//===- JITTest.cpp - Unit tests for the JIT -------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "gtest/gtest.h" #include "llvm/ADT/OwningPtr.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Assembly/Parser.h" #include "llvm/BasicBlock.h" #include "llvm/Constant.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/ExecutionEngine/JIT.h" #include "llvm/ExecutionEngine/JITMemoryManager.h" #include "llvm/Function.h" #include "llvm/GlobalValue.h" #include "llvm/GlobalVariable.h" #include "llvm/LLVMContext.h" #include "llvm/Module.h" #include "llvm/ModuleProvider.h" #include "llvm/Support/IRBuilder.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/TypeBuilder.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetSelect.h" #include "llvm/Type.h" #include #include #if HAVE_ERRNO_H #include #endif #if HAVE_UNISTD_H #include #endif #if _POSIX_MAPPED_FILES > 0 #include #endif using namespace llvm; namespace { Function *makeReturnGlobal(std::string Name, GlobalVariable *G, Module *M) { std::vector params; const FunctionType *FTy = FunctionType::get(G->getType()->getElementType(), params, false); Function *F = Function::Create(FTy, GlobalValue::ExternalLinkage, Name, M); BasicBlock *Entry = BasicBlock::Create(M->getContext(), "entry", F); IRBuilder<> builder(Entry); Value *Load = builder.CreateLoad(G); const Type *GTy = G->getType()->getElementType(); Value *Add = builder.CreateAdd(Load, ConstantInt::get(GTy, 1LL)); builder.CreateStore(Add, G); builder.CreateRet(Add); return F; } std::string DumpFunction(const Function *F) { std::string Result; raw_string_ostream(Result) << "" << *F; return Result; } class RecordingJITMemoryManager : public JITMemoryManager { const OwningPtr Base; public: RecordingJITMemoryManager() : Base(JITMemoryManager::CreateDefaultMemManager()) { stubsAllocated = 0; } virtual void setMemoryWritable() { Base->setMemoryWritable(); } virtual void setMemoryExecutable() { Base->setMemoryExecutable(); } virtual void setPoisonMemory(bool poison) { Base->setPoisonMemory(poison); } virtual void AllocateGOT() { Base->AllocateGOT(); } virtual uint8_t *getGOTBase() const { return Base->getGOTBase(); } struct StartFunctionBodyCall { StartFunctionBodyCall(uint8_t *Result, const Function *F, uintptr_t ActualSize, uintptr_t ActualSizeResult) : Result(Result), F(F), F_dump(DumpFunction(F)), ActualSize(ActualSize), ActualSizeResult(ActualSizeResult) {} uint8_t *Result; const Function *F; std::string F_dump; uintptr_t ActualSize; uintptr_t ActualSizeResult; }; std::vector startFunctionBodyCalls; virtual uint8_t *startFunctionBody(const Function *F, uintptr_t &ActualSize) { uintptr_t InitialActualSize = ActualSize; uint8_t *Result = Base->startFunctionBody(F, ActualSize); startFunctionBodyCalls.push_back( StartFunctionBodyCall(Result, F, InitialActualSize, ActualSize)); return Result; } int stubsAllocated; virtual uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize, unsigned Alignment) { stubsAllocated++; return Base->allocateStub(F, StubSize, Alignment); } struct EndFunctionBodyCall { EndFunctionBodyCall(const Function *F, uint8_t *FunctionStart, uint8_t *FunctionEnd) : F(F), F_dump(DumpFunction(F)), FunctionStart(FunctionStart), FunctionEnd(FunctionEnd) {} const Function *F; std::string F_dump; uint8_t *FunctionStart; uint8_t *FunctionEnd; }; std::vector endFunctionBodyCalls; virtual void endFunctionBody(const Function *F, uint8_t *FunctionStart, uint8_t *FunctionEnd) { endFunctionBodyCalls.push_back( EndFunctionBodyCall(F, FunctionStart, FunctionEnd)); Base->endFunctionBody(F, FunctionStart, FunctionEnd); } virtual uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) { return Base->allocateSpace(Size, Alignment); } virtual uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) { return Base->allocateGlobal(Size, Alignment); } struct DeallocateFunctionBodyCall { DeallocateFunctionBodyCall(const void *Body) : Body(Body) {} const void *Body; }; std::vector deallocateFunctionBodyCalls; virtual void deallocateFunctionBody(void *Body) { deallocateFunctionBodyCalls.push_back(DeallocateFunctionBodyCall(Body)); Base->deallocateFunctionBody(Body); } struct DeallocateExceptionTableCall { DeallocateExceptionTableCall(const void *ET) : ET(ET) {} const void *ET; }; std::vector deallocateExceptionTableCalls; virtual void deallocateExceptionTable(void *ET) { deallocateExceptionTableCalls.push_back(DeallocateExceptionTableCall(ET)); Base->deallocateExceptionTable(ET); } struct StartExceptionTableCall { StartExceptionTableCall(uint8_t *Result, const Function *F, uintptr_t ActualSize, uintptr_t ActualSizeResult) : Result(Result), F(F), F_dump(DumpFunction(F)), ActualSize(ActualSize), ActualSizeResult(ActualSizeResult) {} uint8_t *Result; const Function *F; std::string F_dump; uintptr_t ActualSize; uintptr_t ActualSizeResult; }; std::vector startExceptionTableCalls; virtual uint8_t* startExceptionTable(const Function* F, uintptr_t &ActualSize) { uintptr_t InitialActualSize = ActualSize; uint8_t *Result = Base->startExceptionTable(F, ActualSize); startExceptionTableCalls.push_back( StartExceptionTableCall(Result, F, InitialActualSize, ActualSize)); return Result; } struct EndExceptionTableCall { EndExceptionTableCall(const Function *F, uint8_t *TableStart, uint8_t *TableEnd, uint8_t* FrameRegister) : F(F), F_dump(DumpFunction(F)), TableStart(TableStart), TableEnd(TableEnd), FrameRegister(FrameRegister) {} const Function *F; std::string F_dump; uint8_t *TableStart; uint8_t *TableEnd; uint8_t *FrameRegister; }; std::vector endExceptionTableCalls; virtual void endExceptionTable(const Function *F, uint8_t *TableStart, uint8_t *TableEnd, uint8_t* FrameRegister) { endExceptionTableCalls.push_back( EndExceptionTableCall(F, TableStart, TableEnd, FrameRegister)); return Base->endExceptionTable(F, TableStart, TableEnd, FrameRegister); } }; void LoadAssemblyInto(Module *M, const char *assembly) { SMDiagnostic Error; bool success = NULL != ParseAssemblyString(assembly, M, Error, M->getContext()); std::string errMsg; raw_string_ostream os(errMsg); Error.Print("", os); ASSERT_TRUE(success) << os.str(); } class JITTest : public testing::Test { protected: virtual void SetUp() { M = new Module("
", Context); MP = new ExistingModuleProvider(M); RJMM = new RecordingJITMemoryManager; std::string Error; TheJIT.reset(EngineBuilder(MP).setEngineKind(EngineKind::JIT) .setJITMemoryManager(RJMM) .setErrorStr(&Error).create()); ASSERT_TRUE(TheJIT.get() != NULL) << Error; } void LoadAssembly(const char *assembly) { LoadAssemblyInto(M, assembly); } LLVMContext Context; Module *M; // Owned by MP. ModuleProvider *MP; // Owned by ExecutionEngine. RecordingJITMemoryManager *RJMM; OwningPtr TheJIT; }; // Regression test for a bug. The JIT used to allocate globals inside the same // memory block used for the function, and when the function code was freed, // the global was left in the same place. This test allocates a function // that uses and global, deallocates it, and then makes sure that the global // stays alive after that. TEST(JIT, GlobalInFunction) { LLVMContext context; Module *M = new Module("
