aboutsummaryrefslogtreecommitdiff
path: root/docs/SystemLibrary.html
blob: a7e8b05355b96adec3b0a067854669f15ac97b68 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
                      "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
  <title>System Library</title>
  <link rel="stylesheet" href="llvm.css" type="text/css">
</head>
<body>

<div class="doc_title">System Library</div>

<div class="doc_warning">
  <p>Warning: This document is a work in progress.</p>
</div>

<ul>
  <li><a href="#abstract">Abstract</a></li>
  <li><a href="#requirements">System Library Requirements</a>
  <ol>
    <li><a href="#headers">Hide System Header Files</a></li>
    <li><a href="#c_headers">Allow Standard C Header Files</a></li>
    <li><a href="#cpp_headers">Allow Standard C++ Header Files</a></li>
    <li><a href="#nofunc">No Exposed Functions</a></li>
    <li><a href="#nodata">No Exposed Data</a></li>
    <li><a href="#throw">Throw Only std::string</a></li>
    <li><a href="#throw_spec">No throw() Specifications</a></li>
    <li><a href="#nodupl">No Duplicate Implementations</a></li>
  </ol></li>
  <li><a href="#design">System Library Design</a>
  <ol>
    <li><a href="#nounused">No Unused Functionality</a></li>
    <li><a href="#highlev">High-Level Interface</a></li>
    <li><a href="#opaque">Use Opaque Classes</a></li>
    <li><a href="#common">Common Implementations</a></li>
    <li><a href="#multi_imps">Multiple Implementations</a></li>
    <li><a href="#lowlevel">Use Low Level Interfaces</a></li>
    <li><a href="#memalloc">No Memory Allocation</a></li>
    <li><a href="#virtuals">No Virtual Methods</a></li>
  </ol></li>
  <li><a href="#detail">System Library Details</a>
  <ol>
    <li><a href="#bug">Tracking Bugzilla Bug: 351</a></li>
    <li><a href="#refimpl">Reference Implementation</a></li>
  </ol></li>
</ul>

<div class="doc_author">
  <p>Written by <a href="rspencer@x10sys.com">Reid Spencer</a></p>
</div>


<!-- *********************************************************************** -->
<div class="doc_section"><a name="abstract">Abstract</a></div>
<div class="doc_text">
  <p>This document describes the requirements, design, and implementation 
  details of LLVM's System Library. The library is composed of the header files
  in <tt>llvm/include/llvm/System</tt> and the source files in 
  <tt>llvm/lib/System</tt>. The goal of this library is to completely shield 
  LLVM from the variations in operating system interfaces. By centralizing 
  LLVM's use of operating system interfaces, we make it possible for the LLVM
  tool chain and runtime libraries to be more easily ported to new platforms
  since (theoretically) only <tt>llvm/lib/System</tt> needs to be ported.  This
  library also unclutters the rest of LLVM from #ifdef use and special
  cases for specific operating systems. Such uses are replaced with simple calls
  to the interfaces provided in <tt>llvm/include/llvm/System</tt>.</p> Note that
  lib/System is not intended to be a complete operating system wrapper (such as
  the Adaptive Communications Environment (ACE) or Apache Portable Runtime
  (APR)), but only to provide the functionality necessary to support LLVM.
  <p>The System Library was written by Reid Spencer who formulated the
  design based on similar original work as part of the eXtensible Programming 
  System (XPS).</p>
</div>

<!-- *********************************************************************** -->
<div class="doc_section">
  <a name="requirements">System Library Requirements</a>
</div>
<div class="doc_text">
  <p>The System library's requirements are aimed at shielding LLVM from the
  variations in operating system interfaces. The following sections define the
  requirements needed to fulfill this objective. Of necessity, these requirements 
  must be strictly followed in order to ensure the library's goal is reached.</p>
</div>

<!-- ======================================================================= -->
<div class="doc_subsection"><a name="headers">Hide System Header Files</a></div>
<div class="doc_text">
  <p>The library must shield LLVM from <em>all</em> system libraries. To obtain
  system level functionality, LLVM must <tt>#include "llvm/System/Thing.h"</tt>
  and nothing else. This means that <tt>Thing.h</tt> cannot expose any system
  header files. This protects LLVM from accidentally using system specific
  functionality except through the lib/System interface.  Specifically this 
  means that header files like "unistd.h", "windows.h", "stdio.h", and 
  "string.h" are verbotten outside the implementation of lib/System.
  </p>
</div>

