aboutsummaryrefslogtreecommitdiff
path: root/docs/SourceLevelDebugging.rst
blob: 857479508a5e250405643f474957a1bfa7b83e0f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
================================
Source Level Debugging with LLVM
================================

.. contents::
   :local:

Introduction
============

This document is the central repository for all information pertaining to debug
information in LLVM.  It describes the :ref:`actual format that the LLVM debug
information takes <format>`, which is useful for those interested in creating
front-ends or dealing directly with the information.  Further, this document
provides specific examples of what debug information for C/C++ looks like.

Philosophy behind LLVM debugging information
--------------------------------------------

The idea of the LLVM debugging information is to capture how the important
pieces of the source-language's Abstract Syntax Tree map onto LLVM code.
Several design aspects have shaped the solution that appears here.  The
important ones are:

* Debugging information should have very little impact on the rest of the
  compiler.  No transformations, analyses, or code generators should need to
  be modified because of debugging information.

* LLVM optimizations should interact in :ref:`well-defined and easily described
  ways <intro_debugopt>` with the debugging information.

* Because LLVM is designed to support arbitrary programming languages,
  LLVM-to-LLVM tools should not need to know anything about the semantics of
  the source-level-language.

* Source-level languages are often **widely** different from one another.
  LLVM should not put any restrictions of the flavor of the source-language,
  and the debugging information should work with any language.

* With code generator support, it should be possible to use an LLVM compiler
  to compile a program to native machine code and standard debugging
  formats.  This allows compatibility with traditional machine-code level
  debuggers, like GDB or DBX.

The approach used by the LLVM implementation is to use a small set of
:ref:`intrinsic functions <format_common_intrinsics>` to define a mapping
between LLVM program objects and the source-level objects.  The description of
the source-level program is maintained in LLVM metadata in an
:ref:`implementation-defined format <ccxx_frontend>` (the C/C++ front-end
currently uses working draft 7 of the `DWARF 3 standard
<http://www.eagercon.com/dwarf/dwarf3std.htm>`_).

When a program is being debugged, a debugger interacts with the user and turns
the stored debug information into source-language specific information.  As
such, a debugger must be aware of the source-language, and is thus tied to a
specific language or family of languages.

Debug information consumers
---------------------------

The role of debug information is to provide meta information normally stripped
away during the compilation process.  This meta information provides an LLVM
user a relationship between generated code and the original program source
code.

Currently, debug information is consumed by DwarfDebug to produce dwarf
information used by the gdb debugger.  Other targets could use the same
information to produce stabs or other debug forms.

It would also be reasonable to use debug information to feed profiling tools
for analysis of generated code, or, tools for reconstructing the original
source from generated code.

TODO - expound a bit more.

.. _intro_debugopt:

Debugging optimized code
------------------------

An extremely high priority of LLVM debugging information is to make it interact
well with optimizations and analysis.  In particular, the LLVM debug
information provides the following guarantees:

* LLVM debug information **always provides information to accurately read
  the source-level state of the program**, regardless of which LLVM
  optimizations have been run, and without any modification to the
  optimizations themselves.  However, some optimizations may impact the
  ability to modify the current state of the program with a debugger, such
  as setting program variables, or calling functions that have been
  deleted.

* As desired, LLVM optimizations can be upgraded to be aware of the LLVM
  debugging information, allowing them to update the debugging information
  as they perform aggressive optimizations.  This means that, with effort,
  the LLVM optimizers could optimize debug code just as well as non-debug
  code.

* LLVM debug information does not prevent optimizations from
  happening (for example inlining, basic block reordering/merging/cleanup,
  tail duplication, etc).

* LLVM debug information is automatically optimized along with the rest of
  the program, using existing facilities.  For example, duplicate
  information is automatically merged by the linker, and unused information
  is automatically removed.

Basically, the debug information allows you to compile a program with
"``-O0 -g``" and get full debug information, allowing you to arbitrarily modify
the program as it executes from a debugger.  Compiling a program with
"``-O3 -g``" gives you full debug information that is always available and
accurate for reading (e.g., you get accurate stack traces despite tail call
elimination and inlining), but you might lose the ability to modify the program
and call functions where were optimized out of the program, or inlined away
completely.

:ref:`LLVM test suite <test-suite-quickstart>` provides a framework to test
optimizer's handling of debugging information.  It can be run like this:

.. code-block:: bash

  % cd llvm/projects/test-suite/MultiSource/Benchmarks  # or some other level
  % make TEST=dbgopt

This will test impact of debugging information on optimization passes.  If
debugging information influences optimization passes then it will be reported
as a failure.  See :doc:`TestingGuide` for more information on LLVM test
infrastructure and how to run various tests.

.. _format:

Debugging information format
============================

LLVM debugging information has been carefully designed to make it possible for
the optimizer to optimize the program and debugging information without
necessarily having to know anything about debugging information.  In
particular, the use of metadata avoids duplicated debugging information from
the beginning, and the global dead code elimination pass automatically deletes
debugging information for a function if it decides to delete the function.

To do this, most of the debugging information (descriptors for types,
variables, functions, source files, etc) is inserted by the language front-end
in the form of LLVM metadata.

Debug information is designed to be agnostic about the target debugger and
debugging information representation (e.g. DWARF/Stabs/etc).  It uses a generic
pass to decode the information that represents variables, types, functions,
namespaces, etc: this allows for arbitrary source-language semantics and
type-systems to be used, as long as there is a module written for the target
debugger to interpret the information.

To provide basic functionality, the LLVM debugger does have to make some
assumptions about the source-level language being debugged, though it keeps
these to a minimum.  The only common features that the LLVM debugger assumes
exist are :ref:`source files <format_files>`, and :ref:`program objects
<format_global_variables>`.  These abstract objects are used by a debugger to
form stack traces, show information about local variables, etc.

This section of the documentation first describes the representation aspects
common to any source-language.  :ref:`ccxx_frontend` describes the data layout
conventions used by the C and C++ front-ends.

Debug information descriptors
-----------------------------

In consideration of the complexity and volume of debug information, LLVM
provides a specification for well formed debug descriptors.

Consumers of LLVM debug information expect the descriptors for program objects
to start in a canonical format, but the descriptors can include additional
information appended at the end that is source-language specific.  All LLVM
debugging information is versioned, allowing backwards compatibility in the
case that the core structures need to change in some way.  Also, all debugging
information objects start with a tag to indicate what type of object it is.
The source-language is allowed to define its own objects, by using unreserved
tag numbers.  We recommend using with tags in the range 0x1000 through 0x2000
(there is a defined ``enum DW_TAG_user_base = 0x1000``.)

The fields of debug descriptors used internally by LLVM are restricted to only
the simple data types ``i32``, ``i1``, ``float``, ``double``, ``mdstring`` and
``mdnode``.

.. code-block:: llvm

  !1 = metadata !{
    i32,   ;; A tag
    ...
  }

<a name="LLVMDebugVersion">The first field of a descriptor is always an
``i32`` containing a tag value identifying the content of the descriptor.
The remaining fields are specific to the descriptor.  The values of tags are
loosely bound to the tag values of DWARF information entries.  However, that
does not restrict the use of the information supplied to DWARF targets.  To
facilitate versioning of debug information, the tag is augmented with the
current debug version (``LLVMDebugVersion = 8 << 16`` or 0x80000 or
524288.)

The details of the various descriptors follow.

Compile unit descriptors
^^^^^^^^^^^^^^^^^^^^^^^^

.. code-block:: llvm

  !0 = metadata !{
    i32,       ;; Tag = 17 + LLVMDebugVersion (DW_TAG_compile_unit)
    i32,       ;; Unused field.
    i32,       ;; DWARF language identifier (ex. DW_LANG_C89)
    metadata,  ;; Source file name
    metadata,  ;; Source file directory (includes trailing slash)
    metadata   ;; Producer (ex. "4.0.1 LLVM (LLVM research group)")
    i1,        ;; True if this is a main compile unit.
    i1,        ;; True if this is optimized.
    metadata,  ;; Flags
    i32        ;; Runtime version
    metadata   ;; List of enums types
    metadata   ;; List of retained types
    metadata   ;; List of subprograms
    metadata   ;; List of global variables
  }

These descriptors contain a source language ID for the file (we use the DWARF
3.0 ID numbers, such as ``DW_LANG_C89``, ``DW_LANG_C_plus_plus``,
``DW_LANG_Cobol74``, etc), three strings describing the filename, working
directory of the compiler, and an identifier string for the compiler that
produced it.

Compile unit descriptors provide the root context for objects declared in a
specific compilation unit.  File descriptors are defined using this context.
These descriptors are collected by a named metadata ``!llvm.dbg.cu``.  They
keep track of subprograms, global variables and type information.

.. _format_files:

File descriptors
^^^^^^^^^^^^^^^^

.. code-block:: llvm

  !0 = metadata !{
    i32,       ;; Tag = 41 + LLVMDebugVersion (DW_TAG_file_type)
    metadata,  ;; Source file name
    metadata,  ;; Source file directory (includes trailing slash)
    metadata   ;; Unused
  }

These descriptors contain information for a file.  Global variables and top
level functions would be defined using this context.  File descriptors also
provide context for source line correspondence.

Each input file is encoded as a separate file descriptor in LLVM debugging
information output.

.. _format_global_variables:

Global variable descriptors
^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. code-block:: llvm

  !1 = metadata !{
    i32,      ;; Tag = 52 + LLVMDebugVersion (DW_TAG_variable)
    i32,      ;; Unused field.
    metadata, ;; Reference to context descriptor
    metadata, ;; Name
    metadata, ;; Display name (fully qualified C++ name)
    metadata, ;; MIPS linkage name (for C++)
    metadata, ;; Reference to file where defined
    i32,      ;; Line number where defined
    metadata, ;; Reference to type descriptor
    i1,       ;; True if the global is local to compile unit (static)
    i1,       ;; True if the global is defined in the compile unit (not extern)
    {}*       ;; Reference to the global variable
  }

These descriptors provide debug information about globals variables.  They
provide details such as name, type and where the variable is defined.  All
global variables are collected inside the named metadata ``!llvm.dbg.cu``.

