1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
|
//===-- SlotCalculator.cpp - Calculate what slots values land in ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a useful analysis step to figure out what numbered slots
// values in a program will land in (keeping track of per plane information).
//
// This is used when writing a file to disk, either in bytecode or assembly.
//
//===----------------------------------------------------------------------===//
#include "SlotCalculator.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/InlineAsm.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/TypeSymbolTable.h"
#include "llvm/Type.h"
#include "llvm/ValueSymbolTable.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
#include <functional>
using namespace llvm;
#ifndef NDEBUG
#include "llvm/Support/Streams.h"
#include "llvm/Support/CommandLine.h"
static cl::opt<bool> SlotCalculatorDebugOption("scdebug",cl::init(false),
cl::desc("Enable SlotCalculator debug output"), cl::Hidden);
#define SC_DEBUG(X) if (SlotCalculatorDebugOption) cerr << X
#else
#define SC_DEBUG(X)
#endif
void SlotCalculator::insertPrimitives() {
// Preload the table with the built-in types. These built-in types are
// inserted first to ensure that they have low integer indices which helps to
// keep bytecode sizes small. Note that the first group of indices must match
// the Type::TypeIDs for the primitive types. After that the integer types are
// added, but the order and value is not critical. What is critical is that
// the indices of these "well known" slot numbers be properly maintained in
// Reader.h which uses them directly to extract values of these types.
SC_DEBUG("Inserting primitive types:\n");
// See WellKnownTypeSlots in Reader.h
getOrCreateTypeSlot(Type::VoidTy ); // 0: VoidTySlot
getOrCreateTypeSlot(Type::FloatTy ); // 1: FloatTySlot
getOrCreateTypeSlot(Type::DoubleTy); // 2: DoubleTySlot
getOrCreateTypeSlot(Type::LabelTy ); // 3: LabelTySlot
assert(TypeMap.size() == Type::FirstDerivedTyID &&"Invalid primitive insert");
// Above here *must* correspond 1:1 with the primitive types.
getOrCreateTypeSlot(Type::Int1Ty ); // 4: Int1TySlot
getOrCreateTypeSlot(Type::Int8Ty ); // 5: Int8TySlot
getOrCreateTypeSlot(Type::Int16Ty ); // 6: Int16TySlot
getOrCreateTypeSlot(Type::Int32Ty ); // 7: Int32TySlot
getOrCreateTypeSlot(Type::Int64Ty ); // 8: Int64TySlot
}
SlotCalculator::SlotCalculator(const Module *M) {
assert(M);
TheModule = M;
insertPrimitives();
processModule();
}
// processModule - Process all of the module level function declarations and
// types that are available.
//
void SlotCalculator::processModule() {
SC_DEBUG("begin processModule!\n");
// Add all of the global variables to the value table...
//
for (Module::const_global_iterator I = TheModule->global_begin(),
E = TheModule->global_end(); I != E; ++I)
CreateSlotIfNeeded(I);
// Scavenge the types out of the functions, then add the functions themselves
// to the value table...
//
for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
I != E; ++I)
CreateSlotIfNeeded(I);
// Add all of the global aliases to the value table...
//
for (Module::const_alias_iterator I = TheModule->alias_begin(),
E = TheModule->alias_end(); I != E; ++I)
CreateSlotIfNeeded(I);
// Add all of the module level constants used as initializers
//
for (Module::const_global_iterator I = TheModule->global_begin(),
E = TheModule->global_end(); I != E; ++I)
if (I->hasInitializer())
CreateSlotIfNeeded(I->getInitializer());
// Add all of the module level constants used as aliasees
//
for (Module::const_alias_iterator I = TheModule->alias_begin(),
E = TheModule->alias_end(); I != E; ++I)
if (I->getAliasee())
CreateSlotIfNeeded(I->getAliasee());
// Now that all global constants have been added, rearrange constant planes
// that contain constant strings so that the strings occur at the start of the
// plane, not somewhere in the middle.