<!-- ======================================================================= -->
<div class="doc_subsection"><a name="c_headers">Allow Standard C Headers</a>
</div>
<div class="doc_text">
  <p>The <em>standard</em> C headers (the ones beginning with "c") are allowed
  to be exposed through the lib/System interface. These headers and the things
  they declare are considered to be platform agnostic. LLVM source files may
  include them or obtain their inclusion through lib/System interfaces.</p>
</div>

<!-- ======================================================================= -->
<div class="doc_subsection"><a name="cpp_headers">Allow Standard C++ Headers</a>
</div>
<div class="doc_text">
  <p>The <em>standard</em> C++ headers from the standard C++ library and
  standard template library are allowed to be exposed through the lib/System
  interface. These headers and the things they declare are considered to be
  platform agnostic. LLVM source files may include them or obtain their
  inclusion through lib/System interfaces.</p>
</div>

<!-- ======================================================================= -->
<div class="doc_subsection"><a name="nofunc">No Exposed Functions</a></div>
<div class="doc_text">
  <p>Any functions defined by system libraries (i.e. not defined by lib/System) 
  must not be exposed through the lib/System interface, even if the header file 
  for that function is not exposed. This prevents inadvertent use of system
  specific functionality.</p>
  <p>For example, the <tt>stat</tt> system call is notorious for having
  variations in the data it provides. lib/System must not declare <tt>stat</tt>
  nor allow it to be declared. Instead it should provide its own interface to
  discovering information about files and directories. Those interfaces may be
  implemented in terms of <tt>stat</tt> but that is strictly an implementation
  detail.</p>
</div>

<!-- ======================================================================= -->
<div class="doc_subsection"><a name="nodata">No Exposed Data</a></div>
<div class="doc_text">
  <p>Any data defined by system libraries (i.e. not defined by lib/System) must
  not be exposed through the lib/System interface, even if the header file for
  that function is not exposed. As with functions, this prevents inadvertent use
  of data that might not exist on all platforms.</p>
</div>

<!-- ======================================================================= -->
<div class="doc_subsection"><a name="throw">Throw Only std::string</a></div>
<div class="doc_text">
  <p>If an error occurs that lib/System cannot handle, the only action taken by
  lib/System is to throw an instance of std:string. The contents of the string
  must explain both what happened and the context in which it happened. The
  format of the string should be a (possibly empty) list of contexts each 
  terminated with a : and a space, followed by the error message, optionally
  followed by a reason, and optionally followed by a suggestion.</p>
  <p>For example, failure to open a file named "foo" could result in a message
  like:</p>
  <ul><li>foo: Unable to open file because it doesn't exist."</li></ul>
  <p>The "foo:" part is the context. The "Unable to open file" part is the error
  message. The "because it doesn't exist." part is the reason. This message has
  no suggestion. Where possible, the implementation of lib/System should use
  operating system specific facilities for converting the error code returned by
  a system call into an error message. This will help to make the error message
  more familiar to users of that type of operating system.</p>
  <p>Note that this requirement precludes the throwing of any other exceptions.
  For example, various C++ standard library functions can cause exceptions to be
  thrown (e.g. out of memory situation). In all cases, if there is a possibility
  that non-string exceptions could be thrown, the lib/System library must ensure
  that the exceptions are translated to std::string form.</p>
</div>

<!-- ======================================================================= -->
<div class="doc_subsection"><a name="throw_spec">No throw Specifications</a>
</div>
<div class="doc_text">
  <p>None of the lib/System interface functions may be declared with C++ 
  <tt>throw()</tt> specifications on them. This requirement makes sure that the
  compiler does not insert additional exception handling code into the interface
  functions. This is a performance consideration: lib/System functions are at
  the bottom of the many call chains and as such can be frequently called. We
  need them to be as efficient as possible.</p>
</div>

<!-- ======================================================================= -->
<div class="doc_subsection"><a name="nodupl">No Duplicate Implementations</a>
</div>
<div class="doc_text">
  <p>The implementation of a function for a given platform must be written
  exactly once. This implies that it must be possible to apply a function's 
  implementation to multiple operating systems if those operating systems can
  share the same implementation.</p>
</div>

<!-- *********************************************************************** -->
<div class="doc_section"><a name="design">System Library Design</a></div>
<div class="doc_text">
  <p>In order to fulfill the requirements of the system library, strict design
  objectives must be maintained in the library as it evolves.  The goal here 
  is to provide interfaces to operating system concepts (files, memory maps, 
  sockets, signals, locking, etc) efficiently and in such a way that the 
  remainder of LLVM is completely operating system agnostic.</p>
</div>