.. _format_subprograms:

Subprogram descriptors
^^^^^^^^^^^^^^^^^^^^^^

.. code-block:: llvm

  !2 = metadata !{
    i32,      ;; Tag = 46 + LLVMDebugVersion (DW_TAG_subprogram)
    i32,      ;; Unused field.
    metadata, ;; Reference to context descriptor
    metadata, ;; Name
    metadata, ;; Display name (fully qualified C++ name)
    metadata, ;; MIPS linkage name (for C++)
    metadata, ;; Reference to file where defined
    i32,      ;; Line number where defined
    metadata, ;; Reference to type descriptor
    i1,       ;; True if the global is local to compile unit (static)
    i1,       ;; True if the global is defined in the compile unit (not extern)
    i32,      ;; Virtuality, e.g. dwarf::DW_VIRTUALITY__virtual
    i32,      ;; Index into a virtual function
    metadata, ;; indicates which base type contains the vtable pointer for the
              ;; derived class
    i32,      ;; Flags - Artifical, Private, Protected, Explicit, Prototyped.
    i1,       ;; isOptimized
    Function * , ;; Pointer to LLVM function
    metadata, ;; Lists function template parameters
    metadata, ;; Function declaration descriptor
    metadata, ;; List of function variables
    i32       ;; Line number where the scope of the subprogram begins
  }

These descriptors provide debug information about functions, methods and
subprograms.  They provide details such as name, return types and the source
location where the subprogram is defined.

Block descriptors
^^^^^^^^^^^^^^^^^

.. code-block:: llvm

  !3 = metadata !{
    i32,     ;; Tag = 11 + LLVMDebugVersion (DW_TAG_lexical_block)
    metadata,;; Reference to context descriptor
    i32,     ;; Line number
    i32,     ;; Column number
    metadata,;; Reference to source file
    i32      ;; Unique ID to identify blocks from a template function
  }

This descriptor provides debug information about nested blocks within a
subprogram.  The line number and column numbers are used to dinstinguish two
lexical blocks at same depth.

.. code-block:: llvm

  !3 = metadata !{
    i32,     ;; Tag = 11 + LLVMDebugVersion (DW_TAG_lexical_block)
    metadata ;; Reference to the scope we're annotating with a file change
    metadata,;; Reference to the file the scope is enclosed in.
  }

This descriptor provides a wrapper around a lexical scope to handle file
changes in the middle of a lexical block.

.. _format_basic_type:

Basic type descriptors
^^^^^^^^^^^^^^^^^^^^^^

.. code-block:: llvm

  !4 = metadata !{
    i32,      ;; Tag = 36 + LLVMDebugVersion (DW_TAG_base_type)
    metadata, ;; Reference to context
    metadata, ;; Name (may be "" for anonymous types)
    metadata, ;; Reference to file where defined (may be NULL)
    i32,      ;; Line number where defined (may be 0)
    i64,      ;; Size in bits
    i64,      ;; Alignment in bits
    i64,      ;; Offset in bits
    i32,      ;; Flags
    i32       ;; DWARF type encoding
  }

These descriptors define primitive types used in the code.  Example ``int``,
``bool`` and ``float``.  The context provides the scope of the type, which is
usually the top level.  Since basic types are not usually user defined the
context and line number can be left as NULL and 0.  The size, alignment and
offset are expressed in bits and can be 64 bit values.  The alignment is used
to round the offset when embedded in a :ref:`composite type
<format_composite_type>` (example to keep float doubles on 64 bit boundaries).
The offset is the bit offset if embedded in a :ref:`composite type
<format_composite_type>`.

The type encoding provides the details of the type.  The values are typically
one of the following:

.. code-block:: llvm

  DW_ATE_address       = 1
  DW_ATE_boolean       = 2
  DW_ATE_float         = 4
  DW_ATE_signed        = 5
  DW_ATE_signed_char   = 6
  DW_ATE_unsigned      = 7
  DW_ATE_unsigned_char = 8

.. _format_derived_type:

Derived type descriptors
^^^^^^^^^^^^^^^^^^^^^^^^

.. code-block:: llvm

  !5 = metadata !{
    i32,      ;; Tag (see below)
    metadata, ;; Reference to context
    metadata, ;; Name (may be "" for anonymous types)
    metadata, ;; Reference to file where defined (may be NULL)
    i32,      ;; Line number where defined (may be 0)
    i64,      ;; Size in bits
    i64,      ;; Alignment in bits
    i64,      ;; Offset in bits
    i32,      ;; Flags to encode attributes, e.g. private
    metadata, ;; Reference to type derived from
    metadata, ;; (optional) Name of the Objective C property associated with
              ;; Objective-C an ivar, or the type of which this
              ;; pointer-to-member is pointing to members of.
    metadata, ;; (optional) Name of the Objective C property getter selector.
    metadata, ;; (optional) Name of the Objective C property setter selector.
    i32       ;; (optional) Objective C property attributes.
  }

These descriptors are used to define types derived from other types.  The value
of the tag varies depending on the meaning.  The following are possible tag
values:

.. code-block:: llvm

  DW_TAG_formal_parameter   = 5
  DW_TAG_member             = 13
  DW_TAG_pointer_type       = 15
  DW_TAG_reference_type     = 16
  DW_TAG_typedef            = 22
  DW_TAG_ptr_to_member_type = 31
  DW_TAG_const_type         = 38
  DW_TAG_volatile_type      = 53
  DW_TAG_restrict_type      = 55

``DW_TAG_member`` is used to define a member of a :ref:`composite type
<format_composite_type>` or :ref:`subprogram <format_subprograms>`.  The type
of the member is the :ref:`derived type <format_derived_type>`.
``DW_TAG_formal_parameter`` is used to define a member which is a formal
argument of a subprogram.

``DW_TAG_typedef`` is used to provide a name for the derived type.

``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
:ref:`derived type <format_derived_type>`.

:ref:`Derived type <format_derived_type>` location can be determined from the
context and line number.  The size, alignment and offset are expressed in bits
and can be 64 bit values.  The alignment is used to round the offset when
embedded in a :ref:`composite type <format_composite_type>`  (example to keep
float doubles on 64 bit boundaries.) The offset is the bit offset if embedded
in a :ref:`composite type <format_composite_type>`.

Note that the ``void *`` type is expressed as a type derived from NULL.

.. _format_composite_type:

Composite type descriptors
^^^^^^^^^^^^^^^^^^^^^^^^^^

.. code-block:: llvm

  !6 = metadata !{
    i32,      ;; Tag (see below)
    metadata, ;; Reference to context
    metadata, ;; Name (may be "" for anonymous types)
    metadata, ;; Reference to file where defined (may be NULL)
    i32,      ;; Line number where defined (may be 0)
    i64,      ;; Size in bits
    i64,      ;; Alignment in bits
    i64,      ;; Offset in bits
    i32,      ;; Flags
    metadata, ;; Reference to type derived from
    metadata, ;; Reference to array of member descriptors
    i32       ;; Runtime languages
  }

These descriptors are used to define types that are composed of 0 or more
elements.  The value of the tag varies depending on the meaning.  The following
are possible tag values:

.. code-block:: llvm

  DW_TAG_array_type       = 1
  DW_TAG_enumeration_type = 4
  DW_TAG_structure_type   = 19
  DW_TAG_union_type       = 23
  DW_TAG_subroutine_type  = 21
  DW_TAG_inheritance      = 28

The vector flag indicates that an array type is a native packed vector.

The members of array types (tag = ``DW_TAG_array_type``) are
:ref:`subrange descriptors <format_subrange>`, each
representing the range of subscripts at that level of indexing.

The members of enumeration types (tag = ``DW_TAG_enumeration_type``) are
:ref:`enumerator descriptors <format_enumerator>`, each representing the
definition of enumeration value for the set.  All enumeration type descriptors
are collected inside the named metadata ``!llvm.dbg.cu``.

The members of structure (tag = ``DW_TAG_structure_type``) or union (tag =
``DW_TAG_union_type``) types are any one of the :ref:`basic
<format_basic_type>`, :ref:`derived <format_derived_type>` or :ref:`composite
<format_composite_type>` type descriptors, each representing a field member of
the structure or union.

For C++ classes (tag = ``DW_TAG_structure_type``), member descriptors provide
information about base classes, static members and member functions.  If a
member is a :ref:`derived type descriptor <format_derived_type>` and has a tag
of ``DW_TAG_inheritance``, then the type represents a base class.  If the member
of is a :ref:`global variable descriptor <format_global_variables>` then it
represents a static member.  And, if the member is a :ref:`subprogram
descriptor <format_subprograms>` then it represents a member function.  For
static members and member functions, ``getName()`` returns the members link or
the C++ mangled name.  ``getDisplayName()`` the simplied version of the name.

The first member of subroutine (tag = ``DW_TAG_subroutine_type``) type elements
is the return type for the subroutine.  The remaining elements are the formal
arguments to the subroutine.

:ref:`Composite type <format_composite_type>` location can be determined from
the context and line number.  The size, alignment and offset are expressed in
bits and can be 64 bit values.  The alignment is used to round the offset when
embedded in a :ref:`composite type <format_composite_type>` (as an example, to
keep float doubles on 64 bit boundaries).  The offset is the bit offset if
embedded in a :ref:`composite type <format_composite_type>`.

.. _format_subrange:

Subrange descriptors
^^^^^^^^^^^^^^^^^^^^

.. code-block:: llvm

  !42 = metadata !{
    i32,    ;; Tag = 33 + LLVMDebugVersion (DW_TAG_subrange_type)
    i64,    ;; Low value
    i64     ;; High value
  }

These descriptors are used to define ranges of array subscripts for an array
:ref:`composite type <format_composite_type>`.  The low value defines the lower
bounds typically zero for C/C++.  The high value is the upper bounds.  Values
are 64 bit.  ``High - Low + 1`` is the size of the array.  If ``Low > High``
the array bounds are not included in generated debugging information.

