aboutsummaryrefslogtreecommitdiff
path: root/lib/CodeGen/LiveIntervalAnalysis.cpp
blob: 5f5aa3b203f9e003e577b1330cc79b997cff442a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveInterval analysis pass which is used
// by the Linear Scan Register allocator. This pass linearizes the
// basic blocks of the function in DFS order and uses the
// LiveVariables pass to conservatively compute live intervals for
// each virtual and physical register.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "liveintervals"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "VirtRegMap.h"
#include "llvm/Value.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/ProcessImplicitDefs.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
#include <limits>
#include <cmath>
using namespace llvm;

// Hidden options for help debugging.
static cl::opt<bool> DisableReMat("disable-rematerialization", 
                                  cl::init(false), cl::Hidden);

STATISTIC(numIntervals , "Number of original intervals");
STATISTIC(numFolds     , "Number of loads/stores folded into instructions");
STATISTIC(numSplits    , "Number of intervals split");

char LiveIntervals::ID = 0;
static RegisterPass<LiveIntervals> X("liveintervals", "Live Interval Analysis");

void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  AU.addRequired<AliasAnalysis>();
  AU.addPreserved<AliasAnalysis>();
  AU.addPreserved<LiveVariables>();
  AU.addRequired<LiveVariables>();
  AU.addPreservedID(MachineLoopInfoID);
  AU.addPreservedID(MachineDominatorsID);
  
  if (!StrongPHIElim) {
    AU.addPreservedID(PHIEliminationID);
    AU.addRequiredID(PHIEliminationID);
  }
  
  AU.addRequiredID(TwoAddressInstructionPassID);
  AU.addPreserved<ProcessImplicitDefs>();
  AU.addRequired<ProcessImplicitDefs>();
  AU.addPreserved<SlotIndexes>();
  AU.addRequiredTransitive<SlotIndexes>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

void LiveIntervals::releaseMemory() {
  // Free the live intervals themselves.
  for (DenseMap<unsigned, LiveInterval*>::iterator I = r2iMap_.begin(),
       E = r2iMap_.end(); I != E; ++I)
    delete I->second;
  
  r2iMap_.clear();

  // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
  VNInfoAllocator.Reset();
  while (!CloneMIs.empty()) {
    MachineInstr *MI = CloneMIs.back();
    CloneMIs.pop_back();
    mf_->DeleteMachineInstr(MI);
  }
}

/// runOnMachineFunction - Register allocate the whole function
///
bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
  mf_ = &fn;
  mri_ = &mf_->getRegInfo();
  tm_ = &fn.getTarget();
  tri_ = tm_->getRegisterInfo();
  tii_ = tm_->getInstrInfo();
  aa_ = &getAnalysis<AliasAnalysis>();
  lv_ = &getAnalysis<LiveVariables>();
  indexes_ = &getAnalysis<SlotIndexes>();
  allocatableRegs_ = tri_->getAllocatableSet(fn);

  computeIntervals();

  numIntervals += getNumIntervals();

  DEBUG(dump());
  return true;
}

/// print - Implement the dump method.
void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
  OS << "********** INTERVALS **********\n";
  for (const_iterator I = begin(), E = end(); I != E; ++I) {
    I->second->print(OS, tri_);
    OS << "\n";
  }

  printInstrs(OS);
}

void LiveIntervals::printInstrs(raw_ostream &OS) const {
  OS << "********** MACHINEINSTRS **********\n";

  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
       mbbi != mbbe; ++mbbi) {
    OS << "BB#" << mbbi->getNumber()
       << ":\t\t# derived from " << mbbi->getName() << "\n";
    for (MachineBasicBlock::iterator mii = mbbi->begin(),
           mie = mbbi->end(); mii != mie; ++mii) {
      if (mii->isDebugValue())
        OS << "    \t" << *mii;
      else
        OS << getInstructionIndex(mii) << '\t' << *mii;
    }
  }
}

void LiveIntervals::dumpInstrs() const {
  printInstrs(dbgs());
}

bool LiveIntervals::conflictsWithPhysReg(const LiveInterval &li,
                                         VirtRegMap &vrm, unsigned reg) {
  // We don't handle fancy stuff crossing basic block boundaries
  if (li.ranges.size() != 1)
    return true;
  const LiveRange &range = li.ranges.front();
  SlotIndex idx = range.start.getBaseIndex();
  SlotIndex end = range.end.getPrevSlot().getBaseIndex().getNextIndex();

  // Skip deleted instructions
  MachineInstr *firstMI = getInstructionFromIndex(idx);
  while (!firstMI && idx != end) {
    idx = idx.getNextIndex();
    firstMI = getInstructionFromIndex(idx);
  }
  if (!firstMI)
    return false;

  // Find last instruction in range
  SlotIndex lastIdx = end.getPrevIndex();
  MachineInstr *lastMI = getInstructionFromIndex(lastIdx);
  while (!lastMI && lastIdx != idx) {
    lastIdx = lastIdx.getPrevIndex();
    lastMI = getInstructionFromIndex(lastIdx);
  }
  if (!lastMI)
    return false;

  // Range cannot cross basic block boundaries or terminators
  MachineBasicBlock *MBB = firstMI->getParent();
  if (MBB != lastMI->getParent() || lastMI->getDesc().isTerminator())
    return true;

  MachineBasicBlock::const_iterator E = lastMI;
  ++E;
  for (MachineBasicBlock::const_iterator I = firstMI; I != E; ++I) {
    const MachineInstr &MI = *I;

    // Allow copies to and from li.reg
    unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
    if (tii_->isMoveInstr(MI, SrcReg, DstReg, SrcSubReg, DstSubReg))
      if (SrcReg == li.reg || DstReg == li.reg)
        continue;

    // Check for operands using reg
    for (unsigned i = 0, e = MI.getNumOperands(); i != e;  ++i) {
      const MachineOperand& mop = MI.getOperand(i);
      if (!mop.isReg())
        continue;
      unsigned PhysReg = mop.getReg();
      if (PhysReg == 0 || PhysReg == li.reg)
        continue;
      if (TargetRegisterInfo::isVirtualRegister(PhysReg)) {
        if (!vrm.hasPhys(PhysReg))
          continue;
        PhysReg = vrm.getPhys(PhysReg);
      }
      if (PhysReg && tri_->regsOverlap(PhysReg, reg))
        return true;
    }
  }

  // No conflicts found.
  return false;
}

bool LiveIntervals::conflictsWithAliasRef(LiveInterval &li, unsigned Reg,
                                  SmallPtrSet<MachineInstr*,32> &JoinedCopies) {
  for (LiveInterval::Ranges::const_iterator
         I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
    for (SlotIndex index = I->start.getBaseIndex(),
           end = I->end.getPrevSlot().getBaseIndex().getNextIndex();
           index != end;
           index = index.getNextIndex()) {
      MachineInstr *MI = getInstructionFromIndex(index);
      if (!MI)
        continue;               // skip deleted instructions

      if (JoinedCopies.count(MI))
        continue;
      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
        MachineOperand& MO = MI->getOperand(i);
        if (!MO.isReg())
          continue;
        unsigned PhysReg = MO.getReg();
        if (PhysReg == 0 || PhysReg == Reg ||
            TargetRegisterInfo::isVirtualRegister(PhysReg))
          continue;
        if (tri_->regsOverlap(Reg, PhysReg))
          return true;
      }
    }
  }

  return false;
}

#ifndef NDEBUG
static void printRegName(unsigned reg, const TargetRegisterInfo* tri_) {
  if (TargetRegisterInfo::isPhysicalRegister(reg))
    dbgs() << tri_->getName(reg);
  else
    dbgs() << "%reg" << reg;
}
#endif

static
bool MultipleDefsBySameMI(const MachineInstr &MI, unsigned MOIdx) {
  unsigned Reg = MI.getOperand(MOIdx).getReg();
  for (unsigned i = MOIdx+1, e = MI.getNumOperands(); i < e; ++i) {
    const MachineOperand &MO = MI.getOperand(i);
    if (!MO.isReg())
      continue;
    if (MO.getReg() == Reg && MO.isDef()) {
      assert(MI.getOperand(MOIdx).getSubReg() != MO.getSubReg() &&
             MI.getOperand(MOIdx).getSubReg() &&
             MO.getSubReg());
      return true;
    }
  }
  return false;
}

/// isPartialRedef - Return true if the specified def at the specific index is
/// partially re-defining the specified live interval. A common case of this is
/// a definition of the sub-register. 
bool LiveIntervals::isPartialRedef(SlotIndex MIIdx, MachineOperand &MO,
                                   LiveInterval &interval) {
  if (!MO.getSubReg() || MO.isEarlyClobber())
    return false;

  SlotIndex RedefIndex = MIIdx.getDefIndex();
  const LiveRange *OldLR =
    interval.getLiveRangeContaining(RedefIndex.getUseIndex());
  if (OldLR->valno->isDefAccurate()) {
    MachineInstr *DefMI = getInstructionFromIndex(OldLR->valno->def);
    return DefMI->findRegisterDefOperandIdx(interval.reg) != -1;
  }
  return false;
}

void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
                                             MachineBasicBlock::iterator mi,
                                             SlotIndex MIIdx,
                                             MachineOperand& MO,
                                             unsigned MOIdx,
                                             LiveInterval &interval) {
  DEBUG({
      dbgs() << "\t\tregister: ";
      printRegName(interval.reg, tri_);
    });

  // Virtual registers may be defined multiple times (due to phi
  // elimination and 2-addr elimination).  Much of what we do only has to be
  // done once for the vreg.  We use an empty interval to detect the first
  // time we see a vreg.
  LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
  if (interval.empty()) {
    // Get the Idx of the defining instructions.
    SlotIndex defIndex = MIIdx.getDefIndex();
    // Earlyclobbers move back one, so that they overlap the live range
    // of inputs.
    if (MO.isEarlyClobber())
      defIndex = MIIdx.getUseIndex();