<!-- ======================================================================= -->
<div class="doc_subsection"><a name="nounused">No Unused Functionality</a></div>
<div class="doc_text">
  <p>There must be no functionality specified in the interface of lib/System 
  that isn't actually used by LLVM. We're not writing a general purpose
  operating system wrapper here, just enough to satisfy LLVM's needs. And, LLVM
  doesn't need much. This design goal aims to keep the lib/System interface
  small and understandable which should foster its actual use and adoption.</p>
</div>

<!-- ======================================================================= -->
<div class="doc_subsection"><a name="highlev">High Level Interface</a></div>
<div class="doc_text">
  <p>The entry points specified in the interface of lib/System must be aimed at 
  completing some reasonably high level task needed by LLVM. We do not want to
  simply wrap each operating system call. It would be preferable to wrap several
  operating system calls that are always used in conjunction with one another by
  LLVM.</p>
  <p>For example, consider what is needed to execute a program, wait for it to
  complete, and return its result code. On Unix, this involves the following
  operating system calls: <tt>getenv, fork, execve,</tt> and <tt>wait</tt>. The
  correct thing for lib/System to provide is a function, say
  <tt>ExecuteProgramAndWait</tt>, that implements the functionality completely.
  what we don't want is wrappers for the operating system calls involved.</p>
  <p>There must <em>not</em> be a one-to-one relationship between operating
  system calls and the System library's interface. Any such interface function
  will be suspicious.</p>
</div>

<!-- ======================================================================= -->
<div class="doc_subsection"><a name="highlev">Minimize Soft Errors</a></div>
<div class="doc_text">
  <p>Operating system interfaces will generally provide errors results for every
  little thing that could go wrong. In almost all cases, you can divide these
  error results into two groups: normal/good/soft and abnormal/bad/hard. That
  is, some of the errors are simply information like "file not found", 
  "insufficient privileges", etc. while other errors are much harder like
  "out of space", "bad disk sector", or "system call interrupted". Well call the
  first group "soft" errors and the second group "hard" errors.<p>
  <p>lib/System must always attempt to minimize soft errors and always just
  throw a std::string on hard errors. This is a design requirement because the
  minimization of soft errors can affect the granularity and the nature of the
  interface. In general, if you find that you're wanting to throw soft errors,
  you must review the granularity of the interface because it is likely you're
  trying to implement something that is too low level. The rule of thumb is to
  provide interface functions that "can't" fail, except when faced with hard
  errors.</p>
  <p>For a trivial example, suppose we wanted to add an "OpenFileForWriting" 
  function. For many operating systems, if the file doesn't exist, attempting 
  to open the file will produce an error.  However, lib/System should not
  simply throw that error if it occurs because its a soft error. The problem
  is that the interface function, OpenFileForWriting is too low level. It should
  be OpenOrCreateFileForWriting. In the case of the soft "doesn't exist" error, 
  this function would just create it and then open it for writing.</p>
  <p>This design principle needs to be maintained in lib/System because it
  avoids the propagation of soft error handling throughout the rest of LLVM.
  Hard errors will generally just cause a termination for an LLVM tool so don't
  be bashful about throwing them.</p>
  <p>Rules of thumb:</p>
  <ol>
    <li>Don't throw soft errors, only hard errors.</li>
    <li>If you're tempted to throw a soft error, re-think the interface.</li>
    <li>Handle internally the most common normal/good/soft error conditions
    so the rest of LLVM doesn't have to.</li>
  </ol>
 
<pre><tt>
Notes:
10. The implementation of a lib/System interface can vary drastically between
    platforms. That's okay as long as the end result of the interface function is
    the same. For example, a function to create a directory is pretty straight
    forward on all operating system. System V IPC on the other hand isn't even
    supported on all platforms. Instead of "supporting" System V IPC, lib/System
    should provide an interface to the basic concept of inter-process 
    communications. The implementations might use System V IPC if that was
    available or named pipes, or whatever gets the job done effectively for a
    given operating system.

11. Implementations are separated first by the general class of operating system
    as provided by the configure script's $build variable. This variable is used
    to create a link from $BUILD_OBJ_ROOT/lib/System/platform to a directory in
    $BUILD_SRC_ROOT/lib/System directory with the same name as the $build
    variable. This provides a retargetable include mechanism. By using the link's
    name (platform) we can actually include the operating specific
    implementation. For example, support $build is "Darwin" for MacOS X. If we
    place:
      #include "platform/File.cpp"
    into a a file in lib/System, it will actually include
    lib/System/Darwin/File.cpp. What this does is quickly differentiate the basic
    class of operating system that will provide the implementation.
 
12. Implementation files in lib/System need may only do two things: (1) define 
    functions and data that is *TRULY* generic (completely platform agnostic) and
    (2) #include the platform specific implementation with:
 
       #include "platform/Impl.cpp"
 
    where Impl is the name of the implementation files.
 