.. _format_enumerator:

Enumerator descriptors
^^^^^^^^^^^^^^^^^^^^^^

.. code-block:: llvm

  !6 = metadata !{
    i32,      ;; Tag = 40 + LLVMDebugVersion (DW_TAG_enumerator)
    metadata, ;; Name
    i64       ;; Value
  }

These descriptors are used to define members of an enumeration :ref:`composite
type <format_composite_type>`, it associates the name to the value.

Local variables
^^^^^^^^^^^^^^^

.. code-block:: llvm

  !7 = metadata !{
    i32,      ;; Tag (see below)
    metadata, ;; Context
    metadata, ;; Name
    metadata, ;; Reference to file where defined
    i32,      ;; 24 bit - Line number where defined
              ;; 8 bit - Argument number. 1 indicates 1st argument.
    metadata, ;; Type descriptor
    i32,      ;; flags
    metadata  ;; (optional) Reference to inline location
  }

These descriptors are used to define variables local to a sub program.  The
value of the tag depends on the usage of the variable:

.. code-block:: llvm

  DW_TAG_auto_variable   = 256
  DW_TAG_arg_variable    = 257

An auto variable is any variable declared in the body of the function.  An
argument variable is any variable that appears as a formal argument to the
function.

The context is either the subprogram or block where the variable is defined.
Name the source variable name.  Context and line indicate where the variable
was defined.  Type descriptor defines the declared type of the variable.

.. _format_common_intrinsics:

Debugger intrinsic functions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

LLVM uses several intrinsic functions (name prefixed with "``llvm.dbg``") to
provide debug information at various points in generated code.

``llvm.dbg.declare``
^^^^^^^^^^^^^^^^^^^^

.. code-block:: llvm

  void %llvm.dbg.declare(metadata, metadata)

This intrinsic provides information about a local element (e.g., variable).
The first argument is metadata holding the alloca for the variable.  The second
argument is metadata containing a description of the variable.

``llvm.dbg.value``
^^^^^^^^^^^^^^^^^^

.. code-block:: llvm

  void %llvm.dbg.value(metadata, i64, metadata)

This intrinsic provides information when a user source variable is set to a new
value.  The first argument is the new value (wrapped as metadata).  The second
argument is the offset in the user source variable where the new value is
written.  The third argument is metadata containing a description of the user
source variable.

Object lifetimes and scoping
============================

In many languages, the local variables in functions can have their lifetimes or
scopes limited to a subset of a function.  In the C family of languages, for
example, variables are only live (readable and writable) within the source
block that they are defined in.  In functional languages, values are only
readable after they have been defined.  Though this is a very obvious concept,
it is non-trivial to model in LLVM, because it has no notion of scoping in this
sense, and does not want to be tied to a language's scoping rules.

In order to handle this, the LLVM debug format uses the metadata attached to
llvm instructions to encode line number and scoping information.  Consider the
following C fragment, for example:

.. code-block:: c

  1.  void foo() {
  2.    int X = 21;
  3.    int Y = 22;
  4.    {
  5.      int Z = 23;
  6.      Z = X;
  7.    }
  8.    X = Y;
  9.  }

Compiled to LLVM, this function would be represented like this:

.. code-block:: llvm

  define void @foo() nounwind ssp {
  entry:
    %X = alloca i32, align 4                        ; <i32*> [#uses=4]
    %Y = alloca i32, align 4                        ; <i32*> [#uses=4]
    %Z = alloca i32, align 4                        ; <i32*> [#uses=3]
    %0 = bitcast i32* %X to {}*                     ; <{}*> [#uses=1]
    call void @llvm.dbg.declare(metadata !{i32 * %X}, metadata !0), !dbg !7
    store i32 21, i32* %X, !dbg !8
    %1 = bitcast i32* %Y to {}*                     ; <{}*> [#uses=1]
    call void @llvm.dbg.declare(metadata !{i32 * %Y}, metadata !9), !dbg !10
    store i32 22, i32* %Y, !dbg !11
    %2 = bitcast i32* %Z to {}*                     ; <{}*> [#uses=1]
    call void @llvm.dbg.declare(metadata !{i32 * %Z}, metadata !12), !dbg !14
    store i32 23, i32* %Z, !dbg !15
    %tmp = load i32* %X, !dbg !16                   ; <i32> [#uses=1]
    %tmp1 = load i32* %Y, !dbg !16                  ; <i32> [#uses=1]
    %add = add nsw i32 %tmp, %tmp1, !dbg !16        ; <i32> [#uses=1]
    store i32 %add, i32* %Z, !dbg !16
    %tmp2 = load i32* %Y, !dbg !17                  ; <i32> [#uses=1]
    store i32 %tmp2, i32* %X, !dbg !17
    ret void, !dbg !18
  }

  declare void @llvm.dbg.declare(metadata, metadata) nounwind readnone

  !0 = metadata !{i32 459008, metadata !1, metadata !"X",
                  metadata !3, i32 2, metadata !6}; [ DW_TAG_auto_variable ]
  !1 = metadata !{i32 458763, metadata !2}; [DW_TAG_lexical_block ]
  !2 = metadata !{i32 458798, i32 0, metadata !3, metadata !"foo", metadata !"foo",
                 metadata !"foo", metadata !3, i32 1, metadata !4,
                 i1 false, i1 true}; [DW_TAG_subprogram ]
  !3 = metadata !{i32 458769, i32 0, i32 12, metadata !"foo.c",
                  metadata !"/private/tmp", metadata !"clang 1.1", i1 true,
                  i1 false, metadata !"", i32 0}; [DW_TAG_compile_unit ]
  !4 = metadata !{i32 458773, metadata !3, metadata !"", null, i32 0, i64 0, i64 0,
                  i64 0, i32 0, null, metadata !5, i32 0}; [DW_TAG_subroutine_type ]
  !5 = metadata !{null}
  !6 = metadata !{i32 458788, metadata !3, metadata !"int", metadata !3, i32 0,
                  i64 32, i64 32, i64 0, i32 0, i32 5}; [DW_TAG_base_type ]
  !7 = metadata !{i32 2, i32 7, metadata !1, null}
  !8 = metadata !{i32 2, i32 3, metadata !1, null}
  !9 = metadata !{i32 459008, metadata !1, metadata !"Y", metadata !3, i32 3,
                  metadata !6}; [ DW_TAG_auto_variable ]
  !10 = metadata !{i32 3, i32 7, metadata !1, null}
  !11 = metadata !{i32 3, i32 3, metadata !1, null}
  !12 = metadata !{i32 459008, metadata !13, metadata !"Z", metadata !3, i32 5,
                   metadata !6}; [ DW_TAG_auto_variable ]
  !13 = metadata !{i32 458763, metadata !1}; [DW_TAG_lexical_block ]
  !14 = metadata !{i32 5, i32 9, metadata !13, null}
  !15 = metadata !{i32 5, i32 5, metadata !13, null}
  !16 = metadata !{i32 6, i32 5, metadata !13, null}
  !17 = metadata !{i32 8, i32 3, metadata !1, null}
  !18 = metadata !{i32 9, i32 1, metadata !2, null}

This example illustrates a few important details about LLVM debugging
information.  In particular, it shows how the ``llvm.dbg.declare`` intrinsic and
location information, which are attached to an instruction, are applied
together to allow a debugger to analyze the relationship between statements,
variable definitions, and the code used to implement the function.

.. code-block:: llvm

  call void @llvm.dbg.declare(metadata, metadata !0), !dbg !7

The first intrinsic ``%llvm.dbg.declare`` encodes debugging information for the
variable ``X``.  The metadata ``!dbg !7`` attached to the intrinsic provides
scope information for the variable ``X``.

.. code-block:: llvm

  !7 = metadata !{i32 2, i32 7, metadata !1, null}
  !1 = metadata !{i32 458763, metadata !2}; [DW_TAG_lexical_block ]
  !2 = metadata !{i32 458798, i32 0, metadata !3, metadata !"foo",
                  metadata !"foo", metadata !"foo", metadata !3, i32 1,
                  metadata !4, i1 false, i1 true}; [DW_TAG_subprogram ]

Here ``!7`` is metadata providing location information.  It has four fields:
line number, column number, scope, and original scope.  The original scope
represents inline location if this instruction is inlined inside a caller, and
is null otherwise.  In this example, scope is encoded by ``!1``. ``!1``
represents a lexical block inside the scope ``!2``, where ``!2`` is a
:ref:`subprogram descriptor <format_subprograms>`.  This way the location
information attached to the intrinsics indicates that the variable ``X`` is
declared at line number 2 at a function level scope in function ``foo``.

Now lets take another example.

.. code-block:: llvm

  call void @llvm.dbg.declare(metadata, metadata !12), !dbg !14

The second intrinsic ``%llvm.dbg.declare`` encodes debugging information for
variable ``Z``.  The metadata ``!dbg !14`` attached to the intrinsic provides
scope information for the variable ``Z``.

.. code-block:: llvm

  !13 = metadata !{i32 458763, metadata !1}; [DW_TAG_lexical_block ]
  !14 = metadata !{i32 5, i32 9, metadata !13, null}

Here ``!14`` indicates that ``Z`` is declared at line number 5 and
column number 9 inside of lexical scope ``!13``.  The lexical scope itself
resides inside of lexical scope ``!1`` described above.

The scope information attached with each instruction provides a straightforward
way to find instructions covered by a scope.

.. _ccxx_frontend:

C/C++ front-end specific debug information
==========================================

The C and C++ front-ends represent information about the program in a format
that is effectively identical to `DWARF 3.0
<http://www.eagercon.com/dwarf/dwarf3std.htm>`_ in terms of information
content.  This allows code generators to trivially support native debuggers by
generating standard dwarf information, and contains enough information for
non-dwarf targets to translate it as needed.

This section describes the forms used to represent C and C++ programs.  Other
languages could pattern themselves after this (which itself is tuned to
representing programs in the same way that DWARF 3 does), or they could choose
to provide completely different forms if they don't fit into the DWARF model.
As support for debugging information gets added to the various LLVM
source-language front-ends, the information used should be documented here.