    // Make sure the first definition is not a partial redefinition. Add an
    // <imp-def> of the full register.
    if (MO.getSubReg())
      mi->addRegisterDefined(interval.reg);

    MachineInstr *CopyMI = NULL;
    unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
    if (mi->isExtractSubreg() || mi->isInsertSubreg() || mi->isSubregToReg() ||
        tii_->isMoveInstr(*mi, SrcReg, DstReg, SrcSubReg, DstSubReg)) {
      CopyMI = mi;

      // Some of the REG_SEQUENCE lowering in TwoAddressInstrPass creates
      // implicit defs without really knowing. It shows up as INSERT_SUBREG
      // using an undefined register.
      if (mi->isInsertSubreg())
        mi->getOperand(1).setIsUndef();
    }

    VNInfo *ValNo = interval.getNextValue(defIndex, CopyMI, true,
                                          VNInfoAllocator);
    assert(ValNo->id == 0 && "First value in interval is not 0?");

    // Loop over all of the blocks that the vreg is defined in.  There are
    // two cases we have to handle here.  The most common case is a vreg
    // whose lifetime is contained within a basic block.  In this case there
    // will be a single kill, in MBB, which comes after the definition.
    if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
      // FIXME: what about dead vars?
      SlotIndex killIdx;
      if (vi.Kills[0] != mi)
        killIdx = getInstructionIndex(vi.Kills[0]).getDefIndex();
      else
        killIdx = defIndex.getStoreIndex();

      // If the kill happens after the definition, we have an intra-block
      // live range.
      if (killIdx > defIndex) {
        assert(vi.AliveBlocks.empty() &&
               "Shouldn't be alive across any blocks!");
        LiveRange LR(defIndex, killIdx, ValNo);
        interval.addRange(LR);
        DEBUG(dbgs() << " +" << LR << "\n");
        return;
      }
    }

    // The other case we handle is when a virtual register lives to the end
    // of the defining block, potentially live across some blocks, then is
    // live into some number of blocks, but gets killed.  Start by adding a
    // range that goes from this definition to the end of the defining block.
    LiveRange NewLR(defIndex, getMBBEndIdx(mbb), ValNo);
    DEBUG(dbgs() << " +" << NewLR);
    interval.addRange(NewLR);

    bool PHIJoin = lv_->isPHIJoin(interval.reg);

    if (PHIJoin) {
      // A phi join register is killed at the end of the MBB and revived as a new
      // valno in the killing blocks.
      assert(vi.AliveBlocks.empty() && "Phi join can't pass through blocks");
      DEBUG(dbgs() << " phi-join");
      ValNo->setHasPHIKill(true);
    } else {
      // Iterate over all of the blocks that the variable is completely
      // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
      // live interval.
      for (SparseBitVector<>::iterator I = vi.AliveBlocks.begin(),
               E = vi.AliveBlocks.end(); I != E; ++I) {
        MachineBasicBlock *aliveBlock = mf_->getBlockNumbered(*I);
        LiveRange LR(getMBBStartIdx(aliveBlock), getMBBEndIdx(aliveBlock), ValNo);
        interval.addRange(LR);
        DEBUG(dbgs() << " +" << LR);
      }
    }

    // Finally, this virtual register is live from the start of any killing
    // block to the 'use' slot of the killing instruction.
    for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
      MachineInstr *Kill = vi.Kills[i];
      SlotIndex Start = getMBBStartIdx(Kill->getParent());
      SlotIndex killIdx = getInstructionIndex(Kill).getDefIndex();

      // Create interval with one of a NEW value number.  Note that this value
      // number isn't actually defined by an instruction, weird huh? :)
      if (PHIJoin) {
        ValNo = interval.getNextValue(SlotIndex(Start, true), 0, false,
                                      VNInfoAllocator);
        ValNo->setIsPHIDef(true);
      }
      LiveRange LR(Start, killIdx, ValNo);
      interval.addRange(LR);
      DEBUG(dbgs() << " +" << LR);
    }

  } else {
    if (MultipleDefsBySameMI(*mi, MOIdx))
      // Multiple defs of the same virtual register by the same instruction.
      // e.g. %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
      // This is likely due to elimination of REG_SEQUENCE instructions. Return
      // here since there is nothing to do.
      return;

    // If this is the second time we see a virtual register definition, it
    // must be due to phi elimination or two addr elimination.  If this is
    // the result of two address elimination, then the vreg is one of the
    // def-and-use register operand.

    // It may also be partial redef like this:
    // 80	%reg1041:6<def> = VSHRNv4i16 %reg1034<kill>, 12, pred:14, pred:%reg0
    // 120	%reg1041:5<def> = VSHRNv4i16 %reg1039<kill>, 12, pred:14, pred:%reg0
    bool PartReDef = isPartialRedef(MIIdx, MO, interval);
    if (PartReDef || mi->isRegTiedToUseOperand(MOIdx)) {
      // If this is a two-address definition, then we have already processed
      // the live range.  The only problem is that we didn't realize there
      // are actually two values in the live interval.  Because of this we
      // need to take the LiveRegion that defines this register and split it
      // into two values.
      SlotIndex RedefIndex = MIIdx.getDefIndex();
      if (MO.isEarlyClobber())
        RedefIndex = MIIdx.getUseIndex();

      const LiveRange *OldLR =
        interval.getLiveRangeContaining(RedefIndex.getUseIndex());
      VNInfo *OldValNo = OldLR->valno;
      SlotIndex DefIndex = OldValNo->def.getDefIndex();

      // Delete the previous value, which should be short and continuous,
      // because the 2-addr copy must be in the same MBB as the redef.
      interval.removeRange(DefIndex, RedefIndex);

      // The new value number (#1) is defined by the instruction we claimed
      // defined value #0.
      VNInfo *ValNo = interval.getNextValue(OldValNo->def, OldValNo->getCopy(),
                                            false, // update at *
                                            VNInfoAllocator);
      ValNo->setFlags(OldValNo->getFlags()); // * <- updating here

      // Value#0 is now defined by the 2-addr instruction.
      OldValNo->def  = RedefIndex;
      OldValNo->setCopy(0);

      // A re-def may be a copy. e.g. %reg1030:6<def> = VMOVD %reg1026, ...
      unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
      if (PartReDef &&
          tii_->isMoveInstr(*mi, SrcReg, DstReg, SrcSubReg, DstSubReg))
        OldValNo->setCopy(&*mi);
      
      // Add the new live interval which replaces the range for the input copy.
      LiveRange LR(DefIndex, RedefIndex, ValNo);
      DEBUG(dbgs() << " replace range with " << LR);
      interval.addRange(LR);

      // If this redefinition is dead, we need to add a dummy unit live
      // range covering the def slot.
      if (MO.isDead())
        interval.addRange(LiveRange(RedefIndex, RedefIndex.getStoreIndex(),
                                    OldValNo));

      DEBUG({
          dbgs() << " RESULT: ";
          interval.print(dbgs(), tri_);
        });
    } else if (lv_->isPHIJoin(interval.reg)) {
      // In the case of PHI elimination, each variable definition is only
      // live until the end of the block.  We've already taken care of the
      // rest of the live range.

      SlotIndex defIndex = MIIdx.getDefIndex();
      if (MO.isEarlyClobber())
        defIndex = MIIdx.getUseIndex();

      VNInfo *ValNo;
      MachineInstr *CopyMI = NULL;
      unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
      if (mi->isExtractSubreg() || mi->isInsertSubreg() || mi->isSubregToReg()||
          tii_->isMoveInstr(*mi, SrcReg, DstReg, SrcSubReg, DstSubReg))
        CopyMI = mi;
      ValNo = interval.getNextValue(defIndex, CopyMI, true, VNInfoAllocator);
      
      SlotIndex killIndex = getMBBEndIdx(mbb);
      LiveRange LR(defIndex, killIndex, ValNo);
      interval.addRange(LR);
      ValNo->setHasPHIKill(true);
      DEBUG(dbgs() << " phi-join +" << LR);
    } else {
      llvm_unreachable("Multiply defined register");
    }
  }

  DEBUG(dbgs() << '\n');
}

void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
                                              MachineBasicBlock::iterator mi,
                                              SlotIndex MIIdx,
                                              MachineOperand& MO,
                                              LiveInterval &interval,
                                              MachineInstr *CopyMI) {
  // A physical register cannot be live across basic block, so its
  // lifetime must end somewhere in its defining basic block.
  DEBUG({
      dbgs() << "\t\tregister: ";
      printRegName(interval.reg, tri_);
    });

  SlotIndex baseIndex = MIIdx;
  SlotIndex start = baseIndex.getDefIndex();
  // Earlyclobbers move back one.
  if (MO.isEarlyClobber())
    start = MIIdx.getUseIndex();
  SlotIndex end = start;

  // If it is not used after definition, it is considered dead at
  // the instruction defining it. Hence its interval is:
  // [defSlot(def), defSlot(def)+1)
  // For earlyclobbers, the defSlot was pushed back one; the extra
  // advance below compensates.
  if (MO.isDead()) {
    DEBUG(dbgs() << " dead");
    end = start.getStoreIndex();
    goto exit;
  }

