aboutsummaryrefslogtreecommitdiff
path: root/lib/CodeGen/MachineSink.cpp
blob: 330e675a2e6377bdb2daf7eda3080dc736dea9b7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
//===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass moves instructions into successor blocks when possible, so that
// they aren't executed on paths where their results aren't needed.
//
// This pass is not intended to be a replacement or a complete alternative
// for an LLVM-IR-level sinking pass. It is only designed to sink simple
// constructs that are not exposed before lowering and instruction selection.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "machine-sink"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

static cl::opt<bool> 
SplitEdges("machine-sink-split",
           cl::desc("Split critical edges during machine sinking"),
           cl::init(false), cl::Hidden);
static cl::opt<unsigned>
SplitLimit("split-limit",
           cl::init(~0u), cl::Hidden);

STATISTIC(NumSunk,      "Number of machine instructions sunk");
STATISTIC(NumSplit,     "Number of critical edges split");
STATISTIC(NumCoalesces, "Number of copies coalesced");

namespace {
  class MachineSinking : public MachineFunctionPass {
    const TargetInstrInfo *TII;
    const TargetRegisterInfo *TRI;
    MachineRegisterInfo  *MRI;  // Machine register information
    MachineDominatorTree *DT;   // Machine dominator tree
    MachineLoopInfo *LI;
    AliasAnalysis *AA;
    BitVector AllocatableSet;   // Which physregs are allocatable?

    // Remember which edges have been considered for breaking.
    SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8>
    CEBCandidates;

  public:
    static char ID; // Pass identification
    MachineSinking() : MachineFunctionPass(ID) {}

    virtual bool runOnMachineFunction(MachineFunction &MF);

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesCFG();
      MachineFunctionPass::getAnalysisUsage(AU);
      AU.addRequired<AliasAnalysis>();
      AU.addRequired<MachineDominatorTree>();
      AU.addRequired<MachineLoopInfo>();
      AU.addPreserved<MachineDominatorTree>();
      AU.addPreserved<MachineLoopInfo>();
    }

    virtual void releaseMemory() {
      CEBCandidates.clear();
    }

  private:
    bool ProcessBlock(MachineBasicBlock &MBB);
    bool isWorthBreakingCriticalEdge(MachineInstr *MI,
                                     MachineBasicBlock *From,
                                     MachineBasicBlock *To);
    MachineBasicBlock *SplitCriticalEdge(MachineInstr *MI,
                                         MachineBasicBlock *From,
                                         MachineBasicBlock *To,
                                         bool HasNonePHIUse);
    bool SinkInstruction(MachineInstr *MI, bool &SawStore);
    bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
                                 MachineBasicBlock *DefMBB,
                                 SmallPtrSet<MachineInstr*, 4> &PHIUses,
                                 bool &NonPHIUse, bool &LocalUse) const;
    bool PerformTrivialForwardCoalescing(MachineInstr *MI,
                                         MachineBasicBlock *MBB);
  };
} // end anonymous namespace

char MachineSinking::ID = 0;
INITIALIZE_PASS(MachineSinking, "machine-sink",
                "Machine code sinking", false, false);

FunctionPass *llvm::createMachineSinkingPass() { return new MachineSinking(); }

bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr *MI,
                                                     MachineBasicBlock *MBB) {
  if (!MI->isCopy())
    return false;

  unsigned SrcReg = MI->getOperand(1).getReg();
  unsigned DstReg = MI->getOperand(0).getReg();
  if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
      !TargetRegisterInfo::isVirtualRegister(DstReg) ||
      !MRI->hasOneNonDBGUse(SrcReg))
    return false;

  const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
  const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
  if (SRC != DRC)
    return false;

  MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
  if (DefMI->isCopyLike())
    return false;
  DEBUG(dbgs() << "Coalescing: " << *DefMI);
  DEBUG(dbgs() << "*** to: " << *MI);
  MRI->replaceRegWith(DstReg, SrcReg);
  MI->eraseFromParent();
  ++NumCoalesces;
  return true;
}

