//===- genexec.cpp - Functions for generating executable files ------------===// // // This file contains functions for generating executable files once linking // has finished. This includes generating a shell script to run the JIT or // a native executable derived from the bytecode. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/Linker.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Target/TargetData.h" #include "llvm/Module.h" #include "llvm/PassManager.h" #include "llvm/Bytecode/WriteBytecodePass.h" #include "Support/SystemUtils.h" #include "util.h" #include #include #include // // Function: GenerateBytecode () // // Description: // This function generates a bytecode file from the specified module. // // Inputs: // M - The module for which bytecode should be generated. // Strip - Flags whether symbols should be stripped from the output. // Internalize - Flags whether all symbols should be marked internal. // Out - Pointer to file stream to which to write the output. // // Outputs: // None. // // Return value: // 0 - No error. // 1 - Error. // int GenerateBytecode (Module * M, bool Strip, bool Internalize, std::ofstream * Out) { // In addition to just linking the input from GCC, we also want to spiff it up // a little bit. Do this now. PassManager Passes; // Add an appropriate TargetData instance for this module... Passes.add(new TargetData("gccld", M)); // Linking modules together can lead to duplicated global constants, only keep // one copy of each constant... // Passes.add(createConstantMergePass()); // If the -s command line option was specified, strip the symbols out of the // resulting program to make it smaller. -s is a GCC option that we are // supporting. // if (Strip) Passes.add(createSymbolStrippingPass()); // Often if the programmer does not specify proper prototypes for the // functions they are calling, they end up calling a vararg version of the // function that does not get a body filled in (the real function has typed // arguments). This pass merges the two functions. // Passes.add(createFunctionResolvingPass()); if (Internalize) { // Now that composite has been compiled, scan through the module, looking // for a main function. If main is defined, mark all other functions // internal. // Passes.add(createInternalizePass()); } // Remove unused arguments from functions... // Passes.add(createDeadArgEliminationPass()); // The FuncResolve pass may leave cruft around if functions were prototyped // differently than they were defined. Remove this cruft. // Passes.add(createInstructionCombiningPass()); // Delete basic blocks, which optimization passes may have killed... // Passes.add(createCFGSimplificationPass()); // Now that we have optimized the program, discard unreachable functions... // Passes.add(createGlobalDCEPass()); // Add the pass that writes bytecode to the output file... Passes.add(new WriteBytecodePass(Out)); // Run our queue of passes all at once now, efficiently. Passes.run(*M); return 0; } // // Function: generate_assembly () // // Description: // This function generates a native assembly language source file from the // specified bytecode file. // // Inputs: // InputFilename - The name of the output bytecode file. // OutputFilename - The name of the file to generate. // llc - The pathname to use for LLC. // envp - The environment to use when running LLC. // // Outputs: // None. // // Return value: // 0 - Success // 1 - Failure // int generate_assembly (std::string OutputFilename, std::string InputFilename, std::string llc, char ** const envp) { // // Run LLC to convert the bytecode file into assembly code. // const char * cmd[8]; cmd[0] = llc.c_str(); cmd[1] = "-f"; cmd[2] = "-o"; cmd[3] = OutputFilename.c_str(); cmd[4] = InputFilename.c_str(); cmd[5] = NULL; if ((ExecWait (cmd, envp)) == -1) { return 1; } return 0; } // // Function: generate_native () // // Description: // This function generates a native assembly language source file from the // specified assembly source file. // // Inputs: // InputFilename - The name of the output bytecode file. // OutputFilename - The name of the file to generate. // Libraries - The list of libraries with which to link. // gcc - The pathname to use for GGC. // envp - A copy of the process's current environment. // // Outputs: // None. // // Return value: // 0 - Success // 1 - Failure // int generate_native (std::string OutputFilename, std::string InputFilename, std::vector Libraries, std::string gcc, char ** const envp) { // // Remove these environment variables from the environment of the // programs that we will execute. It appears that GCC sets these // environment variables so that the programs it uses can configure // themselves identically. // // However, when we invoke GCC below, we want it to use its normal // configuration. Hence, we must sanitize it's environment. // char ** clean_env = copy_env (envp); if (clean_env == NULL) { return 1; } remove_env ("LIBRARY_PATH", clean_env); remove_env ("COLLECT_GCC_OPTIONS", clean_env); remove_env ("GCC_EXEC_PREFIX", clean_env); remove_env ("COMPILER_PATH", clean_env); remove_env ("COLLECT_GCC", clean_env); const char * cmd[8 + Libraries.size()]; // // Run GCC to assemble and link the program into native code. // // Note: // We can't just assemble and link the file with the system assembler // and linker because we don't know where to put the _start symbol. // GCC mysteriously knows how to do it. // unsigned int index=0; cmd[index++] = gcc.c_str(); cmd[index++] = "-o"; cmd[index++] = OutputFilename.c_str(); cmd[index++] = InputFilename.c_str(); for (; (index - 4) < Libraries.size(); index++) { Libraries[index - 4] = "-l" + Libraries[index - 4]; cmd[index] = Libraries[index-4].c_str(); } cmd[index++] = NULL; if ((ExecWait (cmd, clean_env)) == -1) { return 1; } return 0; }