  // If it is not dead on definition, it must be killed by a
  // subsequent instruction. Hence its interval is:
  // [defSlot(def), useSlot(kill)+1)
  baseIndex = baseIndex.getNextIndex();
  while (++mi != MBB->end()) {

    if (mi->isDebugValue())
      continue;
    if (getInstructionFromIndex(baseIndex) == 0)
      baseIndex = indexes_->getNextNonNullIndex(baseIndex);

    if (mi->killsRegister(interval.reg, tri_)) {
      DEBUG(dbgs() << " killed");
      end = baseIndex.getDefIndex();
      goto exit;
    } else {
      int DefIdx = mi->findRegisterDefOperandIdx(interval.reg,false,false,tri_);
      if (DefIdx != -1) {
        if (mi->isRegTiedToUseOperand(DefIdx)) {
          // Two-address instruction.
          end = baseIndex.getDefIndex();
        } else {
          // Another instruction redefines the register before it is ever read.
          // Then the register is essentially dead at the instruction that
          // defines it. Hence its interval is:
          // [defSlot(def), defSlot(def)+1)
          DEBUG(dbgs() << " dead");
          end = start.getStoreIndex();
        }
        goto exit;
      }
    }
    
    baseIndex = baseIndex.getNextIndex();
  }
  
  // The only case we should have a dead physreg here without a killing or
  // instruction where we know it's dead is if it is live-in to the function
  // and never used. Another possible case is the implicit use of the
  // physical register has been deleted by two-address pass.
  end = start.getStoreIndex();

exit:
  assert(start < end && "did not find end of interval?");

  // Already exists? Extend old live interval.
  LiveInterval::iterator OldLR = interval.FindLiveRangeContaining(start);
  bool Extend = OldLR != interval.end();
  VNInfo *ValNo = Extend
    ? OldLR->valno : interval.getNextValue(start, CopyMI, true, VNInfoAllocator);
  if (MO.isEarlyClobber() && Extend)
    ValNo->setHasRedefByEC(true);
  LiveRange LR(start, end, ValNo);
  interval.addRange(LR);
  DEBUG(dbgs() << " +" << LR << '\n');
}

void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
                                      MachineBasicBlock::iterator MI,
                                      SlotIndex MIIdx,
                                      MachineOperand& MO,
                                      unsigned MOIdx) {
  if (TargetRegisterInfo::isVirtualRegister(MO.getReg()))
    handleVirtualRegisterDef(MBB, MI, MIIdx, MO, MOIdx,
                             getOrCreateInterval(MO.getReg()));
  else if (allocatableRegs_[MO.getReg()]) {
    MachineInstr *CopyMI = NULL;
    unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
    if (MI->isExtractSubreg() || MI->isInsertSubreg() || MI->isSubregToReg() ||
        tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubReg, DstSubReg))
      CopyMI = MI;
    handlePhysicalRegisterDef(MBB, MI, MIIdx, MO,
                              getOrCreateInterval(MO.getReg()), CopyMI);
    // Def of a register also defines its sub-registers.
    for (const unsigned* AS = tri_->getSubRegisters(MO.getReg()); *AS; ++AS)
      // If MI also modifies the sub-register explicitly, avoid processing it
      // more than once. Do not pass in TRI here so it checks for exact match.
      if (!MI->definesRegister(*AS))
        handlePhysicalRegisterDef(MBB, MI, MIIdx, MO,
                                  getOrCreateInterval(*AS), 0);
  }
}

void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
                                         SlotIndex MIIdx,
                                         LiveInterval &interval, bool isAlias) {
  DEBUG({
      dbgs() << "\t\tlivein register: ";
      printRegName(interval.reg, tri_);
    });

  // Look for kills, if it reaches a def before it's killed, then it shouldn't
  // be considered a livein.
  MachineBasicBlock::iterator mi = MBB->begin();
  MachineBasicBlock::iterator E = MBB->end();
  // Skip over DBG_VALUE at the start of the MBB.
  if (mi != E && mi->isDebugValue()) {
    while (++mi != E && mi->isDebugValue())
      ;
    if (mi == E)
      // MBB is empty except for DBG_VALUE's.
      return;
  }

  SlotIndex baseIndex = MIIdx;
  SlotIndex start = baseIndex;
  if (getInstructionFromIndex(baseIndex) == 0)
    baseIndex = indexes_->getNextNonNullIndex(baseIndex);

  SlotIndex end = baseIndex;
  bool SeenDefUse = false;

  while (mi != E) {
    if (mi->killsRegister(interval.reg, tri_)) {
      DEBUG(dbgs() << " killed");
      end = baseIndex.getDefIndex();
      SeenDefUse = true;
      break;
    } else if (mi->definesRegister(interval.reg, tri_)) {
      // Another instruction redefines the register before it is ever read.
      // Then the register is essentially dead at the instruction that defines
      // it. Hence its interval is:
      // [defSlot(def), defSlot(def)+1)
      DEBUG(dbgs() << " dead");
      end = start.getStoreIndex();
      SeenDefUse = true;
      break;
    }

    while (++mi != E && mi->isDebugValue())
      // Skip over DBG_VALUE.
      ;
    if (mi != E)
      baseIndex = indexes_->getNextNonNullIndex(baseIndex);
  }

  // Live-in register might not be used at all.
  if (!SeenDefUse) {
    if (isAlias) {
      DEBUG(dbgs() << " dead");
      end = MIIdx.getStoreIndex();
    } else {
      DEBUG(dbgs() << " live through");
      end = baseIndex;
    }
  }

  VNInfo *vni =
    interval.getNextValue(SlotIndex(getMBBStartIdx(MBB), true),
                          0, false, VNInfoAllocator);
  vni->setIsPHIDef(true);
  LiveRange LR(start, end, vni);

  interval.addRange(LR);
  DEBUG(dbgs() << " +" << LR << '\n');
}

/// computeIntervals - computes the live intervals for virtual
/// registers. for some ordering of the machine instructions [1,N] a
/// live interval is an interval [i, j) where 1 <= i <= j < N for
/// which a variable is live
void LiveIntervals::computeIntervals() { 
  DEBUG(dbgs() << "********** COMPUTING LIVE INTERVALS **********\n"
               << "********** Function: "
               << ((Value*)mf_->getFunction())->getName() << '\n');

  SmallVector<unsigned, 8> UndefUses;
  for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
       MBBI != E; ++MBBI) {
    MachineBasicBlock *MBB = MBBI;
    if (MBB->empty())
      continue;

    // Track the index of the current machine instr.
    SlotIndex MIIndex = getMBBStartIdx(MBB);
    DEBUG(dbgs() << "BB#" << MBB->getNumber()
          << ":\t\t# derived from " << MBB->getName() << "\n");

    // Create intervals for live-ins to this BB first.
    for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(),
           LE = MBB->livein_end(); LI != LE; ++LI) {
      handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI));
      // Multiple live-ins can alias the same register.
      for (const unsigned* AS = tri_->getSubRegisters(*LI); *AS; ++AS)
        if (!hasInterval(*AS))
          handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*AS),
                               true);
    }
    
    // Skip over empty initial indices.
    if (getInstructionFromIndex(MIIndex) == 0)
      MIIndex = indexes_->getNextNonNullIndex(MIIndex);
    
    for (MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
         MI != miEnd; ++MI) {
      DEBUG(dbgs() << MIIndex << "\t" << *MI);
      if (MI->isDebugValue())
        continue;

      // Handle defs.
      for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
        MachineOperand &MO = MI->getOperand(i);
        if (!MO.isReg() || !MO.getReg())
          continue;

        // handle register defs - build intervals
        if (MO.isDef())
          handleRegisterDef(MBB, MI, MIIndex, MO, i);
        else if (MO.isUndef())
          UndefUses.push_back(MO.getReg());
      }
      
      // Move to the next instr slot.
      MIIndex = indexes_->getNextNonNullIndex(MIIndex);
    }
  }

  // Create empty intervals for registers defined by implicit_def's (except
  // for those implicit_def that define values which are liveout of their
  // blocks.
  for (unsigned i = 0, e = UndefUses.size(); i != e; ++i) {
    unsigned UndefReg = UndefUses[i];
    (void)getOrCreateInterval(UndefReg);
  }
}

LiveInterval* LiveIntervals::createInterval(unsigned reg) {
  float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? HUGE_VALF : 0.0F;
  return new LiveInterval(reg, Weight);
}

/// dupInterval - Duplicate a live interval. The caller is responsible for
/// managing the allocated memory.
LiveInterval* LiveIntervals::dupInterval(LiveInterval *li) {
  LiveInterval *NewLI = createInterval(li->reg);
  NewLI->Copy(*li, mri_, getVNInfoAllocator());
  return NewLI;
}

//===----------------------------------------------------------------------===//
// Register allocator hooks.
//

/// getReMatImplicitUse - If the remat definition MI has one (for now, we only
/// allow one) virtual register operand, then its uses are implicitly using
/// the register. Returns the virtual register.
unsigned LiveIntervals::getReMatImplicitUse(const LiveInterval &li,
                                            MachineInstr *MI) const {
  unsigned RegOp = 0;
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg() || !MO.isUse())
      continue;
    unsigned Reg = MO.getReg();
    if (Reg == 0 || Reg == li.reg)
      continue;
    
    if (TargetRegisterInfo::isPhysicalRegister(Reg) &&
        !allocatableRegs_[Reg])
      continue;
    // FIXME: For now, only remat MI with at most one register operand.
    assert(!RegOp &&
           "Can't rematerialize instruction with multiple register operand!");
    RegOp = MO.getReg();
#ifndef NDEBUG
    break;
#endif
  }
  return RegOp;
}

/// isValNoAvailableAt - Return true if the val# of the specified interval
/// which reaches the given instruction also reaches the specified use index.
bool LiveIntervals::isValNoAvailableAt(const LiveInterval &li, MachineInstr *MI,
                                       SlotIndex UseIdx) const {
  SlotIndex Index = getInstructionIndex(MI);  
  VNInfo *ValNo = li.FindLiveRangeContaining(Index)->valno;
  LiveInterval::const_iterator UI = li.FindLiveRangeContaining(UseIdx);
  return UI != li.end() && UI->valno == ValNo;
}

/// isReMaterializable - Returns true if the definition MI of the specified
/// val# of the specified interval is re-materializable.
bool LiveIntervals::isReMaterializable(const LiveInterval &li,
                                       const VNInfo *ValNo, MachineInstr *MI,
                                       SmallVectorImpl<LiveInterval*> &SpillIs,
                                       bool &isLoad) {
  if (DisableReMat)
    return false;

  if (!tii_->isTriviallyReMaterializable(MI, aa_))
    return false;