", context); ExistingModuleProvider *MP = new ExistingModuleProvider(M); JITMemoryManager *MemMgr = JITMemoryManager::CreateDefaultMemManager(); // Tell the memory manager to poison freed memory so that accessing freed // memory is more easily tested. MemMgr->setPoisonMemory(true); std::string Error; OwningPtr JIT(EngineBuilder(MP) .setEngineKind(EngineKind::JIT) .setErrorStr(&Error) .setJITMemoryManager(MemMgr) // The next line enables the fix: .setAllocateGVsWithCode(false) .create()); ASSERT_EQ(Error, ""); // Create a global variable. const Type *GTy = Type::getInt32Ty(context); GlobalVariable *G = new GlobalVariable( *M, GTy, false, // Not constant. GlobalValue::InternalLinkage, Constant::getNullValue(GTy), "myglobal"); // Make a function that points to a global. Function *F1 = makeReturnGlobal("F1", G, M); // Get the pointer to the native code to force it to JIT the function and // allocate space for the global. void (*F1Ptr)() = reinterpret_cast((intptr_t)JIT->getPointerToFunction(F1)); // Since F1 was codegen'd, a pointer to G should be available. int32_t *GPtr = (int32_t*)JIT->getPointerToGlobalIfAvailable(G); ASSERT_NE((int32_t*)NULL, GPtr); EXPECT_EQ(0, *GPtr); // F1() should increment G. F1Ptr(); EXPECT_EQ(1, *GPtr); // Make a second function identical to the first, referring to the same // global. Function *F2 = makeReturnGlobal("F2", G, M); void (*F2Ptr)() = reinterpret_cast((intptr_t)JIT->getPointerToFunction(F2)); // F2() should increment G. F2Ptr(); EXPECT_EQ(2, *GPtr); // Deallocate F1. JIT->freeMachineCodeForFunction(F1); // F2() should *still* increment G. F2Ptr(); EXPECT_EQ(3, *GPtr); } int PlusOne(int arg) { return arg + 1; } TEST_F(JITTest, FarCallToKnownFunction) { // x86-64 can only make direct calls to functions within 32 bits of // the current PC. To call anything farther away, we have to load // the address into a register and call through the register. The // current JIT does this by allocating a stub for any far call. // There was a bug in which the JIT tried to emit a direct call when // the target was already in the JIT's global mappings and lazy // compilation was disabled. Function *KnownFunction = Function::Create( TypeBuilder::get(Context), GlobalValue::ExternalLinkage, "known", M); TheJIT->addGlobalMapping(KnownFunction, (void*)(intptr_t)PlusOne); // int test() { return known(7); } Function *TestFunction = Function::Create( TypeBuilder::get(Context), GlobalValue::ExternalLinkage, "test", M); BasicBlock *Entry = BasicBlock::Create(Context, "entry", TestFunction); IRBuilder<> Builder(Entry); Value *result = Builder.CreateCall( KnownFunction, ConstantInt::get(TypeBuilder::get(Context), 7)); Builder.CreateRet(result); TheJIT->DisableLazyCompilation(true); int (*TestFunctionPtr)() = reinterpret_cast( (intptr_t)TheJIT->getPointerToFunction(TestFunction)); // This used to crash in trying to call PlusOne(). EXPECT_EQ(8, TestFunctionPtr()); } #if !defined(__arm__) && !defined(__powerpc__) && !defined(__ppc__) // Test a function C which calls A and B which call each other. TEST_F(JITTest, NonLazyCompilationStillNeedsStubs) { TheJIT->DisableLazyCompilation(true); const FunctionType *Func1Ty = cast(TypeBuilder::get(Context)); std::vector arg_types; arg_types.push_back(Type::getInt1Ty(Context)); const