/// AllUsesDominatedByBlock - Return true if all uses of the specified register
/// occur in blocks dominated by the specified block. If any use is in the
/// definition block, then return false since it is never legal to move def
/// after uses.
bool
MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
                                        MachineBasicBlock *MBB,
                                        MachineBasicBlock *DefMBB,
                                        SmallPtrSet<MachineInstr*, 4> &PHIUses,
                                        bool &NonPHIUse, bool &LocalUse) const {
  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
         "Only makes sense for vregs");
  // Ignoring debug uses is necessary so debug info doesn't affect the code.
  // This may leave a referencing dbg_value in the original block, before
  // the definition of the vreg.  Dwarf generator handles this although the
  // user might not get the right info at runtime.
  for (MachineRegisterInfo::use_nodbg_iterator
         I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end();
       I != E; ++I) {
    // Determine the block of the use.
    MachineInstr *UseInst = &*I;
    MachineBasicBlock *UseBlock = UseInst->getParent();

    bool isPHI = UseInst->isPHI();
    if (isPHI)
      PHIUses.insert(UseInst);

    if (isPHI) {
      if (SplitEdges && UseBlock == MBB)
        // PHI is in the successor BB. e.g.
        // BB#1: derived from LLVM BB %bb4.preheader
        //   Predecessors according to CFG: BB#0
        //     ...
        //     %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead>
        //     ...
        //     JE_4 <BB#37>, %EFLAGS<imp-use>
        //   Successors according to CFG: BB#37 BB#2
        //
        // BB#2: derived from LLVM BB %bb.nph
        //   Predecessors according to CFG: BB#0 BB#1
	//     %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1>
        //
        // Machine sink should break the critical edge first.
        continue;
      // PHI nodes use the operand in the predecessor block, not the block with
      // the PHI.
      UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB();
    } else if (UseBlock == DefMBB) {
      LocalUse = true;
      return false;
    }

    // Check that it dominates.
    if (!DT->dominates(MBB, UseBlock))
      return false;
  }

  return true;
}

bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
  DEBUG(dbgs() << "******** Machine Sinking ********\n");

  const TargetMachine &TM = MF.getTarget();
  TII = TM.getInstrInfo();
  TRI = TM.getRegisterInfo();
  MRI = &MF.getRegInfo();
  DT = &getAnalysis<MachineDominatorTree>();
  LI = &getAnalysis<MachineLoopInfo>();
  AA = &getAnalysis<AliasAnalysis>();
  AllocatableSet = TRI->getAllocatableSet(MF);

  bool EverMadeChange = false;

  while (1) {
    bool MadeChange = false;

    // Process all basic blocks.
    CEBCandidates.clear();
    for (MachineFunction::iterator I = MF.begin(), E = MF.end();
         I != E; ++I)
      MadeChange |= ProcessBlock(*I);

    // If this iteration over the code changed anything, keep iterating.
    if (!MadeChange) break;
    EverMadeChange = true;
  }
  return EverMadeChange;
}

bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
  // Can't sink anything out of a block that has less than two successors.
  if (MBB.succ_size() <= 1 || MBB.empty()) return false;

  // Don't bother sinking code out of unreachable blocks. In addition to being
  // unprofitable, it can also lead to infinite looping, because in an
  // unreachable loop there may be nowhere to stop.
  if (!DT->isReachableFromEntry(&MBB)) return false;

  bool MadeChange = false;

  // Walk the basic block bottom-up.  Remember if we saw a store.
  MachineBasicBlock::iterator I = MBB.end();
  --I;
  bool ProcessedBegin, SawStore = false;
  do {
    MachineInstr *MI = I;  // The instruction to sink.

    // Predecrement I (if it's not begin) so that it isn't invalidated by
    // sinking.
    ProcessedBegin = I == MBB.begin();
    if (!ProcessedBegin)
      --I;

    if (MI->isDebugValue())
      continue;

    if (PerformTrivialForwardCoalescing(MI, &MBB))
      continue;

    if (SinkInstruction(MI, SawStore))
      ++NumSunk, MadeChange = true;

    // If we just processed the first instruction in the block, we're done.
  } while (!ProcessedBegin);

  return MadeChange;
}

bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr *MI,
                                                 MachineBasicBlock *From,
                                                 MachineBasicBlock *To) {
  // FIXME: Need much better heuristics.

  // If the pass has already considered breaking this edge (during this pass
  // through the function), then let's go ahead and break it. This means
  // sinking multiple "cheap" instructions into the same block.
  if (!CEBCandidates.insert(std::make_pair(From, To)))
    return true;

  if (!(MI->isCopyLike() || MI->getDesc().isAsCheapAsAMove()))
    return true;

  // MI is cheap, we probably don't want to break the critical edge for it.
  // However, if this would allow some definitions of its source operands
  // to be sunk then it's probably worth it.
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg()) continue;
    unsigned Reg = MO.getReg();
    if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg))
      continue;
    if (MRI->hasOneNonDBGUse(Reg))
      return true;
  }

  return false;
}

MachineBasicBlock *MachineSinking::SplitCriticalEdge(MachineInstr *MI,
                                                     MachineBasicBlock *FromBB,
                                                     MachineBasicBlock *ToBB,
                                                     bool HasNonePHIUse) {
  if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
    return 0;