  // Target-specific code can mark an instruction as being rematerializable
  // if it has one virtual reg use, though it had better be something like
  // a PIC base register which is likely to be live everywhere.
  unsigned ImpUse = getReMatImplicitUse(li, MI);
  if (ImpUse) {
    const LiveInterval &ImpLi = getInterval(ImpUse);
    for (MachineRegisterInfo::use_nodbg_iterator
           ri = mri_->use_nodbg_begin(li.reg), re = mri_->use_nodbg_end();
         ri != re; ++ri) {
      MachineInstr *UseMI = &*ri;
      SlotIndex UseIdx = getInstructionIndex(UseMI);
      if (li.FindLiveRangeContaining(UseIdx)->valno != ValNo)
        continue;
      if (!isValNoAvailableAt(ImpLi, MI, UseIdx))
        return false;
    }

    // If a register operand of the re-materialized instruction is going to
    // be spilled next, then it's not legal to re-materialize this instruction.
    for (unsigned i = 0, e = SpillIs.size(); i != e; ++i)
      if (ImpUse == SpillIs[i]->reg)
        return false;
  }
  return true;
}

/// isReMaterializable - Returns true if the definition MI of the specified
/// val# of the specified interval is re-materializable.
bool LiveIntervals::isReMaterializable(const LiveInterval &li,
                                       const VNInfo *ValNo, MachineInstr *MI) {
  SmallVector<LiveInterval*, 4> Dummy1;
  bool Dummy2;
  return isReMaterializable(li, ValNo, MI, Dummy1, Dummy2);
}

/// isReMaterializable - Returns true if every definition of MI of every
/// val# of the specified interval is re-materializable.
bool LiveIntervals::isReMaterializable(const LiveInterval &li,
                                       SmallVectorImpl<LiveInterval*> &SpillIs,
                                       bool &isLoad) {
  isLoad = false;
  for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
       i != e; ++i) {
    const VNInfo *VNI = *i;
    if (VNI->isUnused())
      continue; // Dead val#.
    // Is the def for the val# rematerializable?
    if (!VNI->isDefAccurate())
      return false;
    MachineInstr *ReMatDefMI = getInstructionFromIndex(VNI->def);
    bool DefIsLoad = false;
    if (!ReMatDefMI ||
        !isReMaterializable(li, VNI, ReMatDefMI, SpillIs, DefIsLoad))
      return false;
    isLoad |= DefIsLoad;
  }
  return true;
}

/// FilterFoldedOps - Filter out two-address use operands. Return
/// true if it finds any issue with the operands that ought to prevent
/// folding.
static bool FilterFoldedOps(MachineInstr *MI,
                            SmallVector<unsigned, 2> &Ops,
                            unsigned &MRInfo,
                            SmallVector<unsigned, 2> &FoldOps) {
  MRInfo = 0;
  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
    unsigned OpIdx = Ops[i];
    MachineOperand &MO = MI->getOperand(OpIdx);
    // FIXME: fold subreg use.
    if (MO.getSubReg())
      return true;
    if (MO.isDef())
      MRInfo |= (unsigned)VirtRegMap::isMod;
    else {
      // Filter out two-address use operand(s).
      if (MI->isRegTiedToDefOperand(OpIdx)) {
        MRInfo = VirtRegMap::isModRef;
        continue;
      }
      MRInfo |= (unsigned)VirtRegMap::isRef;
    }
    FoldOps.push_back(OpIdx);
  }
  return false;
}
                           

/// tryFoldMemoryOperand - Attempts to fold either a spill / restore from
/// slot / to reg or any rematerialized load into ith operand of specified
/// MI. If it is successul, MI is updated with the newly created MI and
/// returns true.
bool LiveIntervals::tryFoldMemoryOperand(MachineInstr* &MI,
                                         VirtRegMap &vrm, MachineInstr *DefMI,
                                         SlotIndex InstrIdx,
                                         SmallVector<unsigned, 2> &Ops,
                                         bool isSS, int Slot, unsigned Reg) {
  // If it is an implicit def instruction, just delete it.
  if (MI->isImplicitDef()) {
    RemoveMachineInstrFromMaps(MI);
    vrm.RemoveMachineInstrFromMaps(MI);
    MI->eraseFromParent();
    ++numFolds;
    return true;
  }

  // Filter the list of operand indexes that are to be folded. Abort if
  // any operand will prevent folding.
  unsigned MRInfo = 0;
  SmallVector<unsigned, 2> FoldOps;
  if (FilterFoldedOps(MI, Ops, MRInfo, FoldOps))
    return false;

  // The only time it's safe to fold into a two address instruction is when
  // it's folding reload and spill from / into a spill stack slot.
  if (DefMI && (MRInfo & VirtRegMap::isMod))
    return false;

  MachineInstr *fmi = isSS ? tii_->foldMemoryOperand(*mf_, MI, FoldOps, Slot)
                           : tii_->foldMemoryOperand(*mf_, MI, FoldOps, DefMI);
  if (fmi) {
    // Remember this instruction uses the spill slot.
    if (isSS) vrm.addSpillSlotUse(Slot, fmi);

    // Attempt to fold the memory reference into the instruction. If
    // we can do this, we don't need to insert spill code.
    MachineBasicBlock &MBB = *MI->getParent();
    if (isSS && !mf_->getFrameInfo()->isImmutableObjectIndex(Slot))
      vrm.virtFolded(Reg, MI, fmi, (VirtRegMap::ModRef)MRInfo);
    vrm.transferSpillPts(MI, fmi);
    vrm.transferRestorePts(MI, fmi);
    vrm.transferEmergencySpills(MI, fmi);
    ReplaceMachineInstrInMaps(MI, fmi);
    MI = MBB.insert(MBB.erase(MI), fmi);
    ++numFolds;
    return true;
  }
  return false;
}

/// canFoldMemoryOperand - Returns true if the specified load / store
/// folding is possible.
bool LiveIntervals::canFoldMemoryOperand(MachineInstr *MI,
                                         SmallVector<unsigned, 2> &Ops,
                                         bool ReMat) const {
  // Filter the list of operand indexes that are to be folded. Abort if
  // any operand will prevent folding.
  unsigned MRInfo = 0;
  SmallVector<unsigned, 2> FoldOps;
  if (FilterFoldedOps(MI, Ops, MRInfo, FoldOps))
    return false;

  // It's only legal to remat for a use, not a def.
  if (ReMat && (MRInfo & VirtRegMap::isMod))
    return false;

  return tii_->canFoldMemoryOperand(MI, FoldOps);
}

bool LiveIntervals::intervalIsInOneMBB(const LiveInterval &li) const {
  LiveInterval::Ranges::const_iterator itr = li.ranges.begin();

  MachineBasicBlock *mbb =  indexes_->getMBBCoveringRange(itr->start, itr->end);

  if (mbb == 0)
    return false;

  for (++itr; itr != li.ranges.end(); ++itr) {
    MachineBasicBlock *mbb2 =
      indexes_->getMBBCoveringRange(itr->start, itr->end);

    if (mbb2 != mbb)
      return false;
  }

  return true;
}

/// rewriteImplicitOps - Rewrite implicit use operands of MI (i.e. uses of
/// interval on to-be re-materialized operands of MI) with new register.
void LiveIntervals::rewriteImplicitOps(const LiveInterval &li,
                                       MachineInstr *MI, unsigned NewVReg,
                                       VirtRegMap &vrm) {
  // There is an implicit use. That means one of the other operand is
  // being remat'ed and the remat'ed instruction has li.reg as an
  // use operand. Make sure we rewrite that as well.
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg())
      continue;
    unsigned Reg = MO.getReg();
    if (Reg == 0 || TargetRegisterInfo::isPhysicalRegister(Reg))
      continue;
    if (!vrm.isReMaterialized(Reg))
      continue;
    MachineInstr *ReMatMI = vrm.getReMaterializedMI(Reg);
    MachineOperand *UseMO = ReMatMI->findRegisterUseOperand(li.reg);
    if (UseMO)
      UseMO->setReg(NewVReg);
  }
}

/// rewriteInstructionForSpills, rewriteInstructionsForSpills - Helper functions
/// for addIntervalsForSpills to rewrite uses / defs for the given live range.
bool LiveIntervals::
rewriteInstructionForSpills(const LiveInterval &li, const VNInfo *VNI,
                 bool TrySplit, SlotIndex index, SlotIndex end, 
                 MachineInstr *MI,
                 MachineInstr *ReMatOrigDefMI, MachineInstr *ReMatDefMI,
                 unsigned Slot, int LdSlot,
                 bool isLoad, bool isLoadSS, bool DefIsReMat, bool CanDelete,
                 VirtRegMap &vrm,
                 const TargetRegisterClass* rc,
                 SmallVector<int, 4> &ReMatIds,
                 const MachineLoopInfo *loopInfo,
                 unsigned &NewVReg, unsigned ImpUse, bool &HasDef, bool &HasUse,
                 DenseMap<unsigned,unsigned> &MBBVRegsMap,
                 std::vector<LiveInterval*> &NewLIs) {
  bool CanFold = false;
 RestartInstruction:
  for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
    MachineOperand& mop = MI->getOperand(i);
    if (!mop.isReg())
      continue;
    unsigned Reg = mop.getReg();
    if (Reg == 0 || TargetRegisterInfo::isPhysicalRegister(Reg))
      continue;
    if (Reg != li.reg)
      continue;

    bool TryFold = !DefIsReMat;
    bool FoldSS = true; // Default behavior unless it's a remat.
    int FoldSlot = Slot;
    if (DefIsReMat) {
      // If this is the rematerializable definition MI itself and
      // all of its uses are rematerialized, simply delete it.
      if (MI == ReMatOrigDefMI && CanDelete) {
        DEBUG(dbgs() << "\t\t\t\tErasing re-materializable def: "
                     << *MI << '\n');
        RemoveMachineInstrFromMaps(MI);
        vrm.RemoveMachineInstrFromMaps(MI);
        MI->eraseFromParent();
        break;
      }

