//===-- X86InstrArithmetic.td - Integer Arithmetic Instrs --*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the integer arithmetic instructions in the X86 // architecture. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // LEA - Load Effective Address let neverHasSideEffects = 1 in def LEA16r : I<0x8D, MRMSrcMem, (outs GR16:$dst), (ins i32mem:$src), "lea{w}\t{$src|$dst}, {$dst|$src}", [], IIC_LEA_16>, OpSize; let isReMaterializable = 1 in def LEA32r : I<0x8D, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), "lea{l}\t{$src|$dst}, {$dst|$src}", [(set GR32:$dst, lea32addr:$src)], IIC_LEA>, Requires<[In32BitMode]>; def LEA64_32r : I<0x8D, MRMSrcMem, (outs GR32:$dst), (ins lea64_32mem:$src), "lea{l}\t{$src|$dst}, {$dst|$src}", [(set GR32:$dst, lea64_32addr:$src)], IIC_LEA>, Requires<[In64BitMode]>; let isReMaterializable = 1 in def LEA64r : RI<0x8D, MRMSrcMem, (outs GR64:$dst), (ins lea64mem:$src), "lea{q}\t{$src|$dst}, {$dst|$src}", [(set GR64:$dst, lea64addr:$src)], IIC_LEA>; //===----------------------------------------------------------------------===// // Fixed-Register Multiplication and Division Instructions. // // Extra precision multiplication // AL is really implied by AX, but the registers in Defs must match the // SDNode results (i8, i32). let Defs = [AL,EFLAGS,AX], Uses = [AL] in def MUL8r : I<0xF6, MRM4r, (outs), (ins GR8:$src), "mul{b}\t$src", // FIXME: Used for 8-bit mul, ignore result upper 8 bits. // This probably ought to be moved to a def : Pat<> if the // syntax can be accepted. [(set AL, (mul AL, GR8:$src)), (implicit EFLAGS)], IIC_MUL8>; // AL,AH = AL*GR8 let Defs = [AX,DX,EFLAGS], Uses = [AX], neverHasSideEffects = 1 in def MUL16r : I<0xF7, MRM4r, (outs), (ins GR16:$src), "mul{w}\t$src", [], IIC_MUL16_REG>, OpSize; // AX,DX = AX*GR16 let Defs = [EAX,EDX,EFLAGS], Uses = [EAX], neverHasSideEffects = 1 in def MUL32r : I<0xF7, MRM4r, (outs), (ins GR32:$src), "mul{l}\t$src", // EAX,EDX = EAX*GR32 [/*(set EAX, EDX, EFLAGS, (X86umul_flag EAX, GR32:$src))*/], IIC_MUL32_REG>; let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], neverHasSideEffects = 1 in def MUL64r : RI<0xF7, MRM4r, (outs), (ins GR64:$src), "mul{q}\t$src", // RAX,RDX = RAX*GR64 [/*(set RAX, RDX, EFLAGS, (X86umul_flag RAX, GR64:$src))*/], IIC_MUL64>; let Defs = [AL,EFLAGS,AX], Uses = [AL] in def MUL8m : I<0xF6, MRM4m, (outs), (ins i8mem :$src), "mul{b}\t$src", // FIXME: Used for 8-bit mul, ignore result upper 8 bits. // This probably ought to be moved to a def : Pat<> if the // syntax can be accepted. [(set AL, (mul AL, (loadi8 addr:$src))), (implicit EFLAGS)], IIC_MUL8>; // AL,AH = AL*[mem8] let mayLoad = 1, neverHasSideEffects = 1 in { let Defs = [AX,DX,EFLAGS], Uses = [AX] in def MUL16m : I<0xF7, MRM4m, (outs), (ins i16mem:$src), "mul{w}\t$src", [], IIC_MUL16_MEM>, OpSize; // AX,DX = AX*[mem16] let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in def MUL32m : I<0xF7, MRM4m, (outs), (ins i32mem:$src), "mul{l}\t$src", [], IIC_MUL32_MEM>; // EAX,EDX = EAX*[mem32] let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in def MUL64m : RI<0xF7, MRM4m, (outs), (ins i64mem:$src), "mul{q}\t$src", [], IIC_MUL64>; // RAX,RDX = RAX*[mem64] } let neverHasSideEffects = 1 in { let Defs = [AL,EFLAGS,AX], Uses = [AL] in def IMUL8r : I<0xF6, MRM5r, (outs), (ins GR8:$src), "imul{b}\t$src", [], IIC_IMUL8>; // AL,AH = AL*GR8 let Defs = [AX,DX,EFLAGS], Uses = [AX] in def IMUL16r : I<0xF7, MRM5r, (outs), (ins GR16:$src), "imul{w}\t$src", [], IIC_IMUL16_RR>, OpSize; // AX,DX = AX*GR16 let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in def IMUL32r : I<0xF7, MRM5r, (outs), (ins GR32:$src), "imul{l}\t$src", [], IIC_IMUL32_RR>; // EAX,EDX = EAX*GR32 let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in def IMUL64r : RI<0xF7, MRM5r, (outs), (ins GR64:$src), "imul{q}\t$src", [], IIC_IMUL64_RR>; // RAX,RDX = RAX*GR64 let mayLoad = 1 in { let Defs = [AL,EFLAGS,AX], Uses = [AL] in def IMUL8m : I<0xF6, MRM5m, (outs), (ins i8mem :$src), "imul{b}\t$src", [], IIC_IMUL8>; // AL,AH = AL*[mem8] let Defs = [AX,DX,EFLAGS], Uses = [AX] in def IMUL16m : I<0xF7, MRM5m, (outs), (ins i16mem:$src), "imul{w}\t$src", [], IIC_IMUL16_MEM>, OpSize; // AX,DX = AX*[mem16] let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in def IMUL32m : I<0xF7, MRM5m, (outs), (ins i32mem:$src), "imul{l}\t$src", [], IIC_IMUL32_MEM>; // EAX,EDX = EAX*[mem32] let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in def IMUL64m : RI<0xF7, MRM5m, (outs), (ins i64mem:$src), "imul{q}\t$src", [], IIC_IMUL64>; // RAX,RDX = RAX*[mem64] } } // neverHasSideEffects let Defs = [EFLAGS] in { let Constraints = "$src1 = $dst" in { let isCommutable = 1 in { // X = IMUL Y, Z --> X = IMUL Z, Y // Register-Register Signed Integer Multiply def IMUL16rr : I<0xAF, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src1,GR16:$src2), "imul{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, EFLAGS, (X86smul_flag GR16:$src1, GR16:$src2))], IIC_IMUL16_RR>, TB, OpSize; def IMUL32rr : I<0xAF, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1,GR32:$src2), "imul{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, EFLAGS, (X86smul_flag GR32:$src1, GR32:$src2))], IIC_IMUL32_RR>, TB; def IMUL64rr : RI<0xAF, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "imul{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, EFLAGS, (X86smul_flag GR64:$src1, GR64:$src2))], IIC_IMUL64_RR>, TB; } // Register-Memory Signed Integer Multiply def IMUL16rm : I<0xAF, MRMSrcMem, (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "imul{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, EFLAGS, (X86smul_flag GR16:$src1, (load addr:$src2)))], IIC_IMUL16_RM>, TB, OpSize; def IMUL32rm : I<0xAF, MRMSrcMem, (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "imul{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, EFLAGS, (X86smul_flag GR32:$src1, (load addr:$src2)))], IIC_IMUL32_RM>, TB; def IMUL64rm : RI<0xAF, MRMSrcMem, (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2), "imul{q}\t{$src2, $dst|$dst, $src2}", [(set GR64:$dst, EFLAGS, (X86smul_flag GR64:$src1, (load addr:$src2)))], IIC_IMUL64_RM>, TB; } // Constraints = "$src1 = $dst" } // Defs = [EFLAGS] // Surprisingly enough, these are not two address instructions! let Defs = [EFLAGS] in { // Register-Integer Signed Integer Multiply def IMUL16rri : Ii16<0x69, MRMSrcReg, // GR16 = GR16*I16 (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2), "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR16:$dst, EFLAGS, (X86smul_flag GR16:$src1, imm:$src2))], IIC_IMUL16_RRI>, OpSize; def