13. Platform specific implementation files (platform/Impl.cpp) may only #include
    other Impl.cpp files found in directories under lib/System. The order of
    inclusion is very important (from most generic to most specific) so that we
    don't inadvertently place an implementation in the wrong place. For example,
    consider a fictitious implementation file named DoIt.cpp. Here's how the
    #includes should work for a Linux platform
 
    lib/System/DoIt.cpp
      #include "platform/DoIt.cpp"        // platform specific impl. of Doit
      DoIt
 
    lib/System/Linux/DoIt.cpp             // impl that works on all Linux 
      #include "../Unix/DoIt.cpp"         // generic Unix impl. of DoIt
      #include "../Unix/SUS/DoIt.cpp      // SUS specific impl. of DoIt
      #include "../Unix/SUS/v3/DoIt.cpp   // SUSv3 specific impl. of DoIt
 
    Note that the #includes in lib/System/Linux/DoIt.cpp are all optional but
    should be used where the implementation of some functionality can be shared
    across some set of Unix variants. We don't want to duplicate code across
    variants if their implementation could be shared.
</tt></pre>
</div>

<!-- ======================================================================= -->
<div class="doc_subsection"><a name="opaque">Use Opaque Classes</a></div>
<div class="doc_text">
  <p>no public data</p>
  <p>onlyprimitive typed private/protected data</p>
  <p>data size is "right" for platform, not max of all platforms</p>
  <p>each class corresponds to O/S concept</p>
</div>

<!-- ======================================================================= -->
<div class="doc_subsection"><a name="common">Common Implementations</a></div>
<div class="doc_text">
  <p>To be written.</p>
</div>

<!-- ======================================================================= -->
<div class="doc_subsection">
  <a name="multi_imps">Multiple Implementations</a>
</div>
<div class="doc_text">
  <p>To be written.</p>
</div>

<!-- ======================================================================= -->
<div class="doc_subsection"><a name="memalloc">No Memory Allocation</a></div>
<div class="doc_text">
  <p>To be written.</p>
</div>

<!-- ======================================================================= -->
<div class="doc_subsection"><a name="virtuals">No Virtual Methods</a></div>
<div class="doc_text">
  <p>To be written.</p>
</div>

<!-- *********************************************************************** -->
<div class="doc_section"><a name="detail">System Library Details</a></div>
<div class="doc_text">
  <p>To be written.</p>
</div>

<!-- ======================================================================= -->
<div class="doc_subsection"><a name="bug">Bug 351</a></div>
<div class="doc_text">
  <p>See <a href="http://llvm.cs.uiuc.edu/PR351">bug 351</a>
  for further details on the progress of this work</p>
</div>