      // If def for this use can't be rematerialized, then try folding.
      // If def is rematerializable and it's a load, also try folding.
      TryFold = !ReMatDefMI || (ReMatDefMI && (MI == ReMatOrigDefMI || isLoad));
      if (isLoad) {
        // Try fold loads (from stack slot, constant pool, etc.) into uses.
        FoldSS = isLoadSS;
        FoldSlot = LdSlot;
      }
    }

    // Scan all of the operands of this instruction rewriting operands
    // to use NewVReg instead of li.reg as appropriate.  We do this for
    // two reasons:
    //
    //   1. If the instr reads the same spilled vreg multiple times, we
    //      want to reuse the NewVReg.
    //   2. If the instr is a two-addr instruction, we are required to
    //      keep the src/dst regs pinned.
    //
    // Keep track of whether we replace a use and/or def so that we can
    // create the spill interval with the appropriate range. 
    SmallVector<unsigned, 2> Ops;
    tie(HasUse, HasDef) = MI->readsWritesVirtualRegister(Reg, &Ops);

    // Create a new virtual register for the spill interval.
    // Create the new register now so we can map the fold instruction
    // to the new register so when it is unfolded we get the correct
    // answer.
    bool CreatedNewVReg = false;
    if (NewVReg == 0) {
      NewVReg = mri_->createVirtualRegister(rc);
      vrm.grow();
      CreatedNewVReg = true;

      // The new virtual register should get the same allocation hints as the
      // old one.
      std::pair<unsigned, unsigned> Hint = mri_->getRegAllocationHint(Reg);
      if (Hint.first || Hint.second)
        mri_->setRegAllocationHint(NewVReg, Hint.first, Hint.second);
    }

    if (!TryFold)
      CanFold = false;
    else {
      // Do not fold load / store here if we are splitting. We'll find an
      // optimal point to insert a load / store later.
      if (!TrySplit) {
        if (tryFoldMemoryOperand(MI, vrm, ReMatDefMI, index,
                                 Ops, FoldSS, FoldSlot, NewVReg)) {
          // Folding the load/store can completely change the instruction in
          // unpredictable ways, rescan it from the beginning.

          if (FoldSS) {
            // We need to give the new vreg the same stack slot as the
            // spilled interval.
            vrm.assignVirt2StackSlot(NewVReg, FoldSlot);
          }

          HasUse = false;
          HasDef = false;
          CanFold = false;
          if (isNotInMIMap(MI))
            break;
          goto RestartInstruction;
        }
      } else {
        // We'll try to fold it later if it's profitable.
        CanFold = canFoldMemoryOperand(MI, Ops, DefIsReMat);
      }
    }

    mop.setReg(NewVReg);
    if (mop.isImplicit())
      rewriteImplicitOps(li, MI, NewVReg, vrm);

    // Reuse NewVReg for other reads.
    for (unsigned j = 0, e = Ops.size(); j != e; ++j) {
      MachineOperand &mopj = MI->getOperand(Ops[j]);
      mopj.setReg(NewVReg);
      if (mopj.isImplicit())
        rewriteImplicitOps(li, MI, NewVReg, vrm);
    }
            
    if (CreatedNewVReg) {
      if (DefIsReMat) {
        vrm.setVirtIsReMaterialized(NewVReg, ReMatDefMI);
        if (ReMatIds[VNI->id] == VirtRegMap::MAX_STACK_SLOT) {
          // Each valnum may have its own remat id.
          ReMatIds[VNI->id] = vrm.assignVirtReMatId(NewVReg);
        } else {
          vrm.assignVirtReMatId(NewVReg, ReMatIds[VNI->id]);
        }
        if (!CanDelete || (HasUse && HasDef)) {
          // If this is a two-addr instruction then its use operands are
          // rematerializable but its def is not. It should be assigned a
          // stack slot.
          vrm.assignVirt2StackSlot(NewVReg, Slot);
        }
      } else {
        vrm.assignVirt2StackSlot(NewVReg, Slot);
      }
    } else if (HasUse && HasDef &&
               vrm.getStackSlot(NewVReg) == VirtRegMap::NO_STACK_SLOT) {
      // If this interval hasn't been assigned a stack slot (because earlier
      // def is a deleted remat def), do it now.
      assert(Slot != VirtRegMap::NO_STACK_SLOT);
      vrm.assignVirt2StackSlot(NewVReg, Slot);
    }

    // Re-matting an instruction with virtual register use. Add the
    // register as an implicit use on the use MI.
    if (DefIsReMat && ImpUse)
      MI->addOperand(MachineOperand::CreateReg(ImpUse, false, true));

    // Create a new register interval for this spill / remat.
    LiveInterval &nI = getOrCreateInterval(NewVReg);
    if (CreatedNewVReg) {
      NewLIs.push_back(&nI);
      MBBVRegsMap.insert(std::make_pair(MI->getParent()->getNumber(), NewVReg));
      if (TrySplit)
        vrm.setIsSplitFromReg(NewVReg, li.reg);
    }

    if (HasUse) {
      if (CreatedNewVReg) {
        LiveRange LR(index.getLoadIndex(), index.getDefIndex(),
                     nI.getNextValue(SlotIndex(), 0, false, VNInfoAllocator));
        DEBUG(dbgs() << " +" << LR);
        nI.addRange(LR);
      } else {
        // Extend the split live interval to this def / use.
        SlotIndex End = index.getDefIndex();
        LiveRange LR(nI.ranges[nI.ranges.size()-1].end, End,
                     nI.getValNumInfo(nI.getNumValNums()-1));
        DEBUG(dbgs() << " +" << LR);
        nI.addRange(LR);
      }
    }
    if (HasDef) {
      LiveRange LR(index.getDefIndex(), index.getStoreIndex(),
                   nI.getNextValue(SlotIndex(), 0, false, VNInfoAllocator));
      DEBUG(dbgs() << " +" << LR);
      nI.addRange(LR);
    }

    DEBUG({
        dbgs() << "\t\t\t\tAdded new interval: ";
        nI.print(dbgs(), tri_);
        dbgs() << '\n';
      });
  }
  return CanFold;
}
bool LiveIntervals::anyKillInMBBAfterIdx(const LiveInterval &li,
                                   const VNInfo *VNI,
                                   MachineBasicBlock *MBB,
                                   SlotIndex Idx) const {
  return li.killedInRange(Idx.getNextSlot(), getMBBEndIdx(MBB));
}

/// RewriteInfo - Keep track of machine instrs that will be rewritten
/// during spilling.
namespace {
  struct RewriteInfo {
    SlotIndex Index;
    MachineInstr *MI;
    RewriteInfo(SlotIndex i, MachineInstr *mi) : Index(i), MI(mi) {}
  };

  struct RewriteInfoCompare {
    bool operator()(const RewriteInfo &LHS, const RewriteInfo &RHS) const {
      return LHS.Index < RHS.Index;
    }
  };
}

void LiveIntervals::
rewriteInstructionsForSpills(const LiveInterval &li, bool TrySplit,
                    LiveInterval::Ranges::const_iterator &I,
                    MachineInstr *ReMatOrigDefMI, MachineInstr *ReMatDefMI,
                    unsigned Slot, int LdSlot,
                    bool isLoad, bool isLoadSS, bool DefIsReMat, bool CanDelete,
                    VirtRegMap &vrm,
                    const TargetRegisterClass* rc,
                    SmallVector<int, 4> &ReMatIds,
                    const MachineLoopInfo *loopInfo,
                    BitVector &SpillMBBs,
                    DenseMap<unsigned, std::vector<SRInfo> > &SpillIdxes,
                    BitVector &RestoreMBBs,
                    DenseMap<unsigned, std::vector<SRInfo> > &RestoreIdxes,
                    DenseMap<unsigned,unsigned> &MBBVRegsMap,
                    std::vector<LiveInterval*> &NewLIs) {
  bool AllCanFold = true;
  unsigned NewVReg = 0;
  SlotIndex start = I->start.getBaseIndex();
  SlotIndex end = I->end.getPrevSlot().getBaseIndex().getNextIndex();

  // First collect all the def / use in this live range that will be rewritten.
  // Make sure they are sorted according to instruction index.
  std::vector<RewriteInfo> RewriteMIs;
  for (MachineRegisterInfo::reg_iterator ri = mri_->reg_begin(li.reg),
         re = mri_->reg_end(); ri != re; ) {
    MachineInstr *MI = &*ri;
    MachineOperand &O = ri.getOperand();
    ++ri;
    if (MI->isDebugValue()) {
      // Modify DBG_VALUE now that the value is in a spill slot.
      if (Slot != VirtRegMap::MAX_STACK_SLOT || isLoadSS) {
        uint64_t Offset = MI->getOperand(1).getImm();
        const MDNode *MDPtr = MI->getOperand(2).getMetadata();
        DebugLoc DL = MI->getDebugLoc();
        int FI = isLoadSS ? LdSlot : (int)Slot;
        if (MachineInstr *NewDV = tii_->emitFrameIndexDebugValue(*mf_, FI,
                                                           Offset, MDPtr, DL)) {
          DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI);
          ReplaceMachineInstrInMaps(MI, NewDV);
          MachineBasicBlock *MBB = MI->getParent();
          MBB->insert(MBB->erase(MI), NewDV);
          continue;
        }
      }