The following sections provide examples of various C/C++ constructs and the
debug information that would best describe those constructs.

C/C++ source file information
-----------------------------

Given the source files ``MySource.cpp`` and ``MyHeader.h`` located in the
directory ``/Users/mine/sources``, the following code:

.. code-block:: c

  #include "MyHeader.h"

  int main(int argc, char *argv[]) {
    return 0;
  }

a C/C++ front-end would generate the following descriptors:

.. code-block:: llvm

  ...
  ;;
  ;; Define the compile unit for the main source file "/Users/mine/sources/MySource.cpp".
  ;;
  !2 = metadata !{
    i32 524305,    ;; Tag
    i32 0,         ;; Unused
    i32 4,         ;; Language Id
    metadata !"MySource.cpp",
    metadata !"/Users/mine/sources",
    metadata !"4.2.1 (Based on Apple Inc. build 5649) (LLVM build 00)",
    i1 true,       ;; Main Compile Unit
    i1 false,      ;; Optimized compile unit
    metadata !"",  ;; Compiler flags
    i32 0}         ;; Runtime version

  ;;
  ;; Define the file for the file "/Users/mine/sources/MySource.cpp".
  ;;
  !1 = metadata !{
    i32 524329,    ;; Tag
    metadata !"MySource.cpp",
    metadata !"/Users/mine/sources",
    metadata !2    ;; Compile unit
  }

  ;;
  ;; Define the file for the file "/Users/mine/sources/Myheader.h"
  ;;
  !3 = metadata !{
    i32 524329,    ;; Tag
    metadata !"Myheader.h"
    metadata !"/Users/mine/sources",
    metadata !2    ;; Compile unit
  }

  ...

``llvm::Instruction`` provides easy access to metadata attached with an
instruction.  One can extract line number information encoded in LLVM IR using
``Instruction::getMetadata()`` and ``DILocation::getLineNumber()``.

.. code-block:: c++

  if (MDNode *N = I->getMetadata("dbg")) {  // Here I is an LLVM instruction
    DILocation Loc(N);                      // DILocation is in DebugInfo.h
    unsigned Line = Loc.getLineNumber();
    StringRef File = Loc.getFilename();
    StringRef Dir = Loc.getDirectory();
  }

C/C++ global variable information
---------------------------------

Given an integer global variable declared as follows:

.. code-block:: c

  int MyGlobal = 100;

a C/C++ front-end would generate the following descriptors:

.. code-block:: llvm

  ;;
  ;; Define the global itself.
  ;;
  %MyGlobal = global int 100
  ...
  ;;
  ;; List of debug info of globals
  ;;
  !llvm.dbg.cu = !{!0}

  ;; Define the compile unit.
  !0 = metadata !{
    i32 786449,                       ;; Tag
    i32 0,                            ;; Context
    i32 4,                            ;; Language
    metadata !"foo.cpp",              ;; File
    metadata !"/Volumes/Data/tmp",    ;; Directory
    metadata !"clang version 3.1 ",   ;; Producer
    i1 true,                          ;; Deprecated field
    i1 false,                         ;; "isOptimized"?
    metadata !"",                     ;; Flags
    i32 0,                            ;; Runtime Version
    metadata !1,                      ;; Enum Types
    metadata !1,                      ;; Retained Types
    metadata !1,                      ;; Subprograms
    metadata !3                       ;; Global Variables
  } ; [ DW_TAG_compile_unit ]

  ;; The Array of Global Variables
  !3 = metadata !{
    metadata !4
  }

  !4 = metadata !{
    metadata !5
  }

  ;;
  ;; Define the global variable itself.
  ;;
  !5 = metadata !{
    i32 786484,                        ;; Tag
    i32 0,                             ;; Unused
    null,                              ;; Unused
    metadata !"MyGlobal",              ;; Name
    metadata !"MyGlobal",              ;; Display Name
    metadata !"",                      ;; Linkage Name
    metadata !6,                       ;; File
    i32 1,                             ;; Line
    metadata !7,                       ;; Type
    i32 0,                             ;; IsLocalToUnit
    i32 1,                             ;; IsDefinition
    i32* @MyGlobal                     ;; LLVM-IR Value
  } ; [ DW_TAG_variable ]

  ;;
  ;; Define the file
  ;;
  !6 = metadata !{
    i32 786473,                        ;; Tag
    metadata !"foo.cpp",               ;; File
    metadata !"/Volumes/Data/tmp",     ;; Directory
    null                               ;; Unused
  } ; [ DW_TAG_file_type ]

  ;;
  ;; Define the type
  ;;
  !7 = metadata !{
    i32 786468,                         ;; Tag
    null,                               ;; Unused
    metadata !"int",                    ;; Name
    null,                               ;; Unused
    i32 0,                              ;; Line
    i64 32,                             ;; Size in Bits
    i64 32,                             ;; Align in Bits
    i64 0,                              ;; Offset
    i32 0,                              ;; Flags
    i32 5                               ;; Encoding
  } ; [ DW_TAG_base_type ]

C/C++ function information
--------------------------

Given a function declared as follows:

.. code-block:: c

  int main(int argc, char *argv[]) {
    return 0;
  }

a C/C++ front-end would generate the following descriptors:

.. code-block:: llvm

  ;;
  ;; Define the anchor for subprograms.  Note that the second field of the
  ;; anchor is 46, which is the same as the tag for subprograms
  ;; (46 = DW_TAG_subprogram.)
  ;;
  !6 = metadata !{
    i32 524334,        ;; Tag
    i32 0,             ;; Unused
    metadata !1,       ;; Context
    metadata !"main",  ;; Name
    metadata !"main",  ;; Display name
    metadata !"main",  ;; Linkage name
    metadata !1,       ;; File
    i32 1,             ;; Line number
    metadata !4,       ;; Type
    i1 false,          ;; Is local
    i1 true,           ;; Is definition
    i32 0,             ;; Virtuality attribute, e.g. pure virtual function
    i32 0,             ;; Index into virtual table for C++ methods
    i32 0,             ;; Type that holds virtual table.
    i32 0,             ;; Flags
    i1 false,          ;; True if this function is optimized
    Function *,        ;; Pointer to llvm::Function
    null               ;; Function template parameters
  }
  ;;
  ;; Define the subprogram itself.
  ;;
  define i32 @main(i32 %argc, i8** %argv) {
  ...
  }

C/C++ basic types
-----------------

The following are the basic type descriptors for C/C++ core types:

bool
^^^^

.. code-block:: llvm

  !2 = metadata !{
    i32 524324,        ;; Tag
    metadata !1,       ;; Context
    metadata !"bool",  ;; Name
    metadata !1,       ;; File
    i32 0,             ;; Line number
    i64 8,             ;; Size in Bits
    i64 8,             ;; Align in Bits
    i64 0,             ;; Offset in Bits
    i32 0,             ;; Flags
    i32 2              ;; Encoding
  }

char
^^^^

.. code-block:: llvm

  !2 = metadata !{
    i32 524324,        ;; Tag
    metadata !1,       ;; Context
    metadata !"char",  ;; Name
    metadata !1,       ;; File
    i32 0,             ;; Line number
    i64 8,             ;; Size in Bits
    i64 8,             ;; Align in Bits
    i64 0,             ;; Offset in Bits
    i32 0,             ;; Flags
    i32 6              ;; Encoding
  }

unsigned char
^^^^^^^^^^^^^

.. code-block:: llvm

  !2 = metadata !{
    i32 524324,        ;; Tag
    metadata !1,       ;; Context
    metadata !"unsigned char",
    metadata !1,       ;; File
    i32 0,             ;; Line number
    i64 8,             ;; Size in Bits
    i64 8,             ;; Align in Bits
    i64 0,             ;; Offset in Bits
    i32 0,             ;; Flags
    i32 8              ;; Encoding
  }

short
^^^^^

.. code-block:: llvm

  !2 = metadata !{
    i32 524324,        ;; Tag
    metadata !1,       ;; Context
    metadata !"short int",
    metadata !1,       ;; File
    i32 0,             ;; Line number
    i64 16,            ;; Size in Bits
    i64 16,            ;; Align in Bits
    i64 0,             ;; Offset in Bits
    i32 0,             ;; Flags
    i32 5              ;; Encoding
  }

unsigned short
^^^^^^^^^^^^^^

.. code-block:: llvm

  !2 = metadata !{
    i32 524324,        ;; Tag
    metadata !1,       ;; Context
    metadata !"short unsigned int",
    metadata !1,       ;; File
    i32 0,             ;; Line number
    i64 16,            ;; Size in Bits
    i64 16,            ;; Align in Bits
    i64 0,             ;; Offset in Bits
    i32 0,             ;; Flags
    i32 7              ;; Encoding
  }

int
^^^

.. code-block:: llvm

  !2 = metadata !{
    i32 524324,        ;; Tag
    metadata !1,       ;; Context
    metadata !"int",   ;; Name
    metadata !1,       ;; File
    i32 0,             ;; Line number
    i64 32,            ;; Size in Bits
    i64 32,            ;; Align in Bits
    i64 0,             ;; Offset in Bits
    i32 0,             ;; Flags
    i32 5              ;; Encoding
  }

unsigned int
^^^^^^^^^^^^

.. code-block:: llvm

  !2 = metadata !{
    i32 524324,        ;; Tag
    metadata !1,       ;; Context
    metadata !"unsigned int",
    metadata !1,       ;; File
    i32 0,             ;; Line number
    i64 32,            ;; Size in Bits
    i64 32,            ;; Align in Bits
    i64 0,             ;; Offset in Bits
    i32 0,             ;; Flags
    i32 7              ;; Encoding
  }

long long
^^^^^^^^^

.. code-block:: llvm

  !2 = metadata !{
    i32 524324,        ;; Tag
    metadata !1,       ;; Context
    metadata !"long long int",
    metadata !1,       ;; File
    i32 0,             ;; Line number
    i64 64,            ;; Size in Bits
    i64 64,            ;; Align in Bits
    i64 0,             ;; Offset in Bits
    i32 0,             ;; Flags
    i32 5              ;; Encoding
  }

unsigned long long
^^^^^^^^^^^^^^^^^^

.. code-block:: llvm

  !2 = metadata !{
    i32 524324,        ;; Tag
    metadata !1,       ;; Context
    metadata !"long long unsigned int",
    metadata !1,       ;; File
    i32 0,             ;; Line number
    i64 64,            ;; Size in Bits
    i64 64,            ;; Align in Bits
    i64 0,             ;; Offset in Bits
    i32 0,             ;; Flags
    i32 7              ;; Encoding
  }

float
^^^^^

.. code-block:: llvm

  !2 = metadata !{
    i32 524324,        ;; Tag
    metadata !1,       ;; Context
    metadata !"float",
    metadata !1,       ;; File
    i32 0,             ;; Line number
    i64 32,            ;; Size in Bits
    i64 32,            ;; Align in Bits
    i64 0,             ;; Offset in Bits
    i32 0,             ;; Flags
    i32 4              ;; Encoding
  }

double
^^^^^^

.. code-block:: llvm

  !2 = metadata !{
    i32 524324,        ;; Tag
    metadata !1,       ;; Context
    metadata !"double",;; Name
    metadata !1,       ;; File
    i32 0,             ;; Line number
    i64 64,            ;; Size in Bits
    i64 64,            ;; Align in Bits
    i64 0,             ;; Offset in Bits
    i32 0,             ;; Flags
    i32 4              ;; Encoding
  }