IMUL16rri8 : Ii8<0x6B, MRMSrcReg, // GR16 = GR16*I8 (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2), "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR16:$dst, EFLAGS, (X86smul_flag GR16:$src1, i16immSExt8:$src2))], IIC_IMUL16_RRI>, OpSize; def IMUL32rri : Ii32<0x69, MRMSrcReg, // GR32 = GR32*I32 (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR32:$dst, EFLAGS, (X86smul_flag GR32:$src1, imm:$src2))], IIC_IMUL32_RRI>; def IMUL32rri8 : Ii8<0x6B, MRMSrcReg, // GR32 = GR32*I8 (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2), "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR32:$dst, EFLAGS, (X86smul_flag GR32:$src1, i32immSExt8:$src2))], IIC_IMUL32_RRI>; def IMUL64rri32 : RIi32<0x69, MRMSrcReg, // GR64 = GR64*I32 (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2), "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR64:$dst, EFLAGS, (X86smul_flag GR64:$src1, i64immSExt32:$src2))], IIC_IMUL64_RRI>; def IMUL64rri8 : RIi8<0x6B, MRMSrcReg, // GR64 = GR64*I8 (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2), "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR64:$dst, EFLAGS, (X86smul_flag GR64:$src1, i64immSExt8:$src2))], IIC_IMUL64_RRI>; // Memory-Integer Signed Integer Multiply def IMUL16rmi : Ii16<0x69, MRMSrcMem, // GR16 = [mem16]*I16 (outs GR16:$dst), (ins i16mem:$src1, i16imm:$src2), "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR16:$dst, EFLAGS, (X86smul_flag (load addr:$src1), imm:$src2))], IIC_IMUL16_RMI>, OpSize; def IMUL16rmi8 : Ii8<0x6B, MRMSrcMem, // GR16 = [mem16]*I8 (outs GR16:$dst), (ins i16mem:$src1, i16i8imm :$src2), "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR16:$dst, EFLAGS, (X86smul_flag (load addr:$src1), i16immSExt8:$src2))], IIC_IMUL16_RMI>, OpSize; def IMUL32rmi : Ii32<0x69, MRMSrcMem, // GR32 = [mem32]*I32 (outs GR32:$dst), (ins i32mem:$src1, i32imm:$src2), "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR32:$dst, EFLAGS, (X86smul_flag (load addr:$src1), imm:$src2))], IIC_IMUL32_RMI>; def IMUL32rmi8 : Ii8<0x6B, MRMSrcMem, // GR32 = [mem32]*I8 (outs GR32:$dst), (ins i32mem:$src1, i32i8imm: $src2), "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR32:$dst, EFLAGS, (X86smul_flag (load addr:$src1), i32immSExt8:$src2))], IIC_IMUL32_RMI>; def IMUL64rmi32 : RIi32<0x69, MRMSrcMem, // GR64 = [mem64]*I32 (outs GR64:$dst), (ins i64mem:$src1, i64i32imm:$src2), "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR64:$dst, EFLAGS, (X86smul_flag (load addr:$src1), i64immSExt32:$src2))], IIC_IMUL64_RMI>; def IMUL64rmi8 : RIi8<0x6B, MRMSrcMem, // GR64 = [mem64]*I8 (outs GR64:$dst), (ins i64mem:$src1, i64i8imm: $src2), "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR64:$dst, EFLAGS, (X86smul_flag (load addr:$src1), i64immSExt8:$src2))], IIC_IMUL64_RMI>; } // Defs = [EFLAGS] // unsigned division/remainder let hasSideEffects = 1 in { // so that we don't speculatively execute let Defs = [AL,EFLAGS,AX], Uses = [AX] in def DIV8r : I<0xF6, MRM6r, (outs), (ins GR8:$src), // AX/r8 = AL,AH "div{b}\t$src", [], IIC_DIV8_REG>; let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in def DIV16r : I<0xF7, MRM6r, (outs), (ins GR16:$src), // DX:AX/r16 = AX,DX "div{w}\t$src", [], IIC_DIV16>, OpSize; let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in