      DEBUG(dbgs() << "Removing debug info due to spill:" << "\t" << *MI);
      RemoveMachineInstrFromMaps(MI);
      vrm.RemoveMachineInstrFromMaps(MI);
      MI->eraseFromParent();
      continue;
    }
    assert(!(O.isImplicit() && O.isUse()) &&
           "Spilling register that's used as implicit use?");
    SlotIndex index = getInstructionIndex(MI);
    if (index < start || index >= end)
      continue;

    if (O.isUndef())
      // Must be defined by an implicit def. It should not be spilled. Note,
      // this is for correctness reason. e.g.
      // 8   %reg1024<def> = IMPLICIT_DEF
      // 12  %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
      // The live range [12, 14) are not part of the r1024 live interval since
      // it's defined by an implicit def. It will not conflicts with live
      // interval of r1025. Now suppose both registers are spilled, you can
      // easily see a situation where both registers are reloaded before
      // the INSERT_SUBREG and both target registers that would overlap.
      continue;
    RewriteMIs.push_back(RewriteInfo(index, MI));
  }
  std::sort(RewriteMIs.begin(), RewriteMIs.end(), RewriteInfoCompare());

  unsigned ImpUse = DefIsReMat ? getReMatImplicitUse(li, ReMatDefMI) : 0;
  // Now rewrite the defs and uses.
  for (unsigned i = 0, e = RewriteMIs.size(); i != e; ) {
    RewriteInfo &rwi = RewriteMIs[i];
    ++i;
    SlotIndex index = rwi.Index;
    MachineInstr *MI = rwi.MI;
    // If MI def and/or use the same register multiple times, then there
    // are multiple entries.
    while (i != e && RewriteMIs[i].MI == MI) {
      assert(RewriteMIs[i].Index == index);
      ++i;
    }
    MachineBasicBlock *MBB = MI->getParent();

    if (ImpUse && MI != ReMatDefMI) {
      // Re-matting an instruction with virtual register use. Prevent interval
      // from being spilled.
      getInterval(ImpUse).markNotSpillable();
    }

    unsigned MBBId = MBB->getNumber();
    unsigned ThisVReg = 0;
    if (TrySplit) {
      DenseMap<unsigned,unsigned>::iterator NVI = MBBVRegsMap.find(MBBId);
      if (NVI != MBBVRegsMap.end()) {
        ThisVReg = NVI->second;
        // One common case:
        // x = use
        // ...
        // ...
        // def = ...
        //     = use
        // It's better to start a new interval to avoid artifically
        // extend the new interval.
        if (MI->readsWritesVirtualRegister(li.reg) ==
            std::make_pair(false,true)) {
          MBBVRegsMap.erase(MBB->getNumber());
          ThisVReg = 0;
        }
      }
    }

    bool IsNew = ThisVReg == 0;
    if (IsNew) {
      // This ends the previous live interval. If all of its def / use
      // can be folded, give it a low spill weight.
      if (NewVReg && TrySplit && AllCanFold) {
        LiveInterval &nI = getOrCreateInterval(NewVReg);
        nI.weight /= 10.0F;
      }
      AllCanFold = true;
    }
    NewVReg = ThisVReg;

    bool HasDef = false;
    bool HasUse = false;
    bool CanFold = rewriteInstructionForSpills(li, I->valno, TrySplit,
                         index, end, MI, ReMatOrigDefMI, ReMatDefMI,
                         Slot, LdSlot, isLoad, isLoadSS, DefIsReMat,
                         CanDelete, vrm, rc, ReMatIds, loopInfo, NewVReg,
                         ImpUse, HasDef, HasUse, MBBVRegsMap, NewLIs);
    if (!HasDef && !HasUse)
      continue;

    AllCanFold &= CanFold;

    // Update weight of spill interval.
    LiveInterval &nI = getOrCreateInterval(NewVReg);
    if (!TrySplit) {
      // The spill weight is now infinity as it cannot be spilled again.
      nI.markNotSpillable();
      continue;
    }

    // Keep track of the last def and first use in each MBB.
    if (HasDef) {
      if (MI != ReMatOrigDefMI || !CanDelete) {
        bool HasKill = false;
        if (!HasUse)
          HasKill = anyKillInMBBAfterIdx(li, I->valno, MBB, index.getDefIndex());
        else {
          // If this is a two-address code, then this index starts a new VNInfo.
          const VNInfo *VNI = li.findDefinedVNInfoForRegInt(index.getDefIndex());
          if (VNI)
            HasKill = anyKillInMBBAfterIdx(li, VNI, MBB, index.getDefIndex());
        }
        DenseMap<unsigned, std::vector<SRInfo> >::iterator SII =
          SpillIdxes.find(MBBId);
        if (!HasKill) {
          if (SII == SpillIdxes.end()) {
            std::vector<SRInfo> S;
            S.push_back(SRInfo(index, NewVReg, true));
            SpillIdxes.insert(std::make_pair(MBBId, S));
          } else if (SII->second.back().vreg != NewVReg) {
            SII->second.push_back(SRInfo(index, NewVReg, true));
          } else if (index > SII->second.back().index) {
            // If there is an earlier def and this is a two-address
            // instruction, then it's not possible to fold the store (which
            // would also fold the load).
            SRInfo &Info = SII->second.back();
            Info.index = index;
            Info.canFold = !HasUse;
          }
          SpillMBBs.set(MBBId);
        } else if (SII != SpillIdxes.end() &&
                   SII->second.back().vreg == NewVReg &&
                   index > SII->second.back().index) {
          // There is an earlier def that's not killed (must be two-address).
          // The spill is no longer needed.
          SII->second.pop_back();
          if (SII->second.empty()) {
            SpillIdxes.erase(MBBId);
            SpillMBBs.reset(MBBId);
          }
        }
      }
    }

    if (HasUse) {
      DenseMap<unsigned, std::vector<SRInfo> >::iterator SII =
        SpillIdxes.find(MBBId);
      if (SII != SpillIdxes.end() &&
          SII->second.back().vreg == NewVReg &&
          index > SII->second.back().index)
        // Use(s) following the last def, it's not safe to fold the spill.
        SII->second.back().canFold = false;
      DenseMap<unsigned, std::vector<SRInfo> >::iterator RII =
        RestoreIdxes.find(MBBId);
      if (RII != RestoreIdxes.end() && RII->second.back().vreg == NewVReg)
        // If we are splitting live intervals, only fold if it's the first
        // use and there isn't another use later in the MBB.
        RII->second.back().canFold = false;
      else if (IsNew) {
        // Only need a reload if there isn't an earlier def / use.
        if (RII == RestoreIdxes.end()) {
          std::vector<SRInfo> Infos;
          Infos.push_back(SRInfo(index, NewVReg, true));
          RestoreIdxes.insert(std::make_pair(MBBId, Infos));
        } else {
          RII->second.push_back(SRInfo(index, NewVReg, true));
        }
        RestoreMBBs.set(MBBId);
      }
    }

    // Update spill weight.
    unsigned loopDepth = loopInfo->getLoopDepth(MBB);
    nI.weight += getSpillWeight(HasDef, HasUse, loopDepth);
  }

  if (NewVReg && TrySplit && AllCanFold) {
    // If all of its def / use can be folded, give it a low spill weight.
    LiveInterval &nI = getOrCreateInterval(NewVReg);
    nI.weight /= 10.0F;
  }
}

bool LiveIntervals::alsoFoldARestore(int Id, SlotIndex index,
                        unsigned vr, BitVector &RestoreMBBs,
                        DenseMap<unsigned,std::vector<SRInfo> > &RestoreIdxes) {
  if (!RestoreMBBs[Id])
    return false;
  std::vector<SRInfo> &Restores = RestoreIdxes[Id];
  for (unsigned i = 0, e = Restores.size(); i != e; ++i)
    if (Restores[i].index == index &&
        Restores[i].vreg == vr &&
        Restores[i].canFold)
      return true;
  return false;
}

void LiveIntervals::eraseRestoreInfo(int Id, SlotIndex index,
                        unsigned vr, BitVector &RestoreMBBs,
                        DenseMap<unsigned,std::vector<SRInfo> > &RestoreIdxes) {
  if (!RestoreMBBs[Id])
    return;
  std::vector<SRInfo> &Restores = RestoreIdxes[Id];
  for (unsigned i = 0, e = Restores.size(); i != e; ++i)
    if (Restores[i].index == index && Restores[i].vreg)
      Restores[i].index = SlotIndex();
}

/// handleSpilledImpDefs - Remove IMPLICIT_DEF instructions which are being
/// spilled and create empty intervals for their uses.
void
LiveIntervals::handleSpilledImpDefs(const LiveInterval &li, VirtRegMap &vrm,
                                    const TargetRegisterClass* rc,
                                    std::vector<LiveInterval*> &NewLIs) {
  for (MachineRegisterInfo::reg_iterator ri = mri_->reg_begin(li.reg),
         re = mri_->reg_end(); ri != re; ) {
    MachineOperand &O = ri.getOperand();
    MachineInstr *MI = &*ri;
    ++ri;
    if (MI->isDebugValue()) {
      // Remove debug info for now.
      O.setReg(0U);
      DEBUG(dbgs() << "Removing debug info due to spill:" << "\t" << *MI);
      continue;
    }
    if (O.isDef()) {
      assert(MI->isImplicitDef() &&
             "Register def was not rewritten?");
      RemoveMachineInstrFromMaps(MI);
      vrm.RemoveMachineInstrFromMaps(MI);
      MI->eraseFromParent();
    } else {
      // This must be an use of an implicit_def so it's not part of the live
      // interval. Create a new empty live interval for it.
      // FIXME: Can we simply erase some of the instructions? e.g. Stores?
      unsigned NewVReg = mri_->createVirtualRegister(rc);
      vrm.grow();
      vrm.setIsImplicitlyDefined(NewVReg);
      NewLIs.push_back(&getOrCreateInterval(NewVReg));
      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
        MachineOperand &MO = MI->getOperand(i);
        if (MO.isReg() && MO.getReg() == li.reg) {
          MO.setReg(NewVReg);
          MO.setIsUndef();
        }
      }
    }
  }
}

float
LiveIntervals::getSpillWeight(bool isDef, bool isUse, unsigned loopDepth) {
  // Limit the loop depth ridiculousness.
  if (loopDepth > 200)
    loopDepth = 200;