<!-- ======================================================================= -->
<div class="doc_subsection"><a name="bug">Rationale For #include Hierarchy</a>
</div>
<div class="doc_text">
  <p>In order to provide different implementations of the lib/System interface
  for different platforms, it is necessary for the library to "sense" which
  operating system is being compiled for and conditionally compile only the
  applicable parts of the library. While several operating system wrapper
  libraries (e.g. APR, ACE) choose to use #ifdef preprocessor statements in
  combination with autoconf variable (HAVE_* family), lib/System chooses an
  alternate strategy. <p>
  <p>To put it succinctly, the lib/System strategy has traded "#ifdef hell" for 
  "#include hell". That is, a given implementation file defines one or more
  functions for a particular operating system variant. The functions defined in
  that file have no #ifdef's to disambiguate the platform since the file is only
  compiled on one kind of platform. While this leads to the same function being
  implemented differently in different files, it is our contention that this
  leads to better maintenance and easier portability.</p>
  <p>For example, consider a function having different implementations on a
  variety of platforms. Many wrapper libraries choose to deal with the different
  implementations by using #ifdef, like this:</p>
  <pre><tt>
      void SomeFunction(void) {
      #if defined __LINUX
        // .. Linux implementation
      #elif defined __WIN32
        // .. Win32 implementation
      #elif defined __SunOS
        // .. SunOS implementation
      #else
      #warning "Don't know how to implement SomeFunction on this platform"
      #endif
      }
  </tt></pre>
  <p>The problem with this is that its very messy to read, especially as the
  number of operating systems and their variants grow. The above example is
  actually tame compared to what can happen when the implementation depends on
  specific flavors and versions of the operating system. In that case you end up
  with multiple levels of nested #if statements. This is what we mean by "#ifdef
  hell".</p>
  <p>To avoid the situation above, we've chosen to locate all functions for a
  given implementation file for a specific operating system into one place. This
  has the following advantages:<p>
  <ul>
    <li>No "#ifdef hell"</li>
    <li>When porting, the strategy is quite straight forward: copy the
    implementation file from a similar operating system to a new directory and
    re-implement them.<li>
    <li>Correctness is helped during porting because the new operating system's
    implementation is wholly contained in a separate directory. There's no
    chance to make an error in the #if statements and affect some other
    operating system's implementation.</li>
  </ul>
  <p>So, given that we have decided to use #include instead of #if to provide
  platform specific implementations, there are actually three ways we can go
  about doing this. None of them are perfect, but we believe we've chosen the
  lesser of the three evils. Given that there is a variable named $OS which
  names the platform for which we must build, here's a summary of the three 
  approaches we could use to determine the correct directory:</p>
  <ol>
    <li>Provide the compiler with a -I$(OS) on the command line. This could be
    provided in only the lib/System makefile.</li>
    <li>Use autoconf to transform #include statements in the implementation
    files by using substitutions of @OS@. For example, if we had a file,
    File.cpp.in, that contained "#include &lt;@OS@/File.cpp&gt;" this would get
    transformed to "#include &lt;actual/File.cpp&gt;" where "actual" is the
    actual name of the operating system</li>
    <li>Create a link from $OBJ_DIR/platform to $SRC_DIR/$OS. This allows us to
    use a generic directory name to get the correct platform, as in #include
    &lt;platform/File.cpp&gt;</li>
  </ol>
  <p>Let's look at the pitfalls of each approach.</p>
  <p>In approach #1, we end up with some confusion as to what gets included.
  Suppose we have lib/System/File.cpp that includes just File.cpp to get the
  platform specific part of the implementation. In this case, the include
  directive with the &lt;&gt; syntax will include the right file but the include
  directive with the "" syntax will recursively include the same file,
  lib/System/File.cpp. In the case of #include &lt;File.cpp&gt;, the -I options
  to the compiler are searched first so it works. But in the #include "File.cpp"
  case, the current directory is searched first. Furthermore, in both cases,
  neither include directive documents which File.cpp is getting included.</p>
  <p>In approach #2, we have the problem of needing to reconfigure repeatedly.
  Developer's generally hate that and we don't want lib/System to be a thorn in
  everyone's side because it will constantly need updating as operating systems
  change and as new operating systems are added. The problem occurs when a new
  implementation file is added to the library. First of all, you have to add a
  file with the .in suffix, then you have to add that file name to the list of
  configurable files in the autoconf/configure.ac file, then you have to run
  AutoRegen.sh to rebuild the configure script, then you have to run the
  configure script. This is deemed to be a pretty large hassle.</p>
  <p>In approach #3, we have the problem that not all platforms support links.
  Fortunately the autoconf macro used to create the link can compensate for
  this. If a link can't be made, the configure script will copy the correct
  directory from $BUILD_SRC_DIR to $BUILD_OBJ_DIR under the new name. The only
  problem with this is that if a copy is made, the copy doesn't get updated if
  the programmer adds or modifies files in the $BUILD_SRC_DIR. A reconfigure or
  manual copying is needed to get things to compile.<p>
  <p>The approach we have taken in lib/System is #3. Here's why:<p>
  <ul>
    <li>Approach #1 is rejected because it doesn't document what's actually
    getting included and the potential for mistakes with alternate include
    directive forms is high.</li>
    <li>Approach #2 are both viable and only really impact development when new
    files are added to the library.</li>
    <li>However, approach #2 impacts every new file on every platform all the
    time. With approach #3, only those platforms not supporting links will be
    affected. The number of platforms not supporting links is very small and
    they are generally archaic.</li>
    <li>Given the above, approach #3 seems to have the least impact.</li>
  </ul>
</div>

<!-- ======================================================================= -->
<div class="doc_subsection">
  <a name="refimpl">Reference Implementation</a>
</div>
<div class="doc_text">
  <p>The <tt>linux</tt> implementation of the system library will always be the
  reference implementation. This means that (a) the concepts defined by the
  linux must be identically replicated in the other implementations and (b) the
  linux implementation must always be complete (provide implementations for all
  concepts).</p>
</div>

<!-- *********************************************************************** -->

<hr>
<address>
  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
  src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
  <a href="http://validator.w3.org/check/referer"><img
  src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>

  <a href="mailto:rspencer@x10sys.com">Reid Spencer</a><br>
  <a href="http://llvm.cs.uiuc.edu">LLVM Compiler Infrastructure</a><br>
  Last modified: $Date$
</address>
</body>
</html>