aboutsummaryrefslogtreecommitdiff
path: root/lib/Analysis/DataStructure/DataStructureAA.cpp
blob: c2449c2b74ab614ffd7f42e28fa91ee4f0d4ff36 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
//===- DataStructureAA.cpp - Data Structure Based Alias Analysis ----------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This pass uses the top-down data structure graphs to implement a simple
// context sensitive alias analysis.
//
//===----------------------------------------------------------------------===//

#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/DataStructure/DataStructure.h"
#include "llvm/Analysis/DataStructure/DSGraph.h"
using namespace llvm;

namespace {
  class DSAA : public ModulePass, public AliasAnalysis {
    TDDataStructures *TD;
    BUDataStructures *BU;
  public:
    DSAA() : TD(0) {}

    //------------------------------------------------
    // Implement the Pass API
    //

    // run - Build up the result graph, representing the pointer graph for the
    // program.
    //
    bool runOnModule(Module &M) {
      InitializeAliasAnalysis(this);
      TD = &getAnalysis<TDDataStructures>();
      BU = &getAnalysis<BUDataStructures>();
      return false;
    }

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AliasAnalysis::getAnalysisUsage(AU);
      AU.setPreservesAll();                         // Does not transform code
      AU.addRequiredTransitive<TDDataStructures>(); // Uses TD Datastructures
      AU.addRequiredTransitive<BUDataStructures>(); // Uses BU Datastructures
    }

    //------------------------------------------------
    // Implement the AliasAnalysis API
    //  

    AliasResult alias(const Value *V1, unsigned V1Size,
                      const Value *V2, unsigned V2Size);

    void getMustAliases(Value *P, std::vector<Value*> &RetVals);

    ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
    ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
      return AliasAnalysis::getModRefInfo(CS1,CS2);
    }

    virtual void deleteValue(Value *V) {
      BU->deleteValue(V);
      TD->deleteValue(V);
    }

    virtual void copyValue(Value *From, Value *To) {
      if (From == To) return;
      BU->copyValue(From, To);
      TD->copyValue(From, To);
    }

  private:
    DSGraph *getGraphForValue(const Value *V);
  };

  // Register the pass...
  RegisterOpt<DSAA> X("ds-aa", "Data Structure Graph Based Alias Analysis");

  // Register as an implementation of AliasAnalysis
  RegisterAnalysisGroup<AliasAnalysis, DSAA> Y;
}

ModulePass *llvm::createDSAAPass() { return new DSAA(); }

// getGraphForValue - Return the DSGraph to use for queries about the specified
// value...
//
DSGraph *DSAA::getGraphForValue(const Value *V) {
  if (const Instruction *I = dyn_cast<Instruction>(V))
    return &TD->getDSGraph(*I->getParent()->getParent());
  else if (const Argument *A = dyn_cast<Argument>(V))
    return &TD->getDSGraph(*A->getParent());
  else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
    return &TD->getDSGraph(*BB->getParent());
  return 0;
}

#if 0
// isSinglePhysicalObject - For now, the only case that we know that there is
// only one memory object in the node is when there is a single global in the
// node, and the only composition bit set is Global.
//
static bool isSinglePhysicalObject(DSNode *N) {
  assert(N->isComplete() && "Can only tell if this is a complete object!");
  return N->isGlobalNode() && N->getGlobals().size() == 1 &&
         !N->isHeapNode() && !N->isAllocaNode() && !N->isUnknownNode();
}
#endif

// alias - This is the only method here that does anything interesting...
AliasAnalysis::AliasResult DSAA::alias(const Value *V1, unsigned V1Size,
                                       const Value *V2, unsigned V2Size) {
  if (V1 == V2) return MustAlias;

  DSGraph *G1 = getGraphForValue(V1);
  DSGraph *G2 = getGraphForValue(V2);
  assert((!G1 || !G2 || G1 == G2) && "Alias query for 2 different functions?");
  
  // Get the graph to use...
  DSGraph &G = *(G1 ? G1 : (G2 ? G2 : &TD->getGlobalsGraph()));

  const DSGraph::ScalarMapTy &GSM = G.getScalarMap();
  DSGraph::ScalarMapTy::const_iterator I = GSM.find((Value*)V1);
  if (I == GSM.end()) return NoAlias;
    
  DSGraph::ScalarMapTy::const_iterator J = GSM.find((Value*)V2);
  if (J == GSM.end()) return NoAlias;

  DSNode  *N1 = I->second.getNode(),  *N2 = J->second.getNode();
  unsigned O1 = I->second.getOffset(), O2 = J->second.getOffset();
  if (N1 == 0 || N2 == 0)
    return MayAlias;  // Can't tell whether anything aliases null.
        