  // The loop depth is used to roughly estimate the number of times the
  // instruction is executed. Something like 10^d is simple, but will quickly
  // overflow a float. This expression behaves like 10^d for small d, but is
  // more tempered for large d. At d=200 we get 6.7e33 which leaves a bit of
  // headroom before overflow.
  float lc = std::pow(1 + (100.0f / (loopDepth+10)), (float)loopDepth);

  return (isDef + isUse) * lc;
}

void
LiveIntervals::normalizeSpillWeights(std::vector<LiveInterval*> &NewLIs) {
  for (unsigned i = 0, e = NewLIs.size(); i != e; ++i)
    normalizeSpillWeight(*NewLIs[i]);
}

std::vector<LiveInterval*> LiveIntervals::
addIntervalsForSpills(const LiveInterval &li,
                      SmallVectorImpl<LiveInterval*> &SpillIs,
                      const MachineLoopInfo *loopInfo, VirtRegMap &vrm) {
  assert(li.isSpillable() && "attempt to spill already spilled interval!");

  DEBUG({
      dbgs() << "\t\t\t\tadding intervals for spills for interval: ";
      li.print(dbgs(), tri_);
      dbgs() << '\n';
    });

  // Each bit specify whether a spill is required in the MBB.
  BitVector SpillMBBs(mf_->getNumBlockIDs());
  DenseMap<unsigned, std::vector<SRInfo> > SpillIdxes;
  BitVector RestoreMBBs(mf_->getNumBlockIDs());
  DenseMap<unsigned, std::vector<SRInfo> > RestoreIdxes;
  DenseMap<unsigned,unsigned> MBBVRegsMap;
  std::vector<LiveInterval*> NewLIs;
  const TargetRegisterClass* rc = mri_->getRegClass(li.reg);

  unsigned NumValNums = li.getNumValNums();
  SmallVector<MachineInstr*, 4> ReMatDefs;
  ReMatDefs.resize(NumValNums, NULL);
  SmallVector<MachineInstr*, 4> ReMatOrigDefs;
  ReMatOrigDefs.resize(NumValNums, NULL);
  SmallVector<int, 4> ReMatIds;
  ReMatIds.resize(NumValNums, VirtRegMap::MAX_STACK_SLOT);
  BitVector ReMatDelete(NumValNums);
  unsigned Slot = VirtRegMap::MAX_STACK_SLOT;

  // Spilling a split live interval. It cannot be split any further. Also,
  // it's also guaranteed to be a single val# / range interval.
  if (vrm.getPreSplitReg(li.reg)) {
    vrm.setIsSplitFromReg(li.reg, 0);
    // Unset the split kill marker on the last use.
    SlotIndex KillIdx = vrm.getKillPoint(li.reg);
    if (KillIdx != SlotIndex()) {
      MachineInstr *KillMI = getInstructionFromIndex(KillIdx);
      assert(KillMI && "Last use disappeared?");
      int KillOp = KillMI->findRegisterUseOperandIdx(li.reg, true);
      assert(KillOp != -1 && "Last use disappeared?");
      KillMI->getOperand(KillOp).setIsKill(false);
    }
    vrm.removeKillPoint(li.reg);
    bool DefIsReMat = vrm.isReMaterialized(li.reg);
    Slot = vrm.getStackSlot(li.reg);
    assert(Slot != VirtRegMap::MAX_STACK_SLOT);
    MachineInstr *ReMatDefMI = DefIsReMat ?
      vrm.getReMaterializedMI(li.reg) : NULL;
    int LdSlot = 0;
    bool isLoadSS = DefIsReMat && tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot);
    bool isLoad = isLoadSS ||
      (DefIsReMat && (ReMatDefMI->getDesc().canFoldAsLoad()));
    bool IsFirstRange = true;
    for (LiveInterval::Ranges::const_iterator
           I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
      // If this is a split live interval with multiple ranges, it means there
      // are two-address instructions that re-defined the value. Only the
      // first def can be rematerialized!
      if (IsFirstRange) {
        // Note ReMatOrigDefMI has already been deleted.
        rewriteInstructionsForSpills(li, false, I, NULL, ReMatDefMI,
                             Slot, LdSlot, isLoad, isLoadSS, DefIsReMat,
                             false, vrm, rc, ReMatIds, loopInfo,
                             SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes,
                             MBBVRegsMap, NewLIs);
      } else {
        rewriteInstructionsForSpills(li, false, I, NULL, 0,
                             Slot, 0, false, false, false,
                             false, vrm, rc, ReMatIds, loopInfo,
                             SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes,
                             MBBVRegsMap, NewLIs);
      }
      IsFirstRange = false;
    }

    handleSpilledImpDefs(li, vrm, rc, NewLIs);
    normalizeSpillWeights(NewLIs);
    return NewLIs;
  }

  bool TrySplit = !intervalIsInOneMBB(li);
  if (TrySplit)
    ++numSplits;
  bool NeedStackSlot = false;
  for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
       i != e; ++i) {
    const VNInfo *VNI = *i;
    unsigned VN = VNI->id;
    if (VNI->isUnused())
      continue; // Dead val#.
    // Is the def for the val# rematerializable?
    MachineInstr *ReMatDefMI = VNI->isDefAccurate()
      ? getInstructionFromIndex(VNI->def) : 0;
    bool dummy;
    if (ReMatDefMI && isReMaterializable(li, VNI, ReMatDefMI, SpillIs, dummy)) {
      // Remember how to remat the def of this val#.
      ReMatOrigDefs[VN] = ReMatDefMI;
      // Original def may be modified so we have to make a copy here.
      MachineInstr *Clone = mf_->CloneMachineInstr(ReMatDefMI);
      CloneMIs.push_back(Clone);
      ReMatDefs[VN] = Clone;

      bool CanDelete = true;
      if (VNI->hasPHIKill()) {
        // A kill is a phi node, not all of its uses can be rematerialized.
        // It must not be deleted.
        CanDelete = false;
        // Need a stack slot if there is any live range where uses cannot be
        // rematerialized.
        NeedStackSlot = true;
      }
      if (CanDelete)
        ReMatDelete.set(VN);
    } else {
      // Need a stack slot if there is any live range where uses cannot be
      // rematerialized.
      NeedStackSlot = true;
    }
  }

  // One stack slot per live interval.
  if (NeedStackSlot && vrm.getPreSplitReg(li.reg) == 0) {
    if (vrm.getStackSlot(li.reg) == VirtRegMap::NO_STACK_SLOT)
      Slot = vrm.assignVirt2StackSlot(li.reg);
    
    // This case only occurs when the prealloc splitter has already assigned
    // a stack slot to this vreg.
    else
      Slot = vrm.getStackSlot(li.reg);
  }

  // Create new intervals and rewrite defs and uses.
  for (LiveInterval::Ranges::const_iterator
         I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
    MachineInstr *ReMatDefMI = ReMatDefs[I->valno->id];
    MachineInstr *ReMatOrigDefMI = ReMatOrigDefs[I->valno->id];
    bool DefIsReMat = ReMatDefMI != NULL;
    bool CanDelete = ReMatDelete[I->valno->id];
    int LdSlot = 0;
    bool isLoadSS = DefIsReMat && tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot);
    bool isLoad = isLoadSS ||
      (DefIsReMat && ReMatDefMI->getDesc().canFoldAsLoad());
    rewriteInstructionsForSpills(li, TrySplit, I, ReMatOrigDefMI, ReMatDefMI,
                               Slot, LdSlot, isLoad, isLoadSS, DefIsReMat,
                               CanDelete, vrm, rc, ReMatIds, loopInfo,
                               SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes,
                               MBBVRegsMap, NewLIs);
  }

  // Insert spills / restores if we are splitting.
  if (!TrySplit) {
    handleSpilledImpDefs(li, vrm, rc, NewLIs);
    normalizeSpillWeights(NewLIs);
    return NewLIs;
  }

  SmallPtrSet<LiveInterval*, 4> AddedKill;
  SmallVector<unsigned, 2> Ops;
  if (NeedStackSlot) {
    int Id = SpillMBBs.find_first();
    while (Id != -1) {
      std::vector<SRInfo> &spills = SpillIdxes[Id];
      for (unsigned i = 0, e = spills.size(); i != e; ++i) {
        SlotIndex index = spills[i].index;
        unsigned VReg = spills[i].vreg;
        LiveInterval &nI = getOrCreateInterval(VReg);
        bool isReMat = vrm.isReMaterialized(VReg);
        MachineInstr *MI = getInstructionFromIndex(index);
        bool CanFold = false;
        bool FoundUse = false;
        Ops.clear();
        if (spills[i].canFold) {
          CanFold = true;
          for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
            MachineOperand &MO = MI->getOperand(j);
            if (!MO.isReg() || MO.getReg() != VReg)
              continue;

            Ops.push_back(j);
            if (MO.isDef())
              continue;
            if (isReMat || 
                (!FoundUse && !alsoFoldARestore(Id, index, VReg,
                                                RestoreMBBs, RestoreIdxes))) {
              // MI has two-address uses of the same register. If the use
              // isn't the first and only use in the BB, then we can't fold
              // it. FIXME: Move this to rewriteInstructionsForSpills.
              CanFold = false;
              break;
            }
            FoundUse = true;
          }
        }
        // Fold the store into the def if possible.
        bool Folded = false;
        if (CanFold && !Ops.empty()) {
          if (tryFoldMemoryOperand(MI, vrm, NULL, index, Ops, true, Slot,VReg)){
            Folded = true;
            if (FoundUse) {
              // Also folded uses, do not issue a load.
              eraseRestoreInfo(Id, index, VReg, RestoreMBBs, RestoreIdxes);
              nI.removeRange(index.getLoadIndex(), index.getDefIndex());
            }
            nI.removeRange(index.getDefIndex(), index.getStoreIndex());
          }
        }

