
    // must have less spill weight.
    if (interferingVirtReg->weight < VirtReg.weight ) {
      PhysRegSpillCands.push_back(PhysReg);
    }
  }
  // Try to spill another interfering reg with less spill weight.
  for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(),
         PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) {

    if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs)) continue;

    assert(checkPhysRegInterference(VirtReg, *PhysRegI) == 0 &&
           "Interference after spill.");
    // Tell the caller to allocate to this newly freed physical register.
    return *PhysRegI;
  }

  // No other spill candidates were found, so spill the current VirtReg.
  DEBUG(dbgs() << "spilling: " << VirtReg << '\n');
  if (!VirtReg.isSpillable())
    return ~0u;
  LiveRangeEdit LRE(VirtReg, SplitVRegs);
  spiller().spill(LRE);

  // The live virtual register requesting allocation was spilled, so tell
  // the caller not to allocate anything during this round.
  return 0;
}

bool RABasic::runOnMachineFunction(MachineFunction &mf) {
  DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n"
               << "********** Function: "
               << ((Value*)mf.getFunction())->getName() << '\n');

  MF = &mf;
  DEBUG(RMF = &getAnalysis<RenderMachineFunction>());

  RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
  SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));

  allocatePhysRegs();

  addMBBLiveIns(MF);

  // Diagnostic output before rewriting
  DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n");

  // optional HTML output
  DEBUG(RMF->renderMachineFunction("After basic register allocation.", VRM));

  // FIXME: Verification currently must run before VirtRegRewriter. We should
  // make the rewriter a separate pass and override verifyAnalysis instead. When
  // that happens, verification naturally falls under VerifyMachineCode.
#ifndef NDEBUG
  if (VerifyEnabled) {
    // Verify accuracy of LiveIntervals. The standard machine code verifier
    // ensures that each LiveIntervals covers all uses of the virtual reg.

    // FIXME: MachineVerifier is badly broken when using the standard
    // spiller. Always use -spiller=inline with -verify-regalloc. Even with the
    // inline spiller, some tests fail to verify because the coalescer does not
    // always generate verifiable code.
    MF->verify(this, "In RABasic::verify");

    // Verify that LiveIntervals are partitioned into unions and disjoint within
    // the unions.
    verify();
  }
#endif // !NDEBUG

  // Run rewriter
  VRM->rewrite(LIS->getSlotIndexes());

  // Write out new DBG_VALUE instructions.
  getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);

  // The pass output is in VirtRegMap. Release all the transient data.
  releaseMemory();

  return true;
}

FunctionPass* llvm::createBasicRegisterAllocator()
{
  return new RABasic();
}