//===- RISCDisassemblerEmitter.cpp - Disassembler Generator ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // FIXME: document // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "risc-disassembler-emitter" #include "RISCDisassemblerEmitter.h" #include "CodeGenTarget.h" #include "Record.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include using namespace llvm; //////////////////////////////////// // Utility classes / structures // //////////////////////////////////// // LLVM coding style #define INDENT_LEVEL 2 /// Indenter - A little helper class to keep track of the indentation depth, /// while the instance object is being passed around. class Indenter { public: Indenter() : depth(0) {} void push() { depth += INDENT_LEVEL; } void pop() { if (depth >= INDENT_LEVEL) depth -= INDENT_LEVEL; } // Conversion operator. operator int () { return depth; } private: uint8_t depth; }; ///////////////////////// // Utility functions // ///////////////////////// static uint8_t byteFromBitsInit(BitsInit &init) { int width = init.getNumBits(); assert(width <= 8 && "Field is too large for uint8_t!"); int index; uint8_t mask = 0x01; uint8_t ret = 0; for (index = 0; index < width; index++) { if (static_cast(init.getBit(index))->getValue()) ret |= mask; mask <<= 1; } return ret; } static uint8_t getByteField(const Record &def, const char *str) { BitsInit *bits = def.getValueAsBitsInit(str); return byteFromBitsInit(*bits); } static BitsInit &getBitsField(const Record &def, const char *str) { BitsInit *bits = def.getValueAsBitsInit(str); return *bits; } /// sameStringExceptEndingChar - Return true if the two strings differ only in /// the ending char. ("VST4q8a", "VST4q8b", 'a', 'b') as input returns true. static bool sameStringExceptEndingChar(const std::string &LHS, const std::string &RHS, char lhc, char rhc) { if (LHS.length() > 1 && RHS.length() > 1 && LHS.length() == RHS.length()) { unsigned length = LHS.length(); return LHS.substr(0, length - 1) == RHS.substr(0, length - 1) && LHS[length - 1] == lhc && RHS[length - 1] == rhc; } return false; } /// thumbInstruction - Determine whether we have a Thumb instruction. /// See also ARMInstrFormats.td. static bool thumbInstruction(uint8_t Form) { return Form == 23; } // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system // for a bit value. // // BIT_UNFILTERED is used as the init value for a filter position. It is used // only for filter processings. typedef enum { BIT_TRUE, // '1' BIT_FALSE, // '0' BIT_UNSET, // '?' BIT_UNFILTERED // unfiltered } bit_value_t; static bit_value_t bitFromBits(BitsInit &bits, unsigned index) { if (BitInit *bit = dynamic_cast(bits.getBit(index))) return bit->getValue() ? BIT_TRUE : BIT_FALSE; // The bit is uninitialized. return BIT_UNSET; } static void dumpBits(raw_ostream &o, BitsInit &bits) { unsigned index; for (index = bits.getNumBits(); index > 0; index--) { switch (bitFromBits(bits, index - 1)) { case BIT_TRUE: o << "1"; break; case BIT_FALSE: o << "0"; break; case BIT_UNSET: o << "_"; break; default: assert(0 && "unexpected return value from bitFromBits"); } } } ///////////// // Enums // ///////////// #define ARM_FORMATS \ ENTRY(ARM_FORMAT_PSEUDO, 0) \ ENTRY(ARM_FORMAT_MULFRM, 1) \ ENTRY(ARM_FORMAT_BRFRM, 2) \ ENTRY(ARM_FORMAT_BRMISCFRM, 3) \ ENTRY(ARM_FORMAT_DPFRM, 4) \ ENTRY(ARM_FORMAT_DPSOREGFRM, 5) \ ENTRY(ARM_FORMAT_LDFRM, 6) \ ENTRY(ARM_FORMAT_STFRM, 7) \ ENTRY(ARM_FORMAT_LDMISCFRM, 8) \ ENTRY(ARM_FORMAT_STMISCFRM, 9) \ ENTRY(ARM_FORMAT_LDSTMULFRM, 10) \ ENTRY(ARM_FORMAT_ARITHMISCFRM, 11) \ ENTRY(ARM_FORMAT_EXTFRM, 12) \ ENTRY(ARM_FORMAT_VFPUNARYFRM, 13) \ ENTRY(ARM_FORMAT_VFPBINARYFRM, 14) \ ENTRY(ARM_FORMAT_VFPCONV1FRM, 15) \ ENTRY(ARM_FORMAT_VFPCONV2FRM, 16) \ ENTRY(ARM_FORMAT_VFPCONV3FRM, 17) \ ENTRY(ARM_FORMAT_VFPCONV4FRM, 18) \ ENTRY(ARM_FORMAT_VFPCONV5FRM, 19) \ ENTRY(ARM_FORMAT_VFPLDSTFRM, 20) \ ENTRY(ARM_FORMAT_VFPLDSTMULFRM, 21) \ ENTRY(ARM_FORMAT_VFPMISCFRM, 22) \ ENTRY(ARM_FORMAT_THUMBFRM, 23) \ ENTRY(ARM_FORMAT_NEONFRM, 24) \ ENTRY(ARM_FORMAT_NEONGETLNFRM, 25) \ ENTRY(ARM_FORMAT_NEONSETLNFRM, 26) \ ENTRY(ARM_FORMAT_NEONDUPFRM, 27) \ ENTRY(ARM_FORMAT_LDSTEXFRM, 28) \ ENTRY(ARM_FORMAT_MISCFRM, 29) \ ENTRY(ARM_FORMAT_THUMBMISCFRM, 30) // ARM instruction format specifies the encoding used by the instruction. #define ENTRY(n, v) n = v, typedef enum { ARM_FORMATS ARM_FORMAT_NA } ARMFormat; #undef ENTRY // Converts enum to const char*. static const char *stringForARMFormat(ARMFormat form) { #define ENTRY(n, v) case n: return #n; switch(form) { ARM_FORMATS case ARM_FORMAT_NA: default: return ""; } #undef ENTRY } #define NS_FORMATS \ ENTRY(NS_FORMAT_NONE, 0) \ ENTRY(NS_FORMAT_VLDSTLane, 1) \ ENTRY(NS_FORMAT_VLDSTLaneDbl, 2) \ ENTRY(NS_FORMAT_VLDSTRQ, 3) \ ENTRY(NS_FORMAT_NVdImm, 4) \ ENTRY(NS_FORMAT_NVdVmImm, 5) \ ENTRY(NS_FORMAT_NVdVmImmVCVT, 6) \ ENTRY(NS_FORMAT_NVdVmImmVDupLane, 7) \ ENTRY(NS_FORMAT_NVdVmImmVSHLL, 8) \ ENTRY(NS_FORMAT_NVectorShuffle, 9) \ ENTRY(NS_FORMAT_NVectorShift, 10) \ ENTRY(NS_FORMAT_NVectorShift2, 11) \ ENTRY(NS_FORMAT_NVdVnVmImm, 12) \ ENTRY(NS_FORMAT_NVdVnVmImmVectorShift, 13) \ ENTRY(NS_FORMAT_NVdVnVmImmVectorExtract, 14) \ ENTRY(NS_FORMAT_NVdVnVmImmMulScalar, 15) \ ENTRY(NS_FORMAT_VTBL, 16) // NEON instruction sub-format further classify the NEONFrm instruction. #define ENTRY(n, v) n = v, typedef enum { NS_FORMATS NS_FORMAT_NA } NSFormat; #undef ENTRY // Converts enum to const char*. static const char *stringForNSFormat(NSFormat form) { #define ENTRY(n, v) case n: return #n; switch(form) { NS_FORMATS case NS_FORMAT_NA: default: return ""; } #undef ENTRY } // Enums for the available target names. typedef enum { TARGET_ARM = 0, TARGET_THUMB } TARGET_NAME_t; class AbstractFilterChooser { public: static TARGET_NAME_t TargetName; static void setTargetName(TARGET_NAME_t tn) { TargetName = tn; } virtual ~AbstractFilterChooser() {} virtual void emitTop(raw_ostream &o, Indenter &i) = 0; virtual void emitBot(raw_ostream &o, Indenter &i) = 0; }; // Define the symbol here. TARGET_NAME_t AbstractFilterChooser::TargetName; template class FilterChooser : public AbstractFilterChooser { protected: // Representation of the instruction to work on. typedef bit_value_t insn_t[tBitWidth]; class Filter { protected: FilterChooser *Owner; // pointer without ownership unsigned StartBit; // the starting bit position unsigned NumBits; // number of bits to filter bool Mixed; // a mixed region contains both set and unset bits // Map of well-known segment value to the set of uid's with that value. std::map > FilteredInstructions; // Set of uid's with non-constant segment values. std::vector VariableInstructions; // Map of well-known segment value to its delegate. std::map FilterChooserMap; // Number of instructions which fall under FilteredInstructions category. unsigned NumFiltered; // Keeps track of the last opcode in the filtered bucket. unsigned LastOpcFiltered; // Number of instructions which fall under VariableInstructions category. unsigned NumVariable; public: unsigned getNumFiltered() { return NumFiltered; } unsigned getNumVariable() { return NumVariable; } unsigned getSingletonOpc() { assert(NumFiltered == 1); return LastOpcFiltered; } FilterChooser &getVariableFC() { assert(NumFiltered == 1); assert(FilterChooserMap.size() == 1); return FilterChooserMap.find(-1)->second; } Filter(const Filter &f) : Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed), FilteredInstructions(f.FilteredInstructions), VariableInstructions(f.VariableInstructions), FilterChooserMap(f.FilterChooserMap), NumFiltered(f.NumFiltered), LastOpcFiltered(f.LastOpcFiltered), NumVariable(f.NumVariable) { } Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed) : Owner(&owner), StartBit(startBit), NumBits(numBits), Mixed(mixed) { assert(StartBit + NumBits - 1 < tBitWidth); NumFiltered = 0; LastOpcFiltered = 0; NumVariable = 0; for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) { insn_t Insn; // Populates the insn given the uid. Owner->insnWithID(Insn, Owner->Opcodes[i]); uint64_t Field; // Scans the segment for possibly well-specified encoding bits. bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits); if (ok) { // The encoding bits are well-known. Lets add the uid of the // instruction into the bucket keyed off the constant field value. LastOpcFiltered = Owner->Opcodes[i]; FilteredInstructions[Field].push_back(LastOpcFiltered); ++NumFiltered; } else { // Some of the encoding bit(s) are unspecfied. This contributes to // one additional member of "Variable" instructions. VariableInstructions.push_back(Owner->Opcodes[i]); ++NumVariable; } } assert((FilteredInstructions.size() + VariableInstructions.size() > 0) && "Filter returns no instruction categories"); } // Divides the decoding task into sub tasks and delegates them to the // inferior FilterChooser's. // // A special case arises when there's only one entry in the filtered // instructions. In order to unambiguously decode the singleton, we need to // match the remaining undecoded encoding bits against the singleton. void recurse() { std::map >::const_iterator mapIterator; bit_value_t BitValueArray[tBitWidth]; // Starts by inheriting our parent filter chooser's filter bit values. memcpy(BitValueArray, Owner->FilterBitValues, sizeof(BitValueArray)); unsigned bitIndex; if (VariableInstructions.size()) { // Conservatively marks each segment position as BIT_UNSET. for (bitIndex = 0; bitIndex < NumBits; bitIndex++) BitValueArray[StartBit + bitIndex] = BIT_UNSET; // Delegates to an inferior filter chooser for futher processing on this // group of instructions whose segment values are variable. FilterChooserMap.insert(std::pair( (unsigned)-1, FilterChooser(Owner->AllInstructions, VariableInstructions, BitValueArray, *Owner) )); } // No need to recurse for a singleton filtered instruction. // See also Filter::emit(). if (getNumFiltered() == 1) { //Owner->SingletonExists(LastOpcFiltered); assert(FilterChooserMap.size() == 1); return; } // Otherwise, create sub choosers. for (mapIterator = FilteredInstructions.begin(); mapIterator != FilteredInstructions.end(); mapIterator++) { // Marks all the segment positions with either BIT_TRUE or BIT_FALSE. for (bitIndex = 0; bitIndex < NumBits; bitIndex++) { if (mapIterator->first & (1 << bitIndex)) BitValueArray[StartBit + bitIndex] = BIT_TRUE; else BitValueArray[StartBit + bitIndex] = BIT_FALSE; } // Delegates to an inferior filter chooser for futher processing on this // category of instructions. FilterChooserMap.insert(std::pair( mapIterator->first, FilterChooser(Owner->AllInstructions, mapIterator->second, BitValueArray, *Owner) )); } } // Emit code to decode instructions given a segment or segments of bits. void emit(raw_ostream &o, Indenter &i) { o.indent(i) << "// Check Inst{"; if (NumBits > 1) o << (StartBit + NumBits - 1) << '-'; o << StartBit << "} ...