  // Avoid breaking back edge. From == To means backedge for single BB loop.
  if (!SplitEdges || NumSplit == SplitLimit || FromBB == ToBB)
    return 0;

  // Check for backedges of more "complex" loops.
  if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
      LI->isLoopHeader(ToBB))
    return 0;

  // It's not always legal to break critical edges and sink the computation
  // to the edge.
  //
  // BB#1:
  // v1024
  // Beq BB#3
  // <fallthrough>
  // BB#2:
  // ... no uses of v1024
  // <fallthrough>
  // BB#3:
  // ...
  //       = v1024
  //
  // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted:
  //
  // BB#1:
  // ...
  // Bne BB#2
  // BB#4:
  // v1024 =
  // B BB#3
  // BB#2:
  // ... no uses of v1024
  // <fallthrough>
  // BB#3:
  // ...
  //       = v1024
  //
  // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3
  // flow. We need to ensure the new basic block where the computation is
  // sunk to dominates all the uses.
  // It's only legal to break critical edge and sink the computation to the
  // new block if all the predecessors of "To", except for "From", are
  // not dominated by "From". Given SSA property, this means these
  // predecessors are dominated by "To".
  //
  // There is no need to do this check if all the uses are PHI nodes. PHI
  // sources are only defined on the specific predecessor edges.
  if (HasNonePHIUse) {
    for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
           E = ToBB->pred_end(); PI != E; ++PI) {
      if (*PI == FromBB)
        continue;
      if (!DT->dominates(ToBB, *PI))
        return 0;
    }
  }

  return FromBB->SplitCriticalEdge(ToBB, this);
}

/// SinkInstruction - Determine whether it is safe to sink the specified machine
/// instruction out of its current block into a successor.
bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
  // Check if it's safe to move the instruction.
  if (!MI->isSafeToMove(TII, AA, SawStore))
    return false;

  // FIXME: This should include support for sinking instructions within the
  // block they are currently in to shorten the live ranges.  We often get
  // instructions sunk into the top of a large block, but it would be better to
  // also sink them down before their first use in the block.  This xform has to
  // be careful not to *increase* register pressure though, e.g. sinking
  // "x = y + z" down if it kills y and z would increase the live ranges of y
  // and z and only shrink the live range of x.

  // Loop over all the operands of the specified instruction.  If there is
  // anything we can't handle, bail out.
  MachineBasicBlock *ParentBlock = MI->getParent();

  // SuccToSinkTo - This is the successor to sink this instruction to, once we
  // decide.
  MachineBasicBlock *SuccToSinkTo = 0;

  SmallSet<unsigned, 4> Defs;
  SmallPtrSet<MachineInstr*, 4> PHIUses;
  bool HasNonPHIUse = false;
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg()) continue;  // Ignore non-register operands.

    unsigned Reg = MO.getReg();
    if (Reg == 0) continue;

    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
      if (MO.isUse()) {
        // If the physreg has no defs anywhere, it's just an ambient register
        // and we can freely move its uses. Alternatively, if it's allocatable,
        // it could get allocated to something with a def during allocation.
        if (!MRI->def_empty(Reg))
          return false;

        if (AllocatableSet.test(Reg))
          return false;

        // Check for a def among the register's aliases too.
        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
          unsigned AliasReg = *Alias;
          if (!MRI->def_empty(AliasReg))
            return false;

          if (AllocatableSet.test(AliasReg))
            return false;
        }
      } else if (!MO.isDead()) {
        // A def that isn't dead. We can't move it.
        return false;
      }
    } else {
      // Virtual register uses are always safe to sink.
      if (MO.isUse()) continue;
      Defs.insert(Reg);

      // If it's not safe to move defs of the register class, then abort.
      if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
        return false;

      // FIXME: This picks a successor to sink into based on having one
      // successor that dominates all the uses.  However, there are cases where
      // sinking can happen but where the sink point isn't a successor.  For
      // example:
      //
      //   x = computation
      //   if () {} else {}
      //   use x
      //
      // the instruction could be sunk over the whole diamond for the
      // if/then/else (or loop, etc), allowing it to be sunk into other blocks
      // after that.