C/C++ derived types
-------------------

Given the following as an example of C/C++ derived type:

.. code-block:: c

  typedef const int *IntPtr;

a C/C++ front-end would generate the following descriptors:

.. code-block:: llvm

  ;;
  ;; Define the typedef "IntPtr".
  ;;
  !2 = metadata !{
    i32 524310,          ;; Tag
    metadata !1,         ;; Context
    metadata !"IntPtr",  ;; Name
    metadata !3,         ;; File
    i32 0,               ;; Line number
    i64 0,               ;; Size in bits
    i64 0,               ;; Align in bits
    i64 0,               ;; Offset in bits
    i32 0,               ;; Flags
    metadata !4          ;; Derived From type
  }
  ;;
  ;; Define the pointer type.
  ;;
  !4 = metadata !{
    i32 524303,          ;; Tag
    metadata !1,         ;; Context
    metadata !"",        ;; Name
    metadata !1,         ;; File
    i32 0,               ;; Line number
    i64 64,              ;; Size in bits
    i64 64,              ;; Align in bits
    i64 0,               ;; Offset in bits
    i32 0,               ;; Flags
    metadata !5          ;; Derived From type
  }
  ;;
  ;; Define the const type.
  ;;
  !5 = metadata !{
    i32 524326,          ;; Tag
    metadata !1,         ;; Context
    metadata !"",        ;; Name
    metadata !1,         ;; File
    i32 0,               ;; Line number
    i64 32,              ;; Size in bits
    i64 32,              ;; Align in bits
    i64 0,               ;; Offset in bits
    i32 0,               ;; Flags
    metadata !6          ;; Derived From type
  }
  ;;
  ;; Define the int type.
  ;;
  !6 = metadata !{
    i32 524324,          ;; Tag
    metadata !1,         ;; Context
    metadata !"int",     ;; Name
    metadata !1,         ;; File
    i32 0,               ;; Line number
    i64 32,              ;; Size in bits
    i64 32,              ;; Align in bits
    i64 0,               ;; Offset in bits
    i32 0,               ;; Flags
    5                    ;; Encoding
  }

C/C++ struct/union types
------------------------

Given the following as an example of C/C++ struct type:

.. code-block:: c

  struct Color {
    unsigned Red;
    unsigned Green;
    unsigned Blue;
  };

a C/C++ front-end would generate the following descriptors:

.. code-block:: llvm

  ;;
  ;; Define basic type for unsigned int.
  ;;
  !5 = metadata !{
    i32 524324,        ;; Tag
    metadata !1,       ;; Context
    metadata !"unsigned int",
    metadata !1,       ;; File
    i32 0,             ;; Line number
    i64 32,            ;; Size in Bits
    i64 32,            ;; Align in Bits
    i64 0,             ;; Offset in Bits
    i32 0,             ;; Flags
    i32 7              ;; Encoding
  }
  ;;
  ;; Define composite type for struct Color.
  ;;
  !2 = metadata !{
    i32 524307,        ;; Tag
    metadata !1,       ;; Context
    metadata !"Color", ;; Name
    metadata !1,       ;; Compile unit
    i32 1,             ;; Line number
    i64 96,            ;; Size in bits
    i64 32,            ;; Align in bits
    i64 0,             ;; Offset in bits
    i32 0,             ;; Flags
    null,              ;; Derived From
    metadata !3,       ;; Elements
    i32 0              ;; Runtime Language
  }

  ;;
  ;; Define the Red field.
  ;;
  !4 = metadata !{
    i32 524301,        ;; Tag
    metadata !1,       ;; Context
    metadata !"Red",   ;; Name
    metadata !1,       ;; File
    i32 2,             ;; Line number
    i64 32,            ;; Size in bits
    i64 32,            ;; Align in bits
    i64 0,             ;; Offset in bits
    i32 0,             ;; Flags
    metadata !5        ;; Derived From type
  }

  ;;
  ;; Define the Green field.
  ;;
  !6 = metadata !{
    i32 524301,        ;; Tag
    metadata !1,       ;; Context
    metadata !"Green", ;; Name
    metadata !1,       ;; File
    i32 3,             ;; Line number
    i64 32,            ;; Size in bits
    i64 32,            ;; Align in bits
    i64 32,             ;; Offset in bits
    i32 0,             ;; Flags
    metadata !5        ;; Derived From type
  }

  ;;
  ;; Define the Blue field.
  ;;
  !7 = metadata !{
    i32 524301,        ;; Tag
    metadata !1,       ;; Context
    metadata !"Blue",  ;; Name
    metadata !1,       ;; File
    i32 4,             ;; Line number
    i64 32,            ;; Size in bits
    i64 32,            ;; Align in bits
    i64 64,             ;; Offset in bits
    i32 0,             ;; Flags
    metadata !5        ;; Derived From type
  }

  ;;
  ;; Define the array of fields used by the composite type Color.
  ;;
  !3 = metadata !{metadata !4, metadata !6, metadata !7}

C/C++ enumeration types
-----------------------

Given the following as an example of C/C++ enumeration type:

.. code-block:: c

  enum Trees {
    Spruce = 100,
    Oak = 200,
    Maple = 300
  };

a C/C++ front-end would generate the following descriptors:

.. code-block:: llvm

  ;;
  ;; Define composite type for enum Trees
  ;;
  !2 = metadata !{
    i32 524292,        ;; Tag
    metadata !1,       ;; Context
    metadata !"Trees", ;; Name
    metadata !1,       ;; File
    i32 1,             ;; Line number
    i64 32,            ;; Size in bits
    i64 32,            ;; Align in bits
    i64 0,             ;; Offset in bits
    i32 0,             ;; Flags
    null,              ;; Derived From type
    metadata !3,       ;; Elements
    i32 0              ;; Runtime language
  }

  ;;
  ;; Define the array of enumerators used by composite type Trees.
  ;;
  !3 = metadata !{metadata !4, metadata !5, metadata !6}

  ;;
  ;; Define Spruce enumerator.
  ;;
  !4 = metadata !{i32 524328, metadata !"Spruce", i64 100}

  ;;
  ;; Define Oak enumerator.
  ;;
  !5 = metadata !{i32 524328, metadata !"Oak", i64 200}

  ;;
  ;; Define Maple enumerator.
  ;;
  !6 = metadata !{i32 524328, metadata !"Maple", i64 300}

Debugging information format
============================

Debugging Information Extension for Objective C Properties
----------------------------------------------------------

Introduction
^^^^^^^^^^^^

Objective C provides a simpler way to declare and define accessor methods using
declared properties.  The language provides features to declare a property and
to let compiler synthesize accessor methods.

The debugger lets developer inspect Objective C interfaces and their instance
variables and class variables.  However, the debugger does not know anything
about the properties defined in Objective C interfaces.  The debugger consumes
information generated by compiler in DWARF format.  The format does not support
encoding of Objective C properties.  This proposal describes DWARF extensions to
encode Objective C properties, which the debugger can use to let developers
inspect Objective C properties.

Proposal
^^^^^^^^

Objective C properties exist separately from class members.  A property can be
defined only by "setter" and "getter" selectors, and be calculated anew on each
access.  Or a property can just be a direct access to some declared ivar.
Finally it can have an ivar "automatically synthesized" for it by the compiler,
in which case the property can be referred to in user code directly using the
standard C dereference syntax as well as through the property "dot" syntax, but
there is no entry in the ``@interface`` declaration corresponding to this ivar.

To facilitate debugging, these properties we will add a new DWARF TAG into the
``DW_TAG_structure_type`` definition for the class to hold the description of a
given property, and a set of DWARF attributes that provide said description.
The property tag will also contain the name and declared type of the property.

If there is a related ivar, there will also be a DWARF property attribute placed
in the ``DW_TAG_member`` DIE for that ivar referring back to the property TAG
for that property.  And in the case where the compiler synthesizes the ivar
directly, the compiler is expected to generate a ``DW_TAG_member`` for that
ivar (with the ``DW_AT_artificial`` set to 1), whose name will be the name used
to access this ivar directly in code, and with the property attribute pointing
back to the property it is backing.