\n"; o.indent(i) << "switch (fieldFromInstruction(insn, " << StartBit << ", " << NumBits << ")) {\n"; typename std::map::iterator filterIterator; bool DefaultCase = false; for (filterIterator = FilterChooserMap.begin(); filterIterator != FilterChooserMap.end(); filterIterator++) { // Field value -1 implies a non-empty set of variable instructions. // See also recurse(). if (filterIterator->first == (unsigned)-1) { DefaultCase = true; o.indent(i) << "default:\n"; o.indent(i) << " break; // fallthrough\n"; // Closing curly brace for the switch statement. // This is unconventional because we want the default processing to be // performed for the fallthrough cases as well, i.e., when the "cases" // did not prove a decoded instruction. o.indent(i) << "}\n"; } else { o.indent(i) << "case " << filterIterator->first << ":\n"; } // We arrive at a category of instructions with the same segment value. // Now delegate to the sub filter chooser for further decodings. // The case may fallthrough, which happens if the remaining well-known // encoding bits do not match exactly. if (!DefaultCase) i.push(); { bool finished = filterIterator->second.emit(o, i); // For top level default case, there's no need for a break statement. if (Owner->isTopLevel() && DefaultCase) break; if (!finished) o.indent(i) << "break;\n"; } if (!DefaultCase) i.pop(); } // If there is no default case, we still need to supply a closing brace. if (!DefaultCase) { // Closing curly brace for the switch statement. o.indent(i) << "}\n"; } } // Returns the number of fanout produced by the filter. More fanout implies // the filter distinguishes more categories of instructions. unsigned usefulness() const { if (VariableInstructions.size()) return FilteredInstructions.size(); else return FilteredInstructions.size() + 1; } }; // End of inner class Filter friend class Filter; // Vector of codegen instructions to choose our filter. const std::vector &AllInstructions; // Vector of uid's for this filter chooser to work on. const std::vector Opcodes; // Vector of candidate filters. std::vector Filters; // Array of bit values passed down from our parent. // Set to all BIT_UNFILTERED's for Parent == NULL. bit_value_t FilterBitValues[tBitWidth]; // Links to the FilterChooser above us in the decoding tree. FilterChooser *Parent; // Index of the best filter from Filters. int BestIndex; public: FilterChooser(const FilterChooser &FC) : AbstractFilterChooser(), AllInstructions(FC.AllInstructions), Opcodes(FC.Opcodes), Filters(FC.Filters), Parent(FC.Parent), BestIndex(FC.BestIndex) { memcpy(FilterBitValues, FC.FilterBitValues, sizeof(FilterBitValues)); } FilterChooser(const std::vector &Insts, const std::vector &IDs) : AllInstructions(Insts), Opcodes(IDs), Filters(), Parent(NULL), BestIndex(-1) { for (unsigned i = 0; i < tBitWidth; ++i) FilterBitValues[i] = BIT_UNFILTERED; doFilter(); } FilterChooser(const std::vector &Insts, const std::vector &IDs, bit_value_t (&ParentFilterBitValues)[tBitWidth], FilterChooser &parent) : AllInstructions(Insts), Opcodes(IDs), Filters(), Parent(&parent), BestIndex(-1) { for (unsigned i = 0; i < tBitWidth; ++i) FilterBitValues[i] = ParentFilterBitValues[i]; doFilter(); } // The top level filter chooser has NULL as its parent. bool isTopLevel() { return Parent == NULL; } // This provides an opportunity for target specific code emission. void emitTopHook(raw_ostream &o, Indenter &i) { if (TargetName == TARGET_ARM) { // Emit code that references the ARMFormat data type. o << "static const ARMFormat ARMFormats[] = {\n"; for (unsigned i = 0, e = AllInstructions.size(); i != e; ++i) { const Record &Def = *(AllInstructions[i]->TheDef); const std::string &Name = Def.getName(); if (Def.isSubClassOf("InstARM") || Def.isSubClassOf("InstThumb")) o.indent(2) << stringForARMFormat((ARMFormat)getByteField(Def, "Form")); else o << " ARM_FORMAT_NA"; o << ",\t// Inst #" << i << " = " << Name << '\n'; } o << " ARM_FORMAT_NA\t// Unreachable.\n"; o << "};\n\n"; // And emit code that references the NSFormat data type. // This is meaningful only for NEONFrm instructions. o << "static const NSFormat NSFormats[] = {\n"; for (unsigned i = 0, e = AllInstructions.size(); i != e; ++i) { const Record &Def = *(AllInstructions[i]->TheDef); const std::string &Name = Def.getName(); if (Def.isSubClassOf("NeonI") || Def.isSubClassOf("NeonXI")) o.indent(2) << stringForNSFormat((NSFormat)getByteField(Def, "NSForm")); else o << " NS_FORMAT_NA"; o << ",\t// Inst #" << i << " = " << Name << '\n'; } o << " NS_FORMAT_NA\t// Unreachable.\n"; o << "};\n\n"; } } // Emit the top level typedef and decodeInstruction() function. void emitTop(raw_ostream &o, Indenter &i) { // Run the target specific emit hook. emitTopHook(o, i); switch(tBitWidth) { case 8: o.indent(i) << "typedef uint8_t field_t;\n"; break; case 16: o.indent(i) << "typedef uint16_t field_t;\n"; break; case 32: o.indent(i) << "typedef uint32_t field_t;\n"; break; case 64: o.indent(i) << "typedef uint64_t field_t;\n"; break; default: assert(0 && "Unexpected instruction size!"); } o << '\n'; o.indent(i) << "static field_t " << "fieldFromInstruction(field_t insn, unsigned startBit, unsigned numBits)\n"; o.indent(i) << "{\n"; i.push(); { o.indent(i) << "assert(startBit + numBits <= " << tBitWidth << " && \"Instruction field out of bounds!