      // Virtual register defs can only be sunk if all their uses are in blocks
      // dominated by one of the successors.
      if (SuccToSinkTo) {
        // If a previous operand picked a block to sink to, then this operand
        // must be sinkable to the same block.
        bool LocalUse = false;
        if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, ParentBlock, PHIUses,
                                     HasNonPHIUse, LocalUse))
          return false;

        continue;
      }

      // Otherwise, we should look at all the successors and decide which one
      // we should sink to.
      for (MachineBasicBlock::succ_iterator SI = ParentBlock->succ_begin(),
           E = ParentBlock->succ_end(); SI != E; ++SI) {
        bool LocalUse = false;
        if (AllUsesDominatedByBlock(Reg, *SI, ParentBlock, PHIUses,
                                    HasNonPHIUse, LocalUse)) {
          SuccToSinkTo = *SI;
          break;
        }
        if (LocalUse)
          // Def is used locally, it's never safe to move this def.
          return false;
      }

      // If we couldn't find a block to sink to, ignore this instruction.
      if (SuccToSinkTo == 0)
        return false;
    }
  }

  // If there are no outputs, it must have side-effects.
  if (SuccToSinkTo == 0)
    return false;

  // It's not safe to sink instructions to EH landing pad. Control flow into
  // landing pad is implicitly defined.
  if (SuccToSinkTo->isLandingPad())
    return false;

  // It is not possible to sink an instruction into its own block.  This can
  // happen with loops.
  if (MI->getParent() == SuccToSinkTo)
    return false;

  // If the instruction to move defines a dead physical register which is live
  // when leaving the basic block, don't move it because it could turn into a
  // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
    const MachineOperand &MO = MI->getOperand(I);
    if (!MO.isReg()) continue;
    unsigned Reg = MO.getReg();
    if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
    if (SuccToSinkTo->isLiveIn(Reg))
      return false;
  }

  DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo);

  // If the block has multiple predecessors, this would introduce computation on
  // a path that it doesn't already exist.  We could split the critical edge,
  // but for now we just punt.
  if (SuccToSinkTo->pred_size() > 1) {
    // We cannot sink a load across a critical edge - there may be stores in
    // other code paths.
    bool TryBreak = false;
    bool store = true;
    if (!MI->isSafeToMove(TII, AA, store)) {
      DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
      TryBreak = true;
    }

    // We don't want to sink across a critical edge if we don't dominate the
    // successor. We could be introducing calculations to new code paths.
    if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
      DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
      TryBreak = true;
    }

    // Don't sink instructions into a loop.
    if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
      DEBUG(dbgs() << " *** NOTE: Loop header found\n");
      TryBreak = true;
    }

    // Otherwise we are OK with sinking along a critical edge.
    if (!TryBreak)
      DEBUG(dbgs() << "Sinking along critical edge.\n");
    else {
      MachineBasicBlock *NewSucc =
        SplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, HasNonPHIUse);
      if (!NewSucc) {
        DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
                        "break critical edge\n");
        return false;
      } else {
        DEBUG(dbgs() << " *** Splitting critical edge:"
              " BB#" << ParentBlock->getNumber()
              << " -- BB#" << NewSucc->getNumber()
              << " -- BB#" << SuccToSinkTo->getNumber() << '\n');
        SuccToSinkTo = NewSucc;
        ++NumSplit;
      }
    }
  }

  // Determine where to insert into. Skip phi nodes.
  MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
  while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) {
    MachineInstr *PHI = &*InsertPos;
    ++InsertPos;

    if (SplitEdges && PHIUses.count(PHI)) {
      if (NumSplit == SplitLimit)
        return false;

      // A PHI use is in the destination successor so we can't sink the
      // instruction here. Break the critical edge first!
      for (unsigned i = 1, e = PHI->getNumOperands(); i != e; i += 2) {
        unsigned SrcReg = PHI->getOperand(i).getReg();
        if (Defs.count(SrcReg)) {
          MachineBasicBlock *SrcMBB = PHI->getOperand(i+1).getMBB();
          MachineBasicBlock *NewSucc =
            SplitCriticalEdge(MI, SrcMBB, SuccToSinkTo, HasNonPHIUse);
          if (!NewSucc) {
            DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
                            "break critical edge\n");
            return false;
          }

          DEBUG(dbgs() << " *** Splitting critical edge:"
                " BB#" << SrcMBB->getNumber()
                << " -- BB#" << NewSucc->getNumber()
                << " -- BB#" << SuccToSinkTo->getNumber() << '\n');
          SuccToSinkTo = NewSucc;
          InsertPos = NewSucc->begin();
          ++NumSplit;
          break;
        }
      }
    }
  }

  // Move the instruction.
  SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
                       ++MachineBasicBlock::iterator(MI));

  // Conservatively, clear any kill flags, since it's possible that they are no
  // longer correct.
  MI->clearKillInfo();

  return true;
}