The following examples will serve as illustration for our discussion:

.. code-block:: objc

  @interface I1 {
    int n2;
  }

  @property int p1;
  @property int p2;
  @end

  @implementation I1
  @synthesize p1;
  @synthesize p2 = n2;
  @end

This produces the following DWARF (this is a "pseudo dwarfdump" output):

.. code-block:: none

  0x00000100:  TAG_structure_type [7] *
                 AT_APPLE_runtime_class( 0x10 )
                 AT_name( "I1" )
                 AT_decl_file( "Objc_Property.m" )
                 AT_decl_line( 3 )

  0x00000110    TAG_APPLE_property
                  AT_name ( "p1" )
                  AT_type ( {0x00000150} ( int ) )

  0x00000120:   TAG_APPLE_property
                  AT_name ( "p2" )
                  AT_type ( {0x00000150} ( int ) )

  0x00000130:   TAG_member [8]
                  AT_name( "_p1" )
                  AT_APPLE_property ( {0x00000110} "p1" )
                  AT_type( {0x00000150} ( int ) )
                  AT_artificial ( 0x1 )

  0x00000140:    TAG_member [8]
                   AT_name( "n2" )
                   AT_APPLE_property ( {0x00000120} "p2" )
                   AT_type( {0x00000150} ( int ) )

  0x00000150:  AT_type( ( int ) )

Note, the current convention is that the name of the ivar for an
auto-synthesized property is the name of the property from which it derives
with an underscore prepended, as is shown in the example.  But we actually
don't need to know this convention, since we are given the name of the ivar
directly.

Also, it is common practice in ObjC to have different property declarations in
the @interface and @implementation - e.g. to provide a read-only property in
the interface,and a read-write interface in the implementation.  In that case,
the compiler should emit whichever property declaration will be in force in the
current translation unit.

Developers can decorate a property with attributes which are encoded using
``DW_AT_APPLE_property_attribute``.

.. code-block:: objc

  @property (readonly, nonatomic) int pr;

.. code-block:: none

  TAG_APPLE_property [8]
    AT_name( "pr" )
    AT_type ( {0x00000147} (int) )
    AT_APPLE_property_attribute (DW_APPLE_PROPERTY_readonly, DW_APPLE_PROPERTY_nonatomic)

The setter and getter method names are attached to the property using
``DW_AT_APPLE_property_setter`` and ``DW_AT_APPLE_property_getter`` attributes.

.. code-block:: objc

  @interface I1
  @property (setter=myOwnP3Setter:) int p3;
  -(void)myOwnP3Setter:(int)a;
  @end

  @implementation I1
  @synthesize p3;
  -(void)myOwnP3Setter:(int)a{ }
  @end

The DWARF for this would be:

.. code-block:: none

  0x000003bd: TAG_structure_type [7] *
                AT_APPLE_runtime_class( 0x10 )
                AT_name( "I1" )
                AT_decl_file( "Objc_Property.m" )
                AT_decl_line( 3 )

  0x000003cd      TAG_APPLE_property
                    AT_name ( "p3" )
                    AT_APPLE_property_setter ( "myOwnP3Setter:" )
                    AT_type( {0x00000147} ( int ) )

  0x000003f3:     TAG_member [8]
                    AT_name( "_p3" )
                    AT_type ( {0x00000147} ( int ) )
                    AT_APPLE_property ( {0x000003cd} )
                    AT_artificial ( 0x1 )

New DWARF Tags
^^^^^^^^^^^^^^

+-----------------------+--------+
| TAG                   | Value  |
+=======================+========+
| DW_TAG_APPLE_property | 0x4200 |
+-----------------------+--------+

New DWARF Attributes
^^^^^^^^^^^^^^^^^^^^

+--------------------------------+--------+-----------+
| Attribute                      | Value  | Classes   |
+================================+========+===========+
| DW_AT_APPLE_property           | 0x3fed | Reference |
+--------------------------------+--------+-----------+
| DW_AT_APPLE_property_getter    | 0x3fe9 | String    |
+--------------------------------+--------+-----------+
| DW_AT_APPLE_property_setter    | 0x3fea | String    |
+--------------------------------+--------+-----------+
| DW_AT_APPLE_property_attribute | 0x3feb | Constant  |
+--------------------------------+--------+-----------+

New DWARF Constants
^^^^^^^^^^^^^^^^^^^

+--------------------------------+-------+
| Name                           | Value |
+================================+=======+
| DW_AT_APPLE_PROPERTY_readonly  | 0x1   |
+--------------------------------+-------+
| DW_AT_APPLE_PROPERTY_readwrite | 0x2   |
+--------------------------------+-------+
| DW_AT_APPLE_PROPERTY_assign    | 0x4   |
+--------------------------------+-------+
| DW_AT_APPLE_PROPERTY_retain    | 0x8   |
+--------------------------------+-------+
| DW_AT_APPLE_PROPERTY_copy      | 0x10  |
+--------------------------------+-------+
| DW_AT_APPLE_PROPERTY_nonatomic | 0x20  |
+--------------------------------+-------+

Name Accelerator Tables
-----------------------

Introduction
^^^^^^^^^^^^

The "``.debug_pubnames``" and "``.debug_pubtypes``" formats are not what a
debugger needs.  The "``pub``" in the section name indicates that the entries
in the table are publicly visible names only.  This means no static or hidden
functions show up in the "``.debug_pubnames``".  No static variables or private
class variables are in the "``.debug_pubtypes``".  Many compilers add different
things to these tables, so we can't rely upon the contents between gcc, icc, or
clang.

The typical query given by users tends not to match up with the contents of
these tables.  For example, the DWARF spec states that "In the case of the name
of a function member or static data member of a C++ structure, class or union,
the name presented in the "``.debug_pubnames``" section is not the simple name
given by the ``DW_AT_name attribute`` of the referenced debugging information
entry, but rather the fully qualified name of the data or function member."
So the only names in these tables for complex C++ entries is a fully
qualified name.  Debugger users tend not to enter their search strings as
"``a::b::c(int,const Foo&) const``", but rather as "``c``", "``b::c``" , or
"``a::b::c``".  So the name entered in the name table must be demangled in
order to chop it up appropriately and additional names must be manually entered
into the table to make it effective as a name lookup table for debuggers to
se.

All debuggers currently ignore the "``.debug_pubnames``" table as a result of
its inconsistent and useless public-only name content making it a waste of
space in the object file.  These tables, when they are written to disk, are not
sorted in any way, leaving every debugger to do its own parsing and sorting.
These tables also include an inlined copy of the string values in the table
itself making the tables much larger than they need to be on disk, especially
for large C++ programs.

Can't we just fix the sections by adding all of the names we need to this
table? No, because that is not what the tables are defined to contain and we
won't know the difference between the old bad tables and the new good tables.
At best we could make our own renamed sections that contain all of the data we
need.

These tables are also insufficient for what a debugger like LLDB needs.  LLDB
uses clang for its expression parsing where LLDB acts as a PCH.  LLDB is then
often asked to look for type "``foo``" or namespace "``bar``", or list items in
namespace "``baz``".  Namespaces are not included in the pubnames or pubtypes
tables.  Since clang asks a lot of questions when it is parsing an expression,
we need to be very fast when looking up names, as it happens a lot.  Having new
accelerator tables that are optimized for very quick lookups will benefit this
type of debugging experience greatly.

We would like to generate name lookup tables that can be mapped into memory
from disk, and used as is, with little or no up-front parsing.  We would also
be able to control the exact content of these different tables so they contain
exactly what we need.  The Name Accelerator Tables were designed to fix these
issues.  In order to solve these issues we need to:

* Have a format that can be mapped into memory from disk and used as is
* Lookups should be very fast
* Extensible table format so these tables can be made by many producers
* Contain all of the names needed for typical lookups out of the box
* Strict rules for the contents of tables

Table size is important and the accelerator table format should allow the reuse
of strings from common string tables so the strings for the names are not
duplicated.  We also want to make sure the table is ready to be used as-is by
simply mapping the table into memory with minimal header parsing.

The name lookups need to be fast and optimized for the kinds of lookups that
debuggers tend to do.  Optimally we would like to touch as few parts of the
mapped table as possible when doing a name lookup and be able to quickly find
the name entry we are looking for, or discover there are no matches.  In the
case of debuggers we optimized for lookups that fail most of the time.

Each table that is defined should have strict rules on exactly what is in the
accelerator tables and documented so clients can rely on the content.

Hash Tables
^^^^^^^^^^^

Standard Hash Tables
""""""""""""""""""""

Typical hash tables have a header, buckets, and each bucket points to the
bucket contents:

.. code-block:: none

  .------------.
  |  HEADER    |
  |------------|
  |  BUCKETS   |
  |------------|
  |  DATA      |
  `------------'

The BUCKETS are an array of offsets to DATA for each hash:

.. code-block:: none

  .------------.
  | 0x00001000 | BUCKETS[0]
  | 0x00002000 | BUCKETS[1]
  | 0x00002200 | BUCKETS[2]
  | 0x000034f0 | BUCKETS[3]
  |            | ...
  | 0xXXXXXXXX | BUCKETS[n_buckets]
  '------------'

So for ``bucket[3]`` in the example above, we have an offset into the table
0x000034f0 which points to a chain of entries for the bucket.  Each bucket must
contain a next pointer, full 32 bit hash value, the string itself, and the data
for the current string value.

.. code-block:: none

              .------------.
  0x000034f0: | 0x00003500 | next pointer
              | 0x12345678 | 32 bit hash
              | "erase"    | string value
              | data[n]    | HashData for this bucket
              |------------|
  0x00003500: | 0x00003550 | next pointer
              | 0x29273623 | 32 bit hash
              | "dump"     | string value
              | data[n]    | HashData for this bucket
              |------------|
  0x00003550: | 0x00000000 | next pointer
              | 0x82638293 | 32 bit hash
              | "main"     | string value
              | data[n]    | HashData for this bucket
              `------------'

The problem with this layout for debuggers is that we need to optimize for the
negative lookup case where the symbol we're searching for is not present.  So
if we were to lookup "``printf``" in the table above, we would make a 32 hash
for "``printf``", it might match ``bucket[3]``.  We would need to go to the
offset 0x000034f0 and start looking to see if our 32 bit hash matches.  To do
so, we need to read the next pointer, then read the hash, compare it, and skip
to the next bucket.  Each time we are skipping many bytes in memory and
touching new cache pages just to do the compare on the full 32 bit hash.  All
of these accesses then tell us that we didn't have a match.