\");\n"; o << '\n'; o.indent(i) << "field_t fieldMask;\n"; o << '\n'; o.indent(i) << "if (numBits == " << tBitWidth << ")\n"; i.push(); { o.indent(i) << "fieldMask = (field_t)-1;\n"; } i.pop(); o.indent(i) << "else\n"; i.push(); { o.indent(i) << "fieldMask = ((1 << numBits) - 1) << startBit;\n"; } i.pop(); o << '\n'; o.indent(i) << "return (insn & fieldMask) >> startBit;\n"; } i.pop(); o.indent(i) << "}\n"; o << '\n'; o.indent(i) << "static uint16_t decodeInstruction(field_t insn) {\n"; i.push(); { // Emits code to decode the instructions. emit(o, i); o << '\n'; o.indent(i) << "return 0;\n"; } i.pop(); o.indent(i) << "}\n"; o << '\n'; } // This provides an opportunity for target specific code emission after // emitTop(). void emitBot(raw_ostream &o, Indenter &i) { if (TargetName == TARGET_THUMB) { // Emit code that decodes the Thumb ISA. o.indent(i) << "static uint16_t decodeThumbInstruction(field_t insn) {\n"; i.push(); { // Emits code to decode the instructions. emit(o, i); o << '\n'; o.indent(i) << "return 0;\n"; } i.pop(); o.indent(i) << "}\n"; } } protected: // Populates the insn given the uid. void insnWithID(insn_t &Insn, unsigned Opcode) const { assert(Opcode > 10); BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst"); for (unsigned i = 0; i < tBitWidth; ++i) Insn[i] = bitFromBits(Bits, i); } // Returns the record name. const std::string &nameWithID(unsigned Opcode) const { return AllInstructions[Opcode]->TheDef->getName(); } // Populates the field of the insn given the start position and the number of // consecutive bits to scan for. // // Returns false if and on the first uninitialized bit value encountered. // Returns true, otherwise. const bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit, unsigned NumBits) const { Field = 0; for (unsigned i = 0; i < NumBits; ++i) { if (Insn[StartBit + i] == BIT_UNSET) return false; if (Insn[StartBit + i] == BIT_TRUE) Field = Field | (1 << i); } return true; } void dumpFilterArray(raw_ostream &o, bit_value_t (&filter)[tBitWidth]) { unsigned bitIndex; for (bitIndex = tBitWidth; bitIndex > 0; bitIndex--) { switch (filter[bitIndex - 1]) { case BIT_UNFILTERED: o << "."; break; case BIT_UNSET: o << "_"; break; case BIT_TRUE: o << "1"; break; case BIT_FALSE: o << "0"; break; } } } void dumpStack(raw_ostream &o, const char *prefix) { FilterChooser *current = this; while (current) { o << prefix; dumpFilterArray(o, current->FilterBitValues); o << '\n'; current = current->Parent; } } Filter &bestFilter() { assert(BestIndex != -1 && "BestIndex not set"); return Filters[BestIndex]; } // States of our finite state machines. typedef enum { ATTR_NONE, ATTR_FILTERED, ATTR_ALL_SET, ATTR_ALL_UNSET, ATTR_MIXED } bitAttr_t; // Called from Filter::recurse() when singleton exists. For debug purpose. void SingletonExists(unsigned Opc) { insn_t Insn0; insnWithID(Insn0, Opc); errs() << "Singleton exists: " << nameWithID(Opc) << " with its decoding dominating "; for (unsigned i = 0; i < Opcodes.size(); ++i) { if (Opcodes[i] == Opc) continue; errs() << nameWithID(Opcodes[i]) << ' '; } errs() << '\n'; dumpStack(errs(), "\t\t"); for (unsigned i = 0; i < Opcodes.size(); i++) { const std::string &Name = nameWithID(Opcodes[i]); errs() << '\t' << Name << " "; dumpBits(errs(), getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst")); errs() << '\n'; } } bool ValueSet(bit_value_t V) { return (V == BIT_TRUE || V == BIT_FALSE); } bool ValueNotSet(bit_value_t V) { return (V == BIT_UNSET); } int Value(bit_value_t V) { return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1); } bool PositionFiltered(unsigned i) { return ValueSet(FilterBitValues[i]); } // Calculates the island(s) needed to decode the instruction. unsigned getIslands(std::vector &StartBits, std::vector &EndBits, std::vector &FieldVals, insn_t &Insn) { unsigned Num, BitNo; Num = BitNo = 0; uint64_t FieldVal = 0; // 0: Init // 1: Water // 2: Island int State = 0; int Val = -1; for (unsigned i = 0; i < tBitWidth; ++i) { Val = Value(Insn[i]); bool Filtered = PositionFiltered(i); switch (State) { default: assert(0 && "Unreachable code!"); break; case 0: case 1: if (Filtered || Val == -1) State = 1; // Still in Water else { State = 2; // Into the Island BitNo = 0; StartBits.push_back(i); FieldVal = Val; } break; case 2: if (Filtered || Val == -1) { State = 1; // Into the Water EndBits.push_back(i - 1); FieldVals.push_back(FieldVal); ++Num; } else { State = 2; // Still in Island ++BitNo; FieldVal = FieldVal | Val << BitNo; } break; } } // If we are still in Island after the loop, do some housekeeping. if (State == 2) { EndBits.push_back(tBitWidth - 1); FieldVals.push_back(FieldVal); ++Num; } /* printf("StartBits.size()=%u,EndBits.size()=%u,FieldVals.size()=%u,Num=%u\n", (unsigned)StartBits.size(), (unsigned)EndBits.size(), (unsigned)FieldVals.size(), Num); */ assert(StartBits.size() == Num && EndBits.size() == Num && FieldVals.size() == Num); return Num; } bool LdStCopEncoding1(unsigned Opc) { const std::string &Name = nameWithID(Opc); if (Name == "LDC_OFFSET" || Name == "LDC_OPTION" || Name == "LDC_POST" || Name == "LDC_PRE" || Name == "LDCL_OFFSET" || Name == "LDCL_OPTION" || Name == "LDCL_POST" || Name == "LDCL_PRE" || Name == "STC_OFFSET" || Name == "STC_OPTION" || Name == "STC_POST" || Name == "STC_PRE" || Name == "STCL_OFFSET" || Name == "STCL_OPTION" || Name == "STCL_POST" || Name == "STCL_PRE") return true; else return false; } // Emits code to decode the singleton. Return true if we have matched all the // well-known bits. bool emitSingletonDecoder(raw_ostream &o, Indenter &i, unsigned Opc) { std::vector StartBits; std::vector EndBits; std::vector FieldVals; insn_t Insn; insnWithID(Insn, Opc); if (TargetName == TARGET_ARM && LdStCopEncoding1(Opc)) { o.indent(i); // A8.6.51 & A8.6.188 // If coproc = 0b101?, i.e, slice(insn, 11, 8) = 10 or 11, escape. o << "if (fieldFromInstruction(insn, 9, 3) == 5) break; // fallthrough\n"; } // Look for islands of undecoded bits of the singleton. getIslands(StartBits, EndBits, FieldVals, Insn); unsigned Size = StartBits.size(); unsigned I, NumBits; // If we have matched all the well-known bits, just issue a return. if (Size == 0) { o.indent(i) << "return " << Opc << "; // " << nameWithID(Opc) << '\n'; return true; } // Otherwise, there are more decodings to be done! // Emit code to match the island(s) for the singleton. o.indent(i) << "// Check "; for (I = Size; I != 0; --I) { o << "Inst{" << EndBits[I-1] << '-' << StartBits[I-1] << "} "; if (I > 1) o << "&& "; else o << "for singleton decoding...