  // We can only make a judgment of one of the nodes is complete...
  if (N1->isComplete() || N2->isComplete()) {
    if (N1 != N2)
      return NoAlias;   // Completely different nodes.

#if 0  // This does not correctly handle arrays!
    // Both point to the same node and same offset, and there is only one
    // physical memory object represented in the node, return must alias.
    //
    // FIXME: This isn't correct because we do not handle array indexing
    // correctly.

    if (O1 == O2 && isSinglePhysicalObject(N1))
      return MustAlias; // Exactly the same object & offset
#endif

    // See if they point to different offsets...  if so, we may be able to
    // determine that they do not alias...
    if (O1 != O2) {
      if (O2 < O1) {    // Ensure that O1 <= O2
        std::swap(V1, V2);
        std::swap(O1, O2);
        std::swap(V1Size, V2Size);
      }

      if (O1+V1Size <= O2)
        return NoAlias;
    }
  }

  // FIXME: we could improve on this by checking the globals graph for aliased
  // global queries...
  return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
}

/// getModRefInfo - does a callsite modify or reference a value?
///
AliasAnalysis::ModRefResult
DSAA::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
  AliasAnalysis::ModRefResult Result =AliasAnalysis::getModRefInfo(CS, P, Size);
  Function *F = CS.getCalledFunction();

  if (!F || Result == NoModRef)
    return Result;

  if (F->isExternal()) {
    // If we are calling an external function, and if this global doesn't escape
    // the portion of the program we have analyzed, we can draw conclusions
    // based on whether the global escapes the program.
    Function *Caller = CS.getInstruction()->getParent()->getParent();
    DSGraph *G = &TD->getDSGraph(*Caller);
    DSScalarMap::iterator NI = G->getScalarMap().find(P);
    if (NI == G->getScalarMap().end()) {
      // If it wasn't in the local function graph, check the global graph.  This
      // can occur for globals who are locally reference but hoisted out to the
      // globals graph despite that.
      G = G->getGlobalsGraph();
      NI = G->getScalarMap().find(P);
      if (NI == G->getScalarMap().end())
        return Result;
    }

    // If we found a node and it's complete, it cannot be passed out to the
    // called function.
    if (NI->second.getNode()->isComplete())
      return NoModRef;
    return Result;
  }

  // Get the graphs for the callee and caller.  Note that we want the BU graph
  // for the callee because we don't want all caller's effects incorporated!
  const Function *Caller = CS.getInstruction()->getParent()->getParent();
  DSGraph &CallerTDGraph = TD->getDSGraph(*Caller);
  DSGraph &CalleeBUGraph = BU->getDSGraph(*F);

  // Figure out which node in the TD graph this pointer corresponds to.
  DSScalarMap &CallerSM = CallerTDGraph.getScalarMap();
  DSScalarMap::iterator NI = CallerSM.find(P);
  if (NI == CallerSM.end()) {
    if (isa<ConstantPointerNull>(P) || isa<UndefValue>(P))
      Result = NoModRef;                 // null is never modified :)
    else {
      assert(isa<GlobalVariable>(P) &&
    cast<GlobalVariable>(P)->getType()->getElementType()->isFirstClassType() &&
             "This isn't a global that DSA inconsiderately dropped "
             "from the graph?");

      DSGraph &GG = *CallerTDGraph.getGlobalsGraph();
      DSScalarMap::iterator NI = GG.getScalarMap().find(P);
      if (NI != GG.getScalarMap().end() && !NI->second.isNull()) {
        // Otherwise, if the node is only M or R, return this.  This can be
        // useful for globals that should be marked const but are not.
        DSNode *N = NI->second.getNode();
        if (!N->isModified())
          Result = (ModRefResult)(Result & ~Mod);
        if (!N