FunctionType *FuncTy = FunctionType::get( Type::getVoidTy(Context), arg_types, false); Function *Func1 = Function::Create(Func1Ty, Function::ExternalLinkage, "func1", M); Function *Func2 = Function::Create(FuncTy, Function::InternalLinkage, "func2", M); Function *Func3 = Function::Create(FuncTy, Function::InternalLinkage, "func3", M); BasicBlock *Block1 = BasicBlock::Create(Context, "block1", Func1); BasicBlock *Block2 = BasicBlock::Create(Context, "block2", Func2); BasicBlock *True2 = BasicBlock::Create(Context, "cond_true", Func2); BasicBlock *False2 = BasicBlock::Create(Context, "cond_false", Func2); BasicBlock *Block3 = BasicBlock::Create(Context, "block3", Func3); BasicBlock *True3 = BasicBlock::Create(Context, "cond_true", Func3); BasicBlock *False3 = BasicBlock::Create(Context, "cond_false", Func3); // Make Func1 call Func2(0) and Func3(0). IRBuilder<> Builder(Block1); Builder.CreateCall(Func2, ConstantInt::getTrue(Context)); Builder.CreateCall(Func3, ConstantInt::getTrue(Context)); Builder.CreateRetVoid(); // void Func2(bool b) { if (b) { Func3(false); return; } return; } Builder.SetInsertPoint(Block2); Builder.CreateCondBr(Func2->arg_begin(), True2, False2); Builder.SetInsertPoint(True2); Builder.CreateCall(Func3, ConstantInt::getFalse(Context)); Builder.CreateRetVoid(); Builder.SetInsertPoint(False2); Builder.CreateRetVoid(); // void Func3(bool b) { if (b) { Func2(false); return; } return; } Builder.SetInsertPoint(Block3); Builder.CreateCondBr(Func3->arg_begin(), True3, False3); Builder.SetInsertPoint(True3); Builder.CreateCall(Func2, ConstantInt::getFalse(Context)); Builder.CreateRetVoid(); Builder.SetInsertPoint(False3); Builder.CreateRetVoid(); // Compile the function to native code void (*F1Ptr)() = reinterpret_cast((intptr_t)TheJIT->getPointerToFunction(Func1)); F1Ptr(); } // Regression test for PR5162. This used to trigger an AssertingVH inside the // JIT's Function to stub mapping. TEST_F(JITTest, NonLazyLeaksNoStubs) { TheJIT->DisableLazyCompilation(true); // Create two functions with a single basic block each. const FunctionType *FuncTy = cast(TypeBuilder::get(Context)); Function *Func1 = Function::Create(FuncTy, Function::ExternalLinkage, "func1", M); Function *Func2 = Function::Create(FuncTy, Function::InternalLinkage, "func2", M); BasicBlock *Block1 = BasicBlock::Create(Context, "block1", Func1); BasicBlock *Block2 = BasicBlock::Create(Context, "block2", Func2); // The first function calls the second and returns the result IRBuilder<> Builder(Block1); Value *Result = Builder.CreateCall(Func2); Builder.CreateRet(Result); // The second function just returns a constant Builder.SetInsertPoint(Block2); Builder.CreateRet(ConstantInt::get(TypeBuilder::get(Context),42)); // Compile the function to native code (void)TheJIT->getPointerToFunction(Func1); // Free the JIT state for the functions TheJIT->freeMachineCodeForFunction(Func1); TheJIT->freeMachineCodeForFunction(Func2); // Delete the first function (and show that is has no users) EXPECT_EQ(Func1->getNumUses(), 0u); Func1->eraseFromParent(); // Delete the second function (and show that it has no users - it had one, // func1 but that's gone now) EXPECT_EQ(Func2->getNumUses(), 0u); Func2->eraseFromParent(); } #endif TEST_F(JITTest, ModuleDeletion) { TheJIT->DisableLazyCompilation(false); LoadAssembly("define void @main() { " " call i32 @computeVal() " " ret void " "} " " " "define internal i32 @computeVal() { " " ret i32 0 " "} "); Function *func = M->getFunction("main"); TheJIT->getPointerToFunction(func); TheJIT->deleteModuleProvider(MP); SmallPtrSet FunctionsDeallocated; for (unsigned i = 0, e = RJMM->deallocateFunctionBodyCalls.size(); i != e; ++i) { FunctionsDeallocated.insert(RJMM->deallocateFunctionBodyCalls[i].Body); } for (unsigned i = 0, e = RJMM->startFunctionBodyCalls.size(); i != e; ++i) { EXPECT_TRUE(FunctionsDeallocated.count( RJMM->startFunctionBodyCalls[i].Result)) << "Function leaked: \n" << RJMM->startFunctionBodyCalls[i].F_dump; } EXPECT_EQ(RJMM->startFunctionBodyCalls.size(), RJMM->deallocateFunctionBodyCalls.size()); SmallPtrSet ExceptionTablesDeallocated; unsigned NumTablesDeallocated = 0; for (unsigned i = 0, e = RJMM->deallocateExceptionTableCalls.size(); i != e; ++i) { ExceptionTablesDeallocated.insert( RJMM->deallocateExceptionTableCalls[i].ET); if (RJMM->deallocateExceptionTableCalls[i].ET != NULL) { // If JITEmitDebugInfo is off, we'll "deallocate" NULL, which doesn't // appear in startExceptionTableCalls. NumTablesDeallocated++; } } for (unsigned i = 0, e = RJMM->startExceptionTableCalls.size(); i != e; ++i) { EXPECT_TRUE(ExceptionTablesDeallocated.count( RJMM->startExceptionTableCalls[i].Result)) << "Function's exception table leaked: \n" << RJMM->startExceptionTableCalls[i].F_dump; } EXPECT_EQ(RJMM->startExceptionTableCalls.size(), NumTablesDeallocated); } #if !defined(__arm__) && !defined(__powerpc__) && !defined(__ppc__) typedef int (*FooPtr) (); TEST_F(JITTest, NoStubs) { LoadAssembly("define void @bar() {" "entry: " "ret void" "}" " " "define i32 @foo() {" "entry:" "call void @bar()" "ret i32 undef" "}" " " "define i32 @main() {" "entry:" "%0 = call i32 @foo()" "call void @bar()" "ret i32 undef" "}"); Function *foo = M->getFunction("foo"); uintptr_t tmp = (uintptr_t)(TheJIT->getPointerToFunction(foo)); FooPtr ptr = (FooPtr)(tmp); (ptr)(); // We should now allocate no more stubs, we have the code to foo // and the existing stub for bar. int stubsBefore = RJMM->stubsAllocated; Function *func = M->getFunction("main"); TheJIT->getPointerToFunction(func); Function *bar = M->getFunction("bar"); TheJIT->getPointerToFunction(bar); ASSERT_EQ(stubsBefore, RJMM->stubsAllocated); } #endif #if _POSIX_MAPPED_FILES > 0 && (defined (__x86_64__) || defined (_M_AMD64) || defined (_M_X64)) class FarCallMemMgr : public RecordingJITMemoryManager { void *MmapRegion; size_t MmapSize; uint8_t *NextStub; uint8_t *NextFunction; public: FarCallMemMgr() : MmapSize(16ULL << 30) { // 16GB MmapRegion = mmap(NULL, MmapSize, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE | MAP_ANON, -1, 0); if (MmapRegion == MAP_FAILED) { ADD_FAILURE() << "mmap failed: " << strerror(errno); } // Set up the 16GB mapped region in several chunks: // Stubs / ~5GB empty space / Function 1 / ~5GB empty space / Function 2 // This way no two entities can use a 32-bit relative call to reach each other. NextStub = static_cast(MmapRegion); NextFunction = NextStub + (5ULL << 30); // Next, poison some of the memory so a wild call will eventually crash, // even if memory was initialized by the OS to 0. We can't poison all of // the memory because we want to be able to run on systems with less than // 16GB of physical ram. int TrapInstr = 0xCC; // INT 3 memset(NextStub, TrapInstr, 1<<10); for (size_t Offset = 1<<30; Offset < MmapSize; Offset += 1<<30) { // Fill the 2KB around each GB boundary with trap instructions. This // should ensure that