\n"; } o.indent(i) << "if ("; for (I = Size; I != 0; --I) { NumBits = EndBits[I-1] - StartBits[I-1] + 1; o << "fieldFromInstruction(insn, " << StartBits[I-1] << ", " << NumBits << ") == " << FieldVals[I-1]; if (I > 1) o << " && "; else o << ")\n"; } o.indent(i) << " return " << Opc << "; // " << nameWithID(Opc) << '\n'; return false; } // Emits code to decode the singleton, and then to decode the rest. void emitSingletonDecoder(raw_ostream &o, Indenter &i, Filter & Best) { unsigned Opc = Best.getSingletonOpc(); emitSingletonDecoder(o, i, Opc); // Emit code for the rest. o.indent(i) << "else\n"; i.push(); { Best.getVariableFC().emit(o, i); } i.pop(); } // Assign a single filter and run with it. void runSingleFilter(FilterChooser &owner, unsigned startBit, unsigned numBit, bool mixed) { Filters.clear(); Filter F(*this, startBit, numBit, true); Filters.push_back(F); BestIndex = 0; // Sole Filter instance to choose from. bestFilter().recurse(); } bool filterProcessor(bool AllowMixed, bool Greedy = true) { Filters.clear(); BestIndex = -1; unsigned numInstructions = Opcodes.size(); assert(numInstructions && "Filter created with no instructions"); // No further filtering is necessary. if (numInstructions == 1) return true; // Heuristics. See also doFilter()'s "Heuristics" comment when num of // instructions is 3. if (AllowMixed && !Greedy) { assert(numInstructions == 3); for (unsigned i = 0; i < Opcodes.size(); ++i) { std::vector StartBits; std::vector EndBits; std::vector FieldVals; insn_t Insn; insnWithID(Insn, Opcodes[i]); // Look for islands of undecoded bits of any instruction. if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) { // Found an instruction with island(s). Now just assign a filter. runSingleFilter(*this, StartBits[0], EndBits[0] - StartBits[0] + 1, true); return true; } } } unsigned bitIndex, insnIndex; // We maintain tBitWidth copies of the bitAttrs automaton. // The automaton consumes the corresponding bit from each // instruction. // // Input symbols: 0, 1, and _ (unset). // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED. // Initial state: NONE. // // (NONE) ------- [01] -> (ALL_SET) // (NONE) ------- _ ----> (ALL_UNSET) // (ALL_SET) ---- [01] -> (ALL_SET) // (ALL_SET) ---- _ ----> (MIXED) // (ALL_UNSET) -- [01] -> (MIXED) // (ALL_UNSET) -- _ ----> (ALL_UNSET) // (MIXED) ------ . ----> (MIXED) // (FILTERED)---- . ----> (FILTERED) bitAttr_t bitAttrs[tBitWidth]; // FILTERED bit positions provide no entropy and are not worthy of pursuing. // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position. for (bitIndex = 0; bitIndex < tBitWidth; ++bitIndex) if (FilterBitValues[bitIndex] == BIT_TRUE || FilterBitValues[bitIndex] == BIT_FALSE) bitAttrs[bitIndex] = ATTR_FILTERED; else bitAttrs[bitIndex] = ATTR_NONE; for (insnIndex = 0; insnIndex < numInstructions; ++insnIndex) { insn_t insn; insnWithID(insn, Opcodes[insnIndex]); for (bitIndex = 0; bitIndex < tBitWidth; ++bitIndex) { switch (bitAttrs[bitIndex]) { case ATTR_NONE: if (insn[bitIndex] == BIT_UNSET) bitAttrs[bitIndex] = ATTR_ALL_UNSET; else bitAttrs[bitIndex] = ATTR_ALL_SET; break; case ATTR_ALL_SET: if (insn[bitIndex] == BIT_UNSET) bitAttrs[bitIndex] = ATTR_MIXED; break; case ATTR_ALL_UNSET: if (insn[bitIndex] != BIT_UNSET) bitAttrs[bitIndex] = ATTR_MIXED; break; case ATTR_MIXED: case ATTR_FILTERED: break; } } } // The regionAttr automaton consumes the bitAttrs automatons' state, // lowest-to-highest. // // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed) // States: NONE, ALL_SET, MIXED // Initial state: NONE // // (NONE) ----- F --> (NONE) // (NONE) ----- S --> (ALL_SET) ; and set region start // (NONE) ----- U --> (NONE) // (NONE) ----- M --> (MIXED) ; and set region start // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region // (ALL_SET) -- S --> (ALL_SET) // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region // (MIXED) ---- F --> (NONE) ; and report a MIXED region // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region // (MIXED) ---- U --> (NONE) ; and report a MIXED region // (MIXED) ---- M --> (MIXED) bitAttr_t regionAttr = ATTR_NONE; unsigned startBit = 0; for (bitIndex = 0; bitIndex < tBitWidth; bitIndex++) { bitAttr_t bitAttr = bitAttrs[bitIndex]; assert(bitAttr != ATTR_NONE && "Bit without attributes"); #define SET_START \ startBit = bitIndex; #define REPORT_REGION \ if (regionAttr == ATTR_MIXED && AllowMixed) \ Filters.push_back(Filter(*this, startBit, bitIndex - startBit, true)); \ else if (regionAttr == ATTR_ALL_SET && !AllowMixed) \ Filters.push_back(Filter(*this, startBit, bitIndex - startBit, false)); switch (regionAttr) { case ATTR_NONE: switch (bitAttr) { case ATTR_FILTERED: break; case ATTR_ALL_SET: SET_START regionAttr = ATTR_ALL_SET; break; case ATTR_ALL_UNSET: break; case ATTR_MIXED: SET_START regionAttr = ATTR_MIXED; break; default: assert(0 && "Unexpected bitAttr!"); } break; case ATTR_ALL_SET: switch (bitAttr) { case ATTR_FILTERED: REPORT_REGION regionAttr = ATTR_NONE; break; case ATTR_ALL_SET: break; case ATTR_ALL_UNSET: REPORT_REGION regionAttr = ATTR_NONE; break; case ATTR_MIXED: REPORT_REGION SET_START regionAttr = ATTR_MIXED; break; default: assert(0 && "Unexpected bitAttr!"); } break; case ATTR_MIXED: switch (bitAttr) { case ATTR_FILTERED: REPORT_REGION SET_START regionAttr = ATTR_NONE; break; case ATTR_ALL_SET: REPORT_REGION SET_START regionAttr = ATTR_ALL_SET; break; case ATTR_ALL_UNSET: REPORT_REGION regionAttr = ATTR_NONE; break; case ATTR_MIXED: break; default: assert(0 && "Unexpected bitAttr!"); } break; case ATTR_ALL_UNSET: assert(0 && "regionAttr state machine has no ATTR_UNSET state"); case ATTR_FILTERED: assert(0 && "regionAttr state machine has no ATTR_FILTERED state"); } } // At the end, if we're still in ALL_SET or MIXED states, report a region switch (regionAttr) { case ATTR_NONE: break; case ATTR_FILTERED: break; case ATTR_ALL_SET: REPORT_REGION break; case ATTR_ALL_UNSET: break; case ATTR_MIXED: REPORT_REGION break; } #undef SET_START #undef REPORT_REGION // We have finished with the filter processings. Now it's time to choose // the best performing filter. BestIndex = 0; bool AllUseless = true; unsigned BestScore = 0; for (unsigned i = 0, e = Filters.size(); i != e; ++i) { unsigned Usefulness = Filters[i].usefulness(); if (Usefulness) AllUseless = false; if (Usefulness > BestScore) { BestIndex = i; BestScore = Usefulness; } } if (!AllUseless) { bestFilter().recurse(); } return !AllUseless; } // end of filterProcessor(bool) // Decides on the best configuration of filter(s) to use in order to decode // the instructions. A conflict of instructions may occur, in which case we // dump the conflict set to the standard error. void doFilter() { unsigned Num = Opcodes.size(); assert(Num && "FilterChooser created with no instructions"); // Heuristics: Use Inst{31-28} as the top level filter for ARM ISA. if (TargetName == TARGET_ARM && Parent == NULL) { runSingleFilter(*this, 28, 4, false); return; } if (filterProcessor(false)) return; if (filterProcessor(true)) return; // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a // well-known encoding pattern. In such case, we backtrack and scan for the // the very first consecutive ATTR_ALL_SET region and assign a filter to it. if (Num == 3 && filterProcessor(true, false)) return; // If we come to here, the instruction decoding has failed. // Print out the instructions in the conflict set... BestIndex = -1; DEBUG({ errs() << "Conflict:\n"; dumpStack(errs(), "\t\t"); for (unsigned i = 0; i < Num; i++) { const std::string &Name = nameWithID(Opcodes[i]); errs() << '\t' << Name << " "; dumpBits(errs(), getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst")); errs() << '\n'; } }); } // Emits code to decode our share of instructions. Returns true if the // emitted code causes a return, which occurs if we know how to decode // the instruction at this level or the instruction is not decodeable. bool emit(raw_ostream &o, Indenter &i) { if (Opcodes.size() == 1) { // There is only one instruction in the set, which is great! // Call emitSingletonDecoder() to see whether there are any remaining // encodings bits. return emitSingletonDecoder(o, i, Opcodes[0]); } else if (BestIndex == -1) { if (TargetName == TARGET_ARM && Opcodes.size() == 2) { // Resolve the known conflict sets: // // 1. source registers are identical => VMOVDneon; otherwise => VORRd // 2. source registers are identical => VMOVQ; otherwise => VORRq // 3. LDR, LDRcp => return LDR for now. // FIXME: How can we distinguish between LDR and LDRcp? Do we need to? // 4. VLD[234]LN*a/VST[234]LN*a vs. VLD[234]LN*b/VST[234]LN*b conflicts // are resolved returning the 'a' versions of the instructions. Note // that the difference between a/b is that the former is for double- // spaced even registers while the latter is for double-spaced odd // registers. This is for codegen instruction selection purpose. // For disassembly, it does not matter. const std::string &name1 = nameWithID(Opcodes[0]); const std::string &name2 = nameWithID(Opcodes[1]); if ((name1 == "VMOVDneon" && name2 == "VORRd") || (name1 == "VMOVQ" && name2 == "VORRq")) { // Inserting the opening curly brace for this case block. i.pop(); o.indent(i) << "{\n"; i.push(); o.indent(i) << "field_t N = fieldFromInstruction(insn, 7, 1), " << "M = fieldFromInstruction(insn, 5, 1);\n"; o.indent(i) << "field_t Vn = fieldFromInstruction(insn, 16, 4), " << "Vm = fieldFromInstruction(insn, 0, 4);\n"; o.indent(i) << "return (N == M && Vn == Vm) ? " << Opcodes[0] << " /* " << name1 << " */ : " << Opcodes[1] << " /* " << name2 << " */ ;\n"; // Inserting the closing curly brace for this case block. i.pop(); o.indent(i) << "}\n"; i.push(); return true; } if (name1 == "LDR" && name2 == "LDRcp") { o.indent(i) << "return " << Opcodes[0] << "; // Returning LDR for {LDR, LDRcp}\n"; return true; } if (sameStringExceptEndingChar(name1, name2, 'a', 'b')) { o.indent(i) << "return " << Opcodes[0] << "; // Returning " << name1 << " for {" << name1 << ", " << name2 << "}\n"; return true; } // Otherwise, it does not belong to the known conflict sets. } // We don't know how to decode these instructions! Dump the conflict set! o.indent(i) << "return 0;" << " // Conflict set: "; for (int i = 0, N = Opcodes.size(); i < N; ++i) { o << nameWithID(Opcodes[i]); if (i < (N - 1)) o << ", "; else o << '\n'; } return true; } else { // Choose the best filter to do the decodings! Filter &Best = bestFilter(); if (Best.getNumFiltered() == 1) emitSingletonDecoder(o, i, Best); else bestFilter().emit(o, i); return false; } } }; /////////////// // Backend // /////////////// class RISCDisassemblerEmitter::RISCDEBackend { public: RISCDEBackend(RISCDisassemblerEmitter &frontend) : NumberedInstructions(), Opcodes(), Frontend(frontend), Target(), AFC(NULL) { populateInstructions(); if (Target.getName() == "ARM") { TargetName = TARGET_ARM; } else { errs() << "Target name " << Target.getName() << " not recognized\n"; assert(0 && "Unknown target"); } } ~RISCDEBackend() { if (AFC) { delete AFC; AFC = NULL; } } void getInstructionsByEnumValue(std::vector &NumberedInstructions) { // Dig down to the proper namespace. Code shamelessly stolen from // InstrEnumEmitter.cpp std::string Namespace; CodeGenTarget::inst_iterator II, E; for (II = Target.inst_begin(), E = Target.inst_end(); II != E; ++II) if (II->second.Namespace != "TargetInstrInfo") { Namespace = II->second.Namespace; break; } assert(!Namespace.empty() && "No instructions defined."); Target.getInstructionsByEnumValue(NumberedInstructions); } bool populateInstruction(const CodeGenInstruction &CGI, TARGET_NAME_t TN) { const Record &Def = *CGI.TheDef; const std::string &Name = Def.getName(); uint8_t Form = getByteField(Def, "Form"); BitsInit &Bits = getBitsField(Def, "Inst"); if (TN == TARGET_ARM) { // FIXME: what about Int_MemBarrierV6 and Int_SyncBarrierV6? if ((Name != "Int_MemBarrierV7" && Name != "Int_SyncBarrierV7") && Form == ARM_FORMAT_PSEUDO) return false; if (thumbInstruction(Form)) return false; if (Name.find("CMPz") != std::string::npos /* || Name.find("CMNz") != std::string::npos */) return false; // Ignore pseudo instructions. if (Name == "BXr9" || Name == "BMOVPCRX" || Name == "BMOVPCRXr9") return false; // VLDRQ/VSTRQ can be hanlded with the more generic VLDMD/VSTMD. if (Name == "VLDRQ" || Name == "VSTRQ") return false; // // The following special cases are for conflict resolutions. // // RSCSri and RSCSrs set the 's' bit, but are not predicated. We are // better off using the generic RSCri and RSCrs instructions. if (Name == "RSCSri" || Name == "RSCSrs") return false; // MOVCCr, MOVCCs, MOVCCi, FCYPScc, FCYPDcc, FNEGScc, and FNEGDcc are used // in the compiler to implement conditional moves. We can ignore them in // favor of their more generic versions of instructions. // See also SDNode *ARMDAGToDAGISel::Select(SDValue Op). if (Name == "MOVCCr" || Name == "MOVCCs" || Name == "MOVCCi" || Name == "FCPYScc" || Name == "FCPYDcc" || Name == "FNEGScc" || Name == "FNEGDcc") return false; // Ditto for VMOVDcc, VMOVScc, VNEGDcc, and VNEGScc. if (Name == "VMOVDcc" || Name == "VMOVScc" || Name == "VNEGDcc" || Name == "VNEGScc") return false; // Ignore the *_sfp instructions when decoding. They are used by the // compiler to implement scalar floating point operations using vector // operations in order to work around some performance issues. if (Name.find("_sfp") != std::string::npos) return false; // LLVM added LDM/STM_UPD which conflicts with LDM/STM. // Ditto for VLDMS_UPD, VLDMD_UPD, VSTMS_UPD, VSTMD_UPD. if (Name == "LDM_UPD" || Name == "STM_UPD" || Name == "VLDMS_UPD" || Name == "VLDMD_UPD" || Name == "VSTMS_UPD" || Name == "VSTMD_UPD") return false; // LDM_RET is a special case of LDM (Load Multiple) where the registers // loaded include the PC, causing a branch to a loaded address. Ignore // the LDM_RET instruction when decoding. if (Name == "LDM_RET") return false; // Bcc is in a more generic form than B. Ignore B when decoding. if (Name == "B") return false; // Ignore the non-Darwin BL instructions and the TPsoft (TLS) instruction. if (Name == "BL" || Name == "BL_pred" || Name == "BLX" || Name == "BX" || Name == "TPsoft") return false; // Ignore VDUPf[d|q] instructions known to conflict with VDUP32[d-q] for // decoding. The instruction duplicates an element from an ARM core // register into every element of the destination vector. There is no // distinction between data types. if (Name == "VDUPfd" || Name == "VDUPfq") return false; // A8-598: VEXT // Vector Extract extracts elements from the bottom end of the second // operand vector and the top end of the first, concatenates them and // places the result in the destination vector. The elements of the // vectors are treated as being 8-bit bitfields. There is no distinction // between data types. The size of the operation can be specified in // assembler as vext.size. If the value is 16, 32, or 64, the syntax is // a pseudo-instruction for a VEXT instruction specifying the equivalent // number of bytes. // // Variants VEXTd16, VEXTd32, VEXTd8, and VEXTdf are reduced to VEXTd8; // variants VEXTq16, VEXTq32, VEXTq8, and VEXTqf are reduced to VEXTq8. if (Name == "VEXTd16" || Name == "VEXTd32" || Name == "VEXTdf" || Name == "VEXTq16" || Name == "VEXTq32" || Name == "VEXTqf") return false; // Vector Reverse is similar to Vector Extract. There is no distinction // between data types, other than size. // // VREV64df is equivalent to VREV64d32. // VREV64qf is equivalent to VREV64q32. if (Name == "VREV64df" || Name == "VREV64qf") return false; // VDUPLNfd is equivalent to VDUPLN32d; VDUPfdf is specialized VDUPLN32d. // VDUPLNfq is equivalent to VDUPLN32q; VDUPfqf is specialized VDUPLN32q. // VLD1df is equivalent to VLD1d32. // VLD1qf is equivalent to VLD1q32. // VLD2d64 is equivalent to VLD1q64. // VST1df is equivalent to VST1d32. // VST1qf is equivalent to VST1q32. // VST2d64 is equivalent to VST1q64. if (Name == "VDUPLNfd" || Name == "VDUPfdf" || Name == "VDUPLNfq" || Name == "VDUPfqf" || Name == "VLD1df" || Name == "VLD1qf" || Name == "VLD2d64" || Name == "VST1df" || Name == "VST1qf" || Name == "VST2d64") return false; } else if (TN == TARGET_THUMB) { if (!thumbInstruction(Form)) return false; // Ignore pseudo instructions. if (Name == "tInt_eh_sjlj_setjmp" || Name == "t2Int_eh_sjlj_setjmp" || Name == "t2MOVi32imm" || Name == "tBX" || Name == "tBXr9") return false; // LLVM added tLDM_UPD which conflicts with tLDM. if (Name == "tLDM_UPD") return false; // On Darwin R9 is call-clobbered. Ignore the non-Darwin counterparts. if (Name == "tBL" || Name == "tBLXi" || Name == "tBLXr") return false; // Ignore the TPsoft (TLS) instructions, which conflict with tBLr9. if (Name == "tTPsoft" || Name == "t2TPsoft") return false; // Ignore tLEApcrel and tLEApcrelJT, prefer tADDrPCi. if (Name == "tLEApcrel" || Name == "tLEApcrelJT") return false; // Ignore t2LEApcrel, prefer the generic t2ADD* for disassembly printing. if (Name == "t2LEApcrel") return false; // Ignore tADDrSP, tADDspr, and tPICADD, prefer the generic tADDhirr. // Ignore t2SUBrSPs, prefer the t2SUB[S]r[r|s]. // Ignore t2ADDrSPs, prefer the t2ADD[S]r[r|s]. if (Name == "tADDrSP" || Name == "tADDspr" || Name == "tPICADD" || Name == "t2SUBrSPs" || Name == "t2ADDrSPs") return false; // Ignore t2LDRDpci, prefer the generic t2LDRDi8, t2LDRD_PRE, t2LDRD_POST. if (Name == "t2LDRDpci") return false; // Ignore t2TBB, t2TBH and prefer the generic t2TBBgen, t2TBHgen. if (Name == "t2TBB" || Name == "t2TBH") return false; // Resolve conflicts: // // tBfar conflicts with tBLr9 // tCMNz conflicts with tCMN (with assembly format strings being equal) // tPOP_RET/t2LDM_RET conflict with tPOP/t2LDM (ditto) // tMOVCCi conflicts with tMOVi8 // tMOVCCr conflicts with tMOVgpr2gpr // tBR_JTr conflicts with tBRIND // tSpill conflicts with tSTRspi // tLDRcp conflicts with tLDRspi // tRestore conflicts with tLDRspi // t2LEApcrelJT conflicts with t2LEApcrel // t2ADDrSPi/t2SUBrSPi have more generic couterparts if (Name == "tBfar" || /* Name == "tCMNz" || */ Name == "tCMPzi8" || Name == "tCMPzr" || Name == "tCMPzhir" || /* Name == "t2CMNzrr" || Name == "t2CMNzrs" || Name == "t2CMNzri" || */ Name == "t2CMPzrr" || Name == "t2CMPzrs" || Name == "t2CMPzri" || Name == "tPOP_RET" || Name == "t2LDM_RET" || Name == "tMOVCCi" || Name == "tMOVCCr" || Name == "tBR_JTr" || Name == "tSpill" || Name == "tLDRcp" || Name == "tRestore" || Name == "t2LEApcrelJT" || Name == "t2ADDrSPi" || Name == "t2SUBrSPi") return false; } // Dumps the instruction encoding format. switch (TargetName) { case TARGET_ARM: case TARGET_THUMB: DEBUG(errs() << Name << " " << stringForARMFormat((ARMFormat)Form)); break; } DEBUG({ errs() << " "; // Dumps the instruction encoding bits. dumpBits(errs(), Bits); errs() << '\n'; // Dumps the list of operand info. for (unsigned i = 0, e = CGI.OperandList.size(); i != e; ++i) { CodeGenInstruction::OperandInfo Info = CGI.OperandList[i]; const std::string &OperandName = Info.Name; const Record &OperandDef = *Info.Rec; errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n"; } }); return true; } void populateInstructions() { getInstructionsByEnumValue(NumberedInstructions); uint16_t numUIDs = NumberedInstructions.size(); uint16_t uid; const char *instClass = NULL; switch (TargetName) { case TARGET_ARM: instClass = "InstARM"; break; default: assert(0 && "Unreachable code!"); } for (uid = 0; uid < numUIDs; uid++) { // filter out intrinsics if (!NumberedInstructions[uid]->TheDef->isSubClassOf(instClass)) continue; if (populateInstruction(*NumberedInstructions[uid], TargetName)) Opcodes.push_back(uid); } // Special handling for the ARM chip, which supports two modes of execution. // This branch handles the Thumb opcodes. if (TargetName == TARGET_ARM) { for (uid = 0; uid < numUIDs; uid++) { // filter out intrinsics if (!NumberedInstructions[uid]->TheDef->isSubClassOf("InstARM") && !NumberedInstructions[uid]->TheDef->isSubClassOf("InstThumb")) continue; if (populateInstruction(*NumberedInstructions[uid], TARGET_THUMB)) Opcodes2.push_back(uid); } } } // Emits disassembler code for instruction decoding. This delegates to the // FilterChooser instance to do the heavy lifting. void emit(raw_ostream &o) { Indenter i; std::string s; raw_string_ostream ro(s); switch (TargetName) { case TARGET_ARM: Frontend.EmitSourceFileHeader("ARM Disassembler", ro); break; default: assert(0 && "Unreachable code!"); } ro.flush(); o << s; o.indent(i) << "#include \n"; o.indent(i) << "#include \n"; o << '\n'; o << "namespace llvm {\n\n"; AbstractFilterChooser::setTargetName(TargetName); switch (TargetName) { case TARGET_ARM: { // Emit common utility and ARM ISA decoder. AFC = new FilterChooser<32>(NumberedInstructions, Opcodes); AFC->emitTop(o, i); delete AFC; // Emit Thumb ISA decoder as well. AbstractFilterChooser::setTargetName(TARGET_THUMB); AFC = new FilterChooser<32>(NumberedInstructions, Opcodes2); AFC->emitBot(o, i); break; } default: assert(0 && "Unreachable code!"); } o << "\n} // End llvm namespace \n"; } protected: std::vector NumberedInstructions; std::vector Opcodes; // Special case for the ARM chip, which supports ARM and Thumb ISAs. // Opcodes2 will be populated with the Thumb opcodes. std::vector Opcodes2; RISCDisassemblerEmitter &Frontend; CodeGenTarget Target; AbstractFilterChooser *AFC; TARGET_NAME_t TargetName; }; ///////////////////////// // Backend interface // ///////////////////////// void RISCDisassemblerEmitter::initBackend() { Backend = new RISCDEBackend(*this); } void RISCDisassemblerEmitter::run(raw_ostream &o) { Backend->emit(o); } void RISCDisassemblerEmitter::shutdownBackend() { delete Backend; Backend = NULL; }