Name Hash Tables
""""""""""""""""

To solve the issues mentioned above we have structured the hash tables a bit
differently: a header, buckets, an array of all unique 32 bit hash values,
followed by an array of hash value data offsets, one for each hash value, then
the data for all hash values:

.. code-block:: none

  .-------------.
  |  HEADER     |
  |-------------|
  |  BUCKETS    |
  |-------------|
  |  HASHES     |
  |-------------|
  |  OFFSETS    |
  |-------------|
  |  DATA       |
  `-------------'

The ``BUCKETS`` in the name tables are an index into the ``HASHES`` array.  By
making all of the full 32 bit hash values contiguous in memory, we allow
ourselves to efficiently check for a match while touching as little memory as
possible.  Most often checking the 32 bit hash values is as far as the lookup
goes.  If it does match, it usually is a match with no collisions.  So for a
table with "``n_buckets``" buckets, and "``n_hashes``" unique 32 bit hash
values, we can clarify the contents of the ``BUCKETS``, ``HASHES`` and
``OFFSETS`` as:

.. code-block:: none

  .-------------------------.
  |  HEADER.magic           | uint32_t
  |  HEADER.version         | uint16_t
  |  HEADER.hash_function   | uint16_t
  |  HEADER.bucket_count    | uint32_t
  |  HEADER.hashes_count    | uint32_t
  |  HEADER.header_data_len | uint32_t
  |  HEADER_DATA            | HeaderData
  |-------------------------|
  |  BUCKETS                | uint32_t[n_buckets] // 32 bit hash indexes
  |-------------------------|
  |  HASHES                 | uint32_t[n_hashes] // 32 bit hash values
  |-------------------------|
  |  OFFSETS                | uint32_t[n_hashes] // 32 bit offsets to hash value data
  |-------------------------|
  |  ALL HASH DATA          |
  `-------------------------'

So taking the exact same data from the standard hash example above we end up
with:

.. code-block:: none

              .------------.
              | HEADER     |
              |------------|
              |          0 | BUCKETS[0]
              |          2 | BUCKETS[1]
              |          5 | BUCKETS[2]
              |          6 | BUCKETS[3]
              |            | ...
              |        ... | BUCKETS[n_buckets]
              |------------|
              | 0x........ | HASHES[0]
              | 0x........ | HASHES[1]
              | 0x........ | HASHES[2]
              | 0x........ | HASHES[3]
              | 0x........ | HASHES[4]
              | 0x........ | HASHES[5]
              | 0x12345678 | HASHES[6]    hash for BUCKETS[3]
              | 0x29273623 | HASHES[7]    hash for BUCKETS[3]
              | 0x82638293 | HASHES[8]    hash for BUCKETS[3]
              | 0x........ | HASHES[9]
              | 0x........ | HASHES[10]
              | 0x........ | HASHES[11]
              | 0x........ | HASHES[12]
              | 0x........ | HASHES[13]
              | 0x........ | HASHES[n_hashes]
              |------------|
              | 0x........ | OFFSETS[0]
              | 0x........ | OFFSETS[1]
              | 0x........ | OFFSETS[2]
              | 0x........ | OFFSETS[3]
              | 0x........ | OFFSETS[4]
              | 0x........ | OFFSETS[5]
              | 0x000034f0 | OFFSETS[6]   offset for BUCKETS[3]
              | 0x00003500 | OFFSETS[7]   offset for BUCKETS[3]
              | 0x00003550 | OFFSETS[8]   offset for BUCKETS[3]
              | 0x........ | OFFSETS[9]
              | 0x........ | OFFSETS[10]
              | 0x........ | OFFSETS[11]
              | 0x........ | OFFSETS[12]
              | 0x........ | OFFSETS[13]
              | 0x........ | OFFSETS[n_hashes]
              |------------|
              |            |
              |            |
              |            |
              |            |
              |            |
              |------------|
  0x000034f0: | 0x00001203 | .debug_str ("erase")
              | 0x00000004 | A 32 bit array count - number of HashData with name "erase"
              | 0x........ | HashData[0]
              | 0x........ | HashData[1]
              | 0x........ | HashData[2]
              | 0x........ | HashData[3]
              | 0x00000000 | String offset into .debug_str (terminate data for hash)
              |------------|
  0x00003500: | 0x00001203 | String offset into .debug_str ("collision")
              | 0x00000002 | A 32 bit array count - number of HashData with name "collision"
              | 0x........ | HashData[0]
              | 0x........ | HashData[1]
              | 0x00001203 | String offset into .debug_str ("dump")
              | 0x00000003 | A 32 bit array count - number of HashData with name "dump"
              | 0x........ | HashData[0]
              | 0x........ | HashData[1]
              | 0x........ | HashData[2]
              | 0x00000000 | String offset into .debug_str (terminate data for hash)
              |------------|
  0x00003550: | 0x00001203 | String offset into .debug_str ("main")
              | 0x00000009 | A 32 bit array count - number of HashData with name "main"
              | 0x........ | HashData[0]
              | 0x........ | HashData[1]
              | 0x........ | HashData[2]
              | 0x........ | HashData[3]
              | 0x........ | HashData[4]
              | 0x........ | HashData[5]
              | 0x........ | HashData[6]
              | 0x........ | HashData[7]
              | 0x........ | HashData[8]
              | 0x00000000 | String offset into .debug_str (terminate data for hash)
              `------------'

So we still have all of the same data, we just organize it more efficiently for
debugger lookup.  If we repeat the same "``printf``" lookup from above, we
would hash "``printf``" and find it matches ``BUCKETS[3]`` by taking the 32 bit
hash value and modulo it by ``n_buckets``.  ``BUCKETS[3]`` contains "6" which
is the index into the ``HASHES`` table.  We would then compare any consecutive
32 bit hashes values in the ``HASHES`` array as long as the hashes would be in
``BUCKETS[3]``.  We do this by verifying that each subsequent hash value modulo
``n_buckets`` is still 3.  In the case of a failed lookup we would access the
memory for ``BUCKETS[3]``, and then compare a few consecutive 32 bit hashes
before we know that we have no match.  We don't end up marching through
multiple words of memory and we really keep the number of processor data cache
lines being accessed as small as possible.

The string hash that is used for these lookup tables is the Daniel J.
Bernstein hash which is also used in the ELF ``GNU_HASH`` sections.  It is a
very good hash for all kinds of names in programs with very few hash
collisions.

Empty buckets are designated by using an invalid hash index of ``UINT32_MAX``.

Details
^^^^^^^

These name hash tables are designed to be generic where specializations of the
table get to define additional data that goes into the header ("``HeaderData``"),
how the string value is stored ("``KeyType``") and the content of the data for each
hash value.

Header Layout
"""""""""""""

The header has a fixed part, and the specialized part.  The exact format of the
header is:

.. code-block:: c

  struct Header
  {
    uint32_t   magic;           // 'HASH' magic value to allow endian detection
    uint16_t   version;         // Version number
    uint16_t   hash_function;   // The hash function enumeration that was used
    uint32_t   bucket_count;    // The number of buckets in this hash table
    uint32_t   hashes_count;    // The total number of unique hash values and hash data offsets in this table
    uint32_t   header_data_len; // The bytes to skip to get to the hash indexes (buckets) for correct alignment
                                // Specifically the length of the following HeaderData field - this does not
                                // include the size of the preceding fields
    HeaderData header_data;     // Implementation specific header data
  };

The header starts with a 32 bit "``magic``" value which must be ``'HASH'``
encoded as an ASCII integer.  This allows the detection of the start of the
hash table and also allows the table's byte order to be determined so the table
can be correctly extracted.  The "``magic``" value is followed by a 16 bit
``version`` number which allows the table to be revised and modified in the
future.  The current version number is 1. ``hash_function`` is a ``uint16_t``
enumeration that specifies which hash function was used to produce this table.
The current values for the hash function enumerations include:

.. code-block:: c

  enum HashFunctionType
  {
    eHashFunctionDJB = 0u, // Daniel J Bernstein hash function
  };

``bucket_count`` is a 32 bit unsigned integer that represents how many buckets
are in the ``BUCKETS`` array.  ``hashes_count`` is the number of unique 32 bit
hash values that are in the ``HASHES`` array, and is the same number of offsets
are contained in the ``OFFSETS`` array.  ``header_data_len`` specifies the size
in bytes of the ``HeaderData`` that is filled in by specialized versions of
this table.

Fixed Lookup
""""""""""""

The header is followed by the buckets, hashes, offsets, and hash value data.

.. code-block:: c

  struct FixedTable
  {
    uint32_t buckets[Header.bucket_count];  // An array of hash indexes into the "hashes[]" array below
    uint32_t hashes [Header.hashes_count];  // Every unique 32 bit hash for the entire table is in this table
    uint32_t offsets[Header.hashes_count];  // An offset that corresponds to each item in the "hashes[]" array above
  };

``buckets`` is an array of 32 bit indexes into the ``hashes`` array.  The
``hashes`` array contains all of the 32 bit hash values for all names in the
hash table.  Each hash in the ``hashes`` table has an offset in the ``offsets``
array that points to the data for the hash value.

This table setup makes it very easy to repurpose these tables to contain
different data, while keeping the lookup mechanism the same for all tables.
This layout also makes it possible to save the table to disk and map it in
later and do very efficient name lookups with little or no parsing.

DWARF lookup tables can be implemented in a variety of ways and can store a lot
of information for each name.  We want to make the DWARF tables extensible and
able to store the data efficiently so we have used some of the DWARF features
that enable efficient data storage to define exactly what kind of data we store
for each name.