we can't run into emitted functions without hitting // the trap. memset(NextStub + Offset - (1<<10), TrapInstr, 2<<10); } } ~FarCallMemMgr() { EXPECT_EQ(0, munmap(MmapRegion, MmapSize)); } virtual void setMemoryWritable() {} virtual void setMemoryExecutable() {} virtual uint8_t *startFunctionBody(const Function *F, uintptr_t &ActualSize) { ActualSize = 1 << 30; uint8_t *Result = NextFunction; NextFunction += 5ULL << 30; return Result; } virtual void endFunctionBody(const Function*, uint8_t*, uint8_t*) {} virtual uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize, unsigned Alignment) { NextStub = reinterpret_cast( uintptr_t(NextStub + Alignment - 1) &~ uintptr_t(Alignment - 1)); uint8_t *Result = NextStub; NextStub += StubSize; return Result; } }; class FarTargetTest : public ::testing::TestWithParam { protected: FarTargetTest() : SavedCodeModel(TargetMachine::getCodeModel()) {} ~FarTargetTest() { TargetMachine::setCodeModel(SavedCodeModel); } const CodeModel::Model SavedCodeModel; }; INSTANTIATE_TEST_CASE_P(CodeGenOpt, FarTargetTest, ::testing::Values(CodeGenOpt::None, CodeGenOpt::Default)); TEST_P(FarTargetTest, CallToFarTarget) { // x86-64 can only make direct calls to functions within 32 bits of // the current PC. To call anything farther away, we have to load // the address into a register and call through the register. The // old JIT did this by allocating a stub for any far call. However, // that stub needed to be within 32 bits of the callsite. Here we // test that the JIT correctly deals with stubs and calls more than // 32 bits away from the callsite. // Make sure the code generator is assuming code might be far away. //TargetMachine::setCodeModel(CodeModel::Large); LLVMContext Context; Module *M = new Module("
", Context); ExistingModuleProvider *MP = new ExistingModuleProvider(M); JITMemoryManager *MemMgr = new FarCallMemMgr(); std::string Error; OwningPtr JIT(EngineBuilder(MP) .setEngineKind(EngineKind::JIT) .setErrorStr(&Error) .setJITMemoryManager(MemMgr) .setOptLevel(GetParam()) .create()); ASSERT_EQ(Error, ""); TargetMachine::setCodeModel(CodeModel::Large); LoadAssemblyInto(M, "define i32 @test() { " " ret i32 7 " "} " " " "define i32 @test_far() { " " %result = call i32 @test() " " ret i32 %result " "} "); // First, lay out a function early in memory. Function *TestFunction = M->getFunction("test"); int32_t (*TestFunctionPtr)() = reinterpret_cast( (intptr_t)JIT->getPointerToFunction(TestFunction)); ASSERT_EQ(7, TestFunctionPtr()); // We now lay out the far-away function. This should land >4GB away from test(). Function *FarFunction = M->getFunction("test_far"); int32_t (*FarFunctionPtr)() = reinterpret_cast( (intptr_t)JIT->getPointerToFunction(FarFunction)); EXPECT_LT(1LL << 32, llabs(intptr_t(FarFunctionPtr) - intptr_t(TestFunctionPtr))) << "Functions must be >32 bits apart or the test is meaningless."; // This used to result in a segfault in FarFunction, when its call instruction // jumped to the wrong address. EXPECT_EQ(7, FarFunctionPtr()); } #endif // Platform has far-call problem. // This code is copied from JITEventListenerTest, but it only runs once for all // the tests in this directory. Everything seems fine, but that's strange // behavior. class JITEnvironment : public testing::Environment { virtual void SetUp() { // Required to create a JIT. InitializeNativeTarget(); } }; testing::Environment* const jit_env = testing::AddGlobalTestEnvironment(new JITEnvironment); }