        // Otherwise tell the spiller to issue a spill.
        if (!Folded) {
          LiveRange *LR = &nI.ranges[nI.ranges.size()-1];
          bool isKill = LR->end == index.getStoreIndex();
          if (!MI->registerDefIsDead(nI.reg))
            // No need to spill a dead def.
            vrm.addSpillPoint(VReg, isKill, MI);
          if (isKill)
            AddedKill.insert(&nI);
        }
      }
      Id = SpillMBBs.find_next(Id);
    }
  }

  int Id = RestoreMBBs.find_first();
  while (Id != -1) {
    std::vector<SRInfo> &restores = RestoreIdxes[Id];
    for (unsigned i = 0, e = restores.size(); i != e; ++i) {
      SlotIndex index = restores[i].index;
      if (index == SlotIndex())
        continue;
      unsigned VReg = restores[i].vreg;
      LiveInterval &nI = getOrCreateInterval(VReg);
      bool isReMat = vrm.isReMaterialized(VReg);
      MachineInstr *MI = getInstructionFromIndex(index);
      bool CanFold = false;
      Ops.clear();
      if (restores[i].canFold) {
        CanFold = true;
        for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
          MachineOperand &MO = MI->getOperand(j);
          if (!MO.isReg() || MO.getReg() != VReg)
            continue;

          if (MO.isDef()) {
            // If this restore were to be folded, it would have been folded
            // already.
            CanFold = false;
            break;
          }
          Ops.push_back(j);
        }
      }

      // Fold the load into the use if possible.
      bool Folded = false;
      if (CanFold && !Ops.empty()) {
        if (!isReMat)
          Folded = tryFoldMemoryOperand(MI, vrm, NULL,index,Ops,true,Slot,VReg);
        else {
          MachineInstr *ReMatDefMI = vrm.getReMaterializedMI(VReg);
          int LdSlot = 0;
          bool isLoadSS = tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot);
          // If the rematerializable def is a load, also try to fold it.
          if (isLoadSS || ReMatDefMI->getDesc().canFoldAsLoad())
            Folded = tryFoldMemoryOperand(MI, vrm, ReMatDefMI, index,
                                          Ops, isLoadSS, LdSlot, VReg);
          if (!Folded) {
            unsigned ImpUse = getReMatImplicitUse(li, ReMatDefMI);
            if (ImpUse) {
              // Re-matting an instruction with virtual register use. Add the
              // register as an implicit use on the use MI and mark the register
              // interval as unspillable.
              LiveInterval &ImpLi = getInterval(ImpUse);
              ImpLi.markNotSpillable();
              MI->addOperand(MachineOperand::CreateReg(ImpUse, false, true));
            }
          }
        }
      }
      // If folding is not possible / failed, then tell the spiller to issue a
      // load / rematerialization for us.
      if (Folded)
        nI.removeRange(index.getLoadIndex(), index.getDefIndex());
      else
        vrm.addRestorePoint(VReg, MI);
    }
    Id = RestoreMBBs.find_next(Id);
  }

  // Finalize intervals: add kills, finalize spill weights, and filter out
  // dead intervals.
  std::vector<LiveInterval*> RetNewLIs;
  for (unsigned i = 0, e = NewLIs.size(); i != e; ++i) {
    LiveInterval *LI = NewLIs[i];
    if (!LI->empty()) {
      LI->weight /= SlotIndex::NUM * getApproximateInstructionCount(*LI);
      if (!AddedKill.count(LI)) {
        LiveRange *LR = &LI->ranges[LI->ranges.size()-1];
        SlotIndex LastUseIdx = LR->end.getBaseIndex();
        MachineInstr *LastUse = getInstructionFromIndex(LastUseIdx);
        int UseIdx = LastUse->findRegisterUseOperandIdx(LI->reg, false);
        assert(UseIdx != -1);
        if (!LastUse->isRegTiedToDefOperand(UseIdx)) {
          LastUse->getOperand(UseIdx).setIsKill();
          vrm.addKillPoint(LI->reg, LastUseIdx);
        }
      }
      RetNewLIs.push_back(LI);
    }
  }

  handleSpilledImpDefs(li, vrm, rc, RetNewLIs);
  normalizeSpillWeights(RetNewLIs);
  return RetNewLIs;
}

/// hasAllocatableSuperReg - Return true if the specified physical register has
/// any super register that's allocatable.
bool LiveIntervals::hasAllocatableSuperReg(unsigned Reg) const {
  for (const unsigned* AS = tri_->getSuperRegisters(Reg); *AS; ++AS)
    if (allocatableRegs_[*AS] && hasInterval(*AS))
      return true;
  return false;
}

/// getRepresentativeReg - Find the largest super register of the specified
/// physical register.
unsigned LiveIntervals::getRepresentativeReg(unsigned Reg) const {
  // Find the largest super-register that is allocatable. 
  unsigned BestReg = Reg;
  for (const unsigned* AS = tri_->getSuperRegisters(Reg); *AS; ++AS) {
    unsigned SuperReg = *AS;
    if (!hasAllocatableSuperReg(SuperReg) && hasInterval(SuperReg)) {
      BestReg = SuperReg;
      break;
    }
  }
  return BestReg;
}

/// getNumConflictsWithPhysReg - Return the number of uses and defs of the
/// specified interval that conflicts with the specified physical register.
unsigned LiveIntervals::getNumConflictsWithPhysReg(const LiveInterval &li,
                                                   unsigned PhysReg) const {
  unsigned NumConflicts = 0;
  const LiveInterval &pli = getInterval(getRepresentativeReg(PhysReg));
  for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(li.reg),
         E = mri_->reg_end(); I != E; ++I) {
    MachineOperand &O = I.getOperand();
    MachineInstr *MI = O.getParent();
    if (MI->isDebugValue())
      continue;
    SlotIndex Index = getInstructionIndex(MI);
    if (pli.liveAt(Index))
      ++NumConflicts;
  }
  return NumConflicts;
}

/// spillPhysRegAroundRegDefsUses - Spill the specified physical register
/// around all defs and uses of the specified interval. Return true if it
/// was able to cut its interval.
bool LiveIntervals::spillPhysRegAroundRegDefsUses(const LiveInterval &li,
                                            unsigned PhysReg, VirtRegMap &vrm) {
  unsigned SpillReg = getRepresentativeReg(PhysReg);

  for (const unsigned *AS = tri_->getAliasSet(PhysReg); *AS; ++AS)
    // If there are registers which alias PhysReg, but which are not a
    // sub-register of the chosen representative super register. Assert
    // since we can't handle it yet.
    assert(*AS == SpillReg || !allocatableRegs_[*AS] || !hasInterval(*AS) ||
           tri_->isSuperRegister(*AS, SpillReg));

  bool Cut = false;
  SmallVector<unsigned, 4> PRegs;
  if (hasInterval(SpillReg))
    PRegs.push_back(SpillReg);
  else {
    SmallSet<unsigned, 4> Added;
    for (const unsigned* AS = tri_->getSubRegisters(SpillReg); *AS; ++AS)
      if (Added.insert(*AS) && hasInterval(*AS)) {
        PRegs.push_back(*AS);
        for (const unsigned* ASS = tri_->getSubRegisters(*AS); *ASS; ++ASS)
          Added.insert(*ASS);
      }
  }

  SmallPtrSet<MachineInstr*, 8> SeenMIs;
  for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(li.reg),
         E = mri_->reg_end(); I != E; ++I) {
    MachineOperand &O = I.getOperand();
    MachineInstr *MI = O.getParent();
    if (MI->isDebugValue() || SeenMIs.count(MI))
      continue;
    SeenMIs.insert(MI);
    SlotIndex Index = getInstructionIndex(MI);
    for (unsigned i = 0, e = PRegs.size(); i != e; ++i) {
      unsigned PReg = PRegs[i];
      LiveInterval &pli = getInterval(PReg);
      if (!pli.liveAt(Index))
        continue;
      vrm.addEmergencySpill(PReg, MI);
      SlotIndex StartIdx = Index.getLoadIndex();
      SlotIndex EndIdx = Index.getNextIndex().getBaseIndex();
      if (pli.isInOneLiveRange(StartIdx, EndIdx)) {
        pli.removeRange(StartIdx, EndIdx);
        Cut = true;
      } else {
        std::string msg;
        raw_string_ostream Msg(msg);
        Msg << "Ran out of registers during register allocation!";
        if (MI->isInlineAsm()) {
          Msg << "\nPlease check your inline asm statement for invalid "
              << "constraints:\n";
          MI->print(Msg, tm_);
        }
        report_fatal_error(Msg.str());
      }
      for (const unsigned* AS = tri_->getSubRegisters(PReg); *AS; ++AS) {
        if (!hasInterval(*AS))
          continue;
        LiveInterval &spli = getInterval(*AS);
        if (spli.liveAt(Index))
          spli.removeRange(Index.getLoadIndex(),
                           Index.getNextIndex().getBaseIndex());
      }
    }
  }
  return Cut;
}

LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg,
                                                  MachineInstr* startInst) {
  LiveInterval& Interval = getOrCreateInterval(reg);
  VNInfo* VN = Interval.getNextValue(
    SlotIndex(getInstructionIndex(startInst).getDefIndex()),
    startInst, true, getVNInfoAllocator());
  VN->setHasPHIKill(true);
  LiveRange LR(
     SlotIndex(getInstructionIndex(startInst).getDefIndex()),
     getMBBEndIdx(startInst->getParent()), VN);
  Interval.addRange(LR);
  
  return LR;
}