def DIV32r : I<0xF7, MRM6r, (outs), (ins GR32:$src), // EDX:EAX/r32 = EAX,EDX "div{l}\t$src", [], IIC_DIV32>; // RDX:RAX/r64 = RAX,RDX let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in def DIV64r : RI<0xF7, MRM6r, (outs), (ins GR64:$src), "div{q}\t$src", [], IIC_DIV64>; let mayLoad = 1 in { let Defs = [AL,EFLAGS,AX], Uses = [AX] in def DIV8m : I<0xF6, MRM6m, (outs), (ins i8mem:$src), // AX/[mem8] = AL,AH "div{b}\t$src", [], IIC_DIV8_MEM>; let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in def DIV16m : I<0xF7, MRM6m, (outs), (ins i16mem:$src), // DX:AX/[mem16] = AX,DX "div{w}\t$src", [], IIC_DIV16>, OpSize; let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in // EDX:EAX/[mem32] = EAX,EDX def DIV32m : I<0xF7, MRM6m, (outs), (ins i32mem:$src), "div{l}\t$src", [], IIC_DIV32>; // RDX:RAX/[mem64] = RAX,RDX let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in def DIV64m : RI<0xF7, MRM6m, (outs), (ins i64mem:$src), "div{q}\t$src", [], IIC_DIV64>; } // Signed division/remainder. let Defs = [AL,EFLAGS,AX], Uses = [AX] in def IDIV8r : I<0xF6, MRM7r, (outs), (ins GR8:$src), // AX/r8 = AL,AH "idiv{b}\t$src", [], IIC_IDIV8>; let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in def IDIV16r: I<0xF7, MRM7r, (outs), (ins GR16:$src), // DX:AX/r16 = AX,DX "idiv{w}\t$src", [], IIC_IDIV16>, OpSize; let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in def IDIV32r: I<0xF7, MRM7r, (outs), (ins GR32:$src), // EDX:EAX/r32 = EAX,EDX "idiv{l}\t$src", [], IIC_IDIV32>; // RDX:RAX/r64 = RAX,RDX let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in def IDIV64r: RI<0xF7, MRM7r, (outs), (ins GR64:$src), "idiv{q}\t$src", [], IIC_IDIV64>; let mayLoad = 1 in { let Defs = [AL,EFLAGS,AX], Uses = [AX] in def IDIV8m : I<0xF6, MRM7m, (outs), (ins i8mem:$src), // AX/[mem8] = AL,AH "idiv{b}\t$src", [], IIC_IDIV8>; let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in def IDIV16m: I<0xF7, MRM7m, (outs), (ins i16mem:$src), // DX:AX/[mem16] = AX,DX "idiv{w}\t$src", [], IIC_IDIV16>, OpSize; let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in // EDX:EAX/[mem32] = EAX,EDX def IDIV32m: I<0xF7, MRM7m, (outs), (ins i32mem:$src), "idiv{l}\t$src", [], IIC_IDIV32>; let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in // RDX:RAX/[mem64] = RAX,RDX def IDIV64m: RI<0xF7, MRM7m, (outs), (ins i64mem:$src), "idiv{q}\t$src", [], IIC_IDIV64>; } } // hasSideEffects = 0 //===----------------------------------------------------------------------===// // Two address Instructions. // // unary instructions let CodeSize = 2 in { let Defs = [EFLAGS] in { let Constraints = "$src1 = $dst" in { def NEG8r : I<0xF6, MRM3r, (outs GR8 :$dst), (ins GR8 :$src1), "neg{b}\t$dst", [(set GR8:$dst, (ineg GR8:$src1)), (implicit EFLAGS)], IIC_UNARY_REG>; def NEG16r : I<0xF7, MRM3r, (outs GR16:$dst), (ins GR16:$src1), "neg{w}\t$dst", [(set GR16:$dst, (ineg GR16:$src1)), (implicit EFLAGS)], IIC_UNARY_REG>, OpSize; def NEG32r : I<0xF7, MRM3r, (outs GR32:$dst), (ins GR32:$src1), "neg{l}\t$dst", [(set GR32:$dst, (ineg GR32:$src1)), (implicit EFLAGS)], IIC_UNARY_REG>; def NEG64r : RI<0xF7, MRM3r, (outs GR64:$dst), (ins GR64:$src1), "neg{q}\t$dst", [(set GR64:$dst, (ineg GR64:$src1)), (implicit EFLAGS)], IIC_UNARY_REG>; } // Constraints = "$src1 = $dst" def