//
for (unsigned plane = 0, e = Table.size(); plane != e; ++plane) {
if (const ArrayType *AT = dyn_cast<ArrayType>(Types[plane]))
if (AT->getElementType() == Type::Int8Ty) {
TypePlane &Plane = Table[plane];
unsigned FirstNonStringID = 0;
for (unsigned i = 0, e = Plane.size(); i != e; ++i)
if (isa<ConstantAggregateZero>(Plane[i]) ||
(isa<ConstantArray>(Plane[i]) &&
cast<ConstantArray>(Plane[i])->isString())) {
// Check to see if we have to shuffle this string around. If not,
// don't do anything.
if (i != FirstNonStringID) {
// Swap the plane entries....
std::swap(Plane[i], Plane[FirstNonStringID]);
// Keep the NodeMap up to date.
NodeMap[Plane[i]] = i;
NodeMap[Plane[FirstNonStringID]] = FirstNonStringID;
}
++FirstNonStringID;
}
}
}
// Scan all of the functions for their constants, which allows us to emit
// more compact modules.
SC_DEBUG("Inserting function constants:\n");
for (Module::const_iterator F = TheModule->begin(), E = TheModule->end();
F != E; ++F) {
for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
OI != E; ++OI) {
if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
isa<InlineAsm>(*OI))
CreateSlotIfNeeded(*OI);
}
getOrCreateTypeSlot(I->getType());
}
}
// Insert constants that are named at module level into the slot pool so that
// the module symbol table can refer to them...
SC_DEBUG("Inserting SymbolTable values:\n");
processTypeSymbolTable(&TheModule->getTypeSymbolTable());
processValueSymbolTable(&TheModule->getValueSymbolTable());
// Now that we have collected together all of the information relevant to the
// module, compactify the type table if it is particularly big and outputting
// a bytecode file. The basic problem we run into is that some programs have
// a large number of types, which causes the type field to overflow its size,
// which causes instructions to explode in size (particularly call
// instructions). To avoid this behavior, we "sort" the type table so that
// all non-value types are pushed to the end of the type table, giving nice
// low numbers to the types that can be used by instructions, thus reducing
// the amount of explodage we suffer.
if (Types.size() >= 64) {
unsigned FirstNonValueTypeID = 0;
for (unsigned i = 0, e = Types.size(); i != e; ++i)
if (Types[i]->isFirstClassType() || Types[i]->isPrimitiveType()) {
// Check to see if we have to shuffle this type around. If not, don't
// do anything.
if (i != FirstNonValueTypeID) {
// Swap the type ID's.
std::swap(Types[i], Types[FirstNonValueTypeID]);
// Keep the TypeMap up to date.
TypeMap[Types[i]] = i;
TypeMap[Types[FirstNonValueTypeID]] = FirstNonValueTypeID;
// When we move a type, make sure to move its value plane as needed.
if (Table.size() > FirstNonValueTypeID) {
if (Table.size() <= i) Table.resize(i+1);
std::swap(Table[i], Table[FirstNonValueTypeID]);
}
}
++FirstNonValueTypeID;
}
}
NumModuleTypes = getNumPlanes();
SC_DEBUG("end processModule!\n");
}
// processTypeSymbolTable - Insert all of the type sin the specified symbol
// table.
void SlotCalculator::processTypeSymbolTable(const TypeSymbolTable *TST) {
for (TypeSymbolTable::const_iterator TI = TST->begin(), TE = TST->end();
TI != TE; ++TI )
getOrCreateTypeSlot(TI->second);
}
// processSymbolTable - Insert all of the values in the specified symbol table
// into the values table...
//
void SlotCalculator::processValueSymbolTable(const ValueSymbolTable *VST) {
for (ValueSymbolTable::const_iterator VI = VST->begin(), VE = VST->end();
VI != VE; ++VI)
CreateSlotIfNeeded(VI->getValue());
}
void SlotCalculator::CreateSlotIfNeeded(const Value *V) {
// Check to see if it's already in!
if (NodeMap.count(V)) return;
const Type <
|