//===-------- X86PadShortFunction.cpp - pad short functions -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the pass which will pad short functions to prevent // a stall if a function returns before the return address is ready. This // is needed for some Intel Atom processors. // //===----------------------------------------------------------------------===// #include #include #define DEBUG_TYPE "x86-pad-short-functions" #include "X86.h" #include "X86InstrInfo.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" using namespace llvm; STATISTIC(NumBBsPadded, "Number of basic blocks padded"); namespace { struct PadShortFunc : public MachineFunctionPass { static char ID; PadShortFunc() : MachineFunctionPass(ID) , Threshold(4) {} virtual bool runOnMachineFunction(MachineFunction &MF); virtual const char *getPassName() const { return "X86 Atom pad short functions"; } private: bool addPadding(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, unsigned int NOOPsToAdd); void findReturn(MachineFunction &MF, MachineBasicBlock &MBB, unsigned int Cycles); bool cyclesUntilReturn(MachineFunction &MF, MachineBasicBlock &MBB, unsigned int &Cycles, MachineBasicBlock::iterator *Location = 0); const unsigned int Threshold; std::map ReturnBBs; }; char PadShortFunc::ID = 0; } FunctionPass *llvm::createX86PadShortFunctions() { return new PadShortFunc(); } /// runOnMachineFunction - Loop over all of the basic blocks, inserting /// NOOP instructions before early exits. bool PadShortFunc::runOnMachineFunction(MachineFunction &MF) { // Process all basic blocks. ReturnBBs.clear(); // Search through basic blocks and mark the ones that have early returns findReturn(MF, *MF.begin(), 0); int BBNum; MachineBasicBlock::iterator ReturnLoc; MachineBasicBlock *MBB; unsigned int Cycles = 0; unsigned int BBCycles; // Pad the identified basic blocks with NOOPs for (std::map::iterator I = ReturnBBs.begin(); I != ReturnBBs.end(); ++I) { BBNum = I->first; Cycles = I->second; if (Cycles < Threshold) { MBB = MF.getBlockNumbered(BBNum); if (!cyclesUntilReturn(MF, *MBB, BBCycles, &ReturnLoc)) continue; addPadding(MF, *MBB, ReturnLoc, Threshold - Cycles); NumBBsPadded++; } } return false; } /// findReturn - Starting at MBB, follow control flow and add all /// basic blocks that contain a return to ReturnBBs. void PadShortFunc::findReturn(MachineFunction &MF, MachineBasicBlock &MBB, unsigned int Cycles) { // If this BB has a return, note how many cycles it takes to get there. bool hasReturn = cyclesUntilReturn(MF, MBB, Cycles); if (Cycles >= Threshold) return; if (hasReturn) { int BBNum = MBB.getNumber(); ReturnBBs[BBNum] = std::max(ReturnBBs[BBNum], Cycles); return; } // Follow branches in BB and look for returns for (MachineBasicBlock::succ_iterator I = MBB.succ_begin(); I != MBB.succ_end(); ++I) { findReturn(MF, **I, Cycles); } } /// cyclesUntilReturn - if the MBB has a return instruction, set Location to /// to the instruction and return true. Return false otherwise. /// Cycles will be incremented by the number of cycles taken to reach the /// return or the end of the BB, whichever occurs first. bool PadShortFunc::cyclesUntilReturn(MachineFunction &MF, MachineBasicBlock &MBB, unsigned int &Cycles, MachineBasicBlock::iterator *Location) { const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo(); const TargetMachine &Target = MF.getTarget(); for (MachineBasicBlock::iterator MBBI = MBB.begin(); MBBI != MBB.end(); ++MBBI) { MachineInstr *MI = MBBI; // Mark basic blocks with a return instruction. Calls to other functions // do not count because the called function will be padded, if necessary if (MI->isReturn() && !MI->isCall()) { if (Location) *Location = MBBI; return true; } Cycles += TII.getInstrLatency(Target.getInstrItineraryData(), MI); } return false; } /// addPadding - Add the given number of NOOP instructions to the function /// right before the return at MBBI bool PadShortFunc::addPadding(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, unsigned int NOOPsToAdd) { const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo(); DebugLoc DL = MBBI->getDebugLoc(); while (NOOPsToAdd-- > 0) { // Since Atom has two instruction execution ports, // the code emits two noops, which will be executed in parallell // during one cycle. BuildMI(MBB, MBBI, DL, TII.get(X86::NOOP)); BuildMI(MBB, MBBI, DL, TII.get(X86::NOOP)); } return true; }