The ``HeaderData`` contains a definition of the contents of each HashData chunk.
We might want to store an offset to all of the debug information entries (DIEs)
for each name.  To keep things extensible, we create a list of items, or
Atoms, that are contained in the data for each name.  First comes the type of
the data in each atom:

.. code-block:: c

  enum AtomType
  {
    eAtomTypeNULL       = 0u,
    eAtomTypeDIEOffset  = 1u,   // DIE offset, check form for encoding
    eAtomTypeCUOffset   = 2u,   // DIE offset of the compiler unit header that contains the item in question
    eAtomTypeTag        = 3u,   // DW_TAG_xxx value, should be encoded as DW_FORM_data1 (if no tags exceed 255) or DW_FORM_data2
    eAtomTypeNameFlags  = 4u,   // Flags from enum NameFlags
    eAtomTypeTypeFlags  = 5u,   // Flags from enum TypeFlags
  };

The enumeration values and their meanings are:

.. code-block:: none

  eAtomTypeNULL       - a termination atom that specifies the end of the atom list
  eAtomTypeDIEOffset  - an offset into the .debug_info section for the DWARF DIE for this name
  eAtomTypeCUOffset   - an offset into the .debug_info section for the CU that contains the DIE
  eAtomTypeDIETag     - The DW_TAG_XXX enumeration value so you don't have to parse the DWARF to see what it is
  eAtomTypeNameFlags  - Flags for functions and global variables (isFunction, isInlined, isExternal...)
  eAtomTypeTypeFlags  - Flags for types (isCXXClass, isObjCClass, ...)

Then we allow each atom type to define the atom type and how the data for each
atom type data is encoded:

.. code-block:: c

  struct Atom
  {
    uint16_t type;  // AtomType enum value
    uint16_t form;  // DWARF DW_FORM_XXX defines
  };

The ``form`` type above is from the DWARF specification and defines the exact
encoding of the data for the Atom type.  See the DWARF specification for the
``DW_FORM_`` definitions.

.. code-block:: c

  struct HeaderData
  {
    uint32_t die_offset_base;
    uint32_t atom_count;
    Atoms    atoms[atom_count0];
  };

``HeaderData`` defines the base DIE offset that should be added to any atoms
that are encoded using the ``DW_FORM_ref1``, ``DW_FORM_ref2``,
``DW_FORM_ref4``, ``DW_FORM_ref8`` or ``DW_FORM_ref_udata``.  It also defines
what is contained in each ``HashData`` object -- ``Atom.form`` tells us how large
each field will be in the ``HashData`` and the ``Atom.type`` tells us how this data
should be interpreted.

For the current implementations of the "``.apple_names``" (all functions +
globals), the "``.apple_types``" (names of all types that are defined), and
the "``.apple_namespaces``" (all namespaces), we currently set the ``Atom``
array to be:

.. code-block:: c

  HeaderData.atom_count = 1;
  HeaderData.atoms[0].type = eAtomTypeDIEOffset;
  HeaderData.atoms[0].form = DW_FORM_data4;

This defines the contents to be the DIE offset (eAtomTypeDIEOffset) that is
encoded as a 32 bit value (DW_FORM_data4).  This allows a single name to have
multiple matching DIEs in a single file, which could come up with an inlined
function for instance.  Future tables could include more information about the
DIE such as flags indicating if the DIE is a function, method, block,
or inlined.

The KeyType for the DWARF table is a 32 bit string table offset into the
".debug_str" table.  The ".debug_str" is the string table for the DWARF which
may already contain copies of all of the strings.  This helps make sure, with
help from the compiler, that we reuse the strings between all of the DWARF
sections and keeps the hash table size down.  Another benefit to having the
compiler generate all strings as DW_FORM_strp in the debug info, is that
DWARF parsing can be made much faster.

After a lookup is made, we get an offset into the hash data.  The hash data
needs to be able to deal with 32 bit hash collisions, so the chunk of data
at the offset in the hash data consists of a triple:

.. code-block:: c

  uint32_t str_offset
  uint32_t hash_data_count
  HashData[hash_data_count]

If "str_offset" is zero, then the bucket contents are done. 99.9% of the
hash data chunks contain a single item (no 32 bit hash collision):

.. code-block:: none

  .------------.
  | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
  | 0x00000004 | uint32_t HashData count
  | 0x........ | uint32_t HashData[0] DIE offset
  | 0x........ | uint32_t HashData[1] DIE offset
  | 0x........ | uint32_t HashData[2] DIE offset
  | 0x........ | uint32_t HashData[3] DIE offset
  | 0x00000000 | uint32_t KeyType (end of hash chain)
  `------------'

If there are collisions, you will have multiple valid string offsets:

.. code-block:: none

  .------------.
  | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
  | 0x00000004 | uint32_t HashData count
  | 0x........ | uint32_t HashData[0] DIE offset
  | 0x........ | uint32_t HashData[1] DIE offset
  | 0x........ | uint32_t HashData[2] DIE offset
  | 0x........ | uint32_t HashData[3] DIE offset
  | 0x00002023 | uint32_t KeyType (.debug_str[0x0002023] => "print")
  | 0x00000002 | uint32_t HashData count
  | 0x........ | uint32_t HashData[0] DIE offset
  | 0x........ | uint32_t HashData[1] DIE offset
  | 0x00000000 | uint32_t KeyType (end of hash chain)
  `------------'

Current testing with real world C++ binaries has shown that there is around 1
32 bit hash collision per 100,000 name entries.

Contents
^^^^^^^^

As we said, we want to strictly define exactly what is included in the
different tables.  For DWARF, we have 3 tables: "``.apple_names``",
"``.apple_types``", and "``.apple_namespaces``".

"``.apple_names``" sections should contain an entry for each DWARF DIE whose
``DW_TAG`` is a ``DW_TAG_label``, ``DW_TAG_inlined_subroutine``, or
``DW_TAG_subprogram`` that has address attributes: ``DW_AT_low_pc``,
``DW_AT_high_pc``, ``DW_AT_ranges`` or ``DW_AT_entry_pc``.  It also contains
``DW_TAG_variable`` DIEs that have a ``DW_OP_addr`` in the location (global and
static variables).  All global and static variables should be included,
including those scoped within functions and classes.  For example using the
following code:

.. code-block:: c

  static int var = 0;

  void f ()
  {
    static int var = 0;
  }

Both of the static ``var`` variables would be included in the table.  All
functions should emit both their full names and their basenames.  For C or C++,
the full name is the mangled name (if available) which is usually in the
``DW_AT_MIPS_linkage_name`` attribute, and the ``DW_AT_name`` contains the
function basename.  If global or static variables have a mangled name in a
``DW_AT_MIPS_linkage_name`` attribute, this should be emitted along with the
simple name found in the ``DW_AT_name`` attribute.

"``.apple_types``" sections should contain an entry for each DWARF DIE whose
tag is one of:

* DW_TAG_array_type
* DW_TAG_class_type
* DW_TAG_enumeration_type
* DW_TAG_pointer_type
* DW_TAG_reference_type
* DW_TAG_string_type
* DW_TAG_structure_type
* DW_TAG_subroutine_type
* DW_TAG_typedef
* DW_TAG_union_type
* DW_TAG_ptr_to_member_type
* DW_TAG_set_type
* DW_TAG_subrange_type
* DW_TAG_base_type
* DW_TAG_const_type
* DW_TAG_constant
* DW_TAG_file_type
* DW_TAG_namelist
* DW_TAG_packed_type
* DW_TAG_volatile_type
* DW_TAG_restrict_type
* DW_TAG_interface_type
* DW_TAG_unspecified_type
* DW_TAG_shared_type

Only entries with a ``DW_AT_name`` attribute are included, and the entry must
not be a forward declaration (``DW_AT_declaration`` attribute with a non-zero
value).  For example, using the following code:

.. code-block:: c

  int main ()
  {
    int *b = 0;
    return *b;
  }

We get a few type DIEs:

.. code-block:: none

  0x00000067:     TAG_base_type [5]
                  AT_encoding( DW_ATE_signed )
                  AT_name( "int" )
                  AT_byte_size( 0x04 )

  0x0000006e:     TAG_pointer_type [6]
                  AT_type( {0x00000067} ( int ) )
                  AT_byte_size( 0x08 )

The DW_TAG_pointer_type is not included because it does not have a ``DW_AT_name``.

"``.apple_namespaces``" section should contain all ``DW_TAG_namespace`` DIEs.
If we run into a namespace that has no name this is an anonymous namespace, and
the name should be output as "``(anonymous namespace)``" (without the quotes).
Why?  This matches the output of the ``abi::cxa_demangle()`` that is in the
standard C++ library that demangles mangled names.


Language Extensions and File Format Changes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Objective-C Extensions
""""""""""""""""""""""

"``.apple_objc``" section should contain all ``DW_TAG_subprogram`` DIEs for an
Objective-C class.  The name used in the hash table is the name of the
Objective-C class itself.  If the Objective-C class has a category, then an
entry is made for both the class name without the category, and for the class
name with the category.  So if we have a DIE at offset 0x1234 with a name of
method "``-[NSString(my_additions) stringWithSpecialString:]``", we would add
an entry for "``NSString``" that points to DIE 0x1234, and an entry for
"``NSString(my_additions)``" that points to 0x1234.  This allows us to quickly
track down all Objective-C methods for an Objective-C class when doing
expressions.  It is needed because of the dynamic nature of Objective-C where
anyone can add methods to a class.  The DWARF for Objective-C methods is also
emitted differently from C++ classes where the methods are not usually
contained in the class definition, they are scattered about across one or more
compile units.  Categories can also be defined in different shared libraries.
So we need to be able to quickly find all of the methods and class functions
given the Objective-C class name, or quickly find all methods and class
functions for a class + category name.  This table does not contain any
selector names, it just maps Objective-C class names (or class names +
category) to all of the methods and class functions.  The selectors are added
as function basenames in the "``.debug_names``" section.

In the "``.apple_names``" section for Objective-C functions, the full name is
the entire function name with the brackets ("``-[NSString
stringWithCString:]``") and the basename is the selector only
("``stringWithCString:``").

Mach-O Changes
""""""""""""""

The sections names for the apple hash tables are for non mach-o files.  For
mach-o files, the sections should be contained in the ``__DWARF`` segment with
names as follows:

* "``.apple_names``" -> "``__apple_names``"
* "``.apple_types``" -> "``__apple_types``"
* "``.apple_namespaces``" -> "``__apple_namespac``" (16 character limit)
* "``.apple_objc``" -> "``__apple_objc``"