NEG8m : I<0xF6, MRM3m, (outs), (ins i8mem :$dst), "neg{b}\t$dst", [(store (ineg (loadi8 addr:$dst)), addr:$dst), (implicit EFLAGS)], IIC_UNARY_MEM>; def NEG16m : I<0xF7, MRM3m, (outs), (ins i16mem:$dst), "neg{w}\t$dst", [(store (ineg (loadi16 addr:$dst)), addr:$dst), (implicit EFLAGS)], IIC_UNARY_MEM>, OpSize; def NEG32m : I<0xF7, MRM3m, (outs), (ins i32mem:$dst), "neg{l}\t$dst", [(store (ineg (loadi32 addr:$dst)), addr:$dst), (implicit EFLAGS)], IIC_UNARY_MEM>; def NEG64m : RI<0xF7, MRM3m, (outs), (ins i64mem:$dst), "neg{q}\t$dst", [(store (ineg (loadi64 addr:$dst)), addr:$dst), (implicit EFLAGS)], IIC_UNARY_MEM>; } // Defs = [EFLAGS] // Note: NOT does not set EFLAGS! let Constraints = "$src1 = $dst" in { // Match xor -1 to not. Favors these over a move imm + xor to save code size. let AddedComplexity = 15 in { def NOT8r : I<0xF6, MRM2r, (outs GR8 :$dst), (ins GR8 :$src1), "not{b}\t$dst", [(set GR8:$dst, (not GR8:$src1))], IIC_UNARY_REG>; def NOT16r : I<0xF7, MRM2r, (outs GR16:$dst), (ins GR16:$src1), "not{w}\t$dst", [(set GR16:$dst, (not GR16:$src1))], IIC_UNARY_REG>, OpSize; def NOT32r : I<0xF7, MRM2r, (outs GR32:$dst), (ins GR32:$src1), "not{l}\t$dst", [(set GR32:$dst, (not GR32:$src1))], IIC_UNARY_REG>; def NOT64r : RI<0xF7, MRM2r, (outs GR64:$dst), (ins GR64:$src1), "not{q}\t$dst", [(set GR64:$dst, (not GR64:$src1))], IIC_UNARY_REG>; } } // Constraints = "$src1 = $dst" def NOT8m : I<0xF6, MRM2m, (outs), (ins i8mem :$dst), "not{b}\t$dst", [(store (not (loadi8 addr:$dst)), addr:$dst)], IIC_UNARY_MEM>; def NOT16m : I<0xF7, MRM2m, (outs), (ins i16mem:$dst), "not{w}\t$dst", [(store (not (loadi16 addr:$dst)), addr:$dst)], IIC_UNARY_MEM>, OpSize; def NOT32m : I<0xF7, MRM2m, (outs), (ins i32mem:$dst), "not{l}\t$dst", [(store (not (loadi32 addr:$dst)), addr:$dst)], IIC_UNARY_MEM>; def NOT64m : RI<0xF7, MRM2m, (outs), (ins i64mem:$dst), "not{q}\t$dst", [(store (not (loadi64 addr:$dst)), addr:$dst)], IIC_UNARY_MEM>; } // CodeSize // TODO: inc/dec is slow for P4, but fast for Pentium-M. let Defs = [EFLAGS] in { let Constraints = "$src1 = $dst" in { let CodeSize = 2 in def INC8r : I<0xFE, MRM0r, (outs GR8 :$dst), (ins GR8 :$src1), "inc{b}\t$dst", [(set GR8:$dst, EFLAGS, (X86inc_flag GR8:$src1))], IIC_UNARY_REG>; let isConvertibleToThreeAddress = 1, CodeSize = 1 in { // Can xform into LEA. def INC16r : I<0x40, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1), "inc{w}\t$dst", [(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src1))], IIC_UNARY_REG>, OpSize, Requires<[In32BitMode]>; def INC32r : I<0x40, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1), "inc{l}\t$dst", [(set GR32:$dst, EFLAGS, (X86inc_flag GR32:$src1))], IIC_UNARY_REG>, Requires<[In32BitMode]>; def INC64r : RI<0xFF, MRM0r, (outs GR64:$dst), (ins GR64:$src1), "inc{q}\t$dst", [(set GR64:$dst, EFLAGS, (X86inc_flag GR64:$src1))], IIC_UNARY_REG>; } // isConvertibleToThreeAddress = 1, CodeSize = 1 // In 64-bit mode, single byte INC and DEC cannot be encoded. let isConvertibleToThreeAddress = 1, CodeSize = 2 in { // Can transform into LEA. def INC64_16r : I<0xFF, MRM0r, (outs GR16:$dst), (ins GR16:$src1), "inc{w}\t$dst", [(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src1))], IIC_UNARY_REG>, OpSize, Requires<[In64BitMode]>; def INC64_32r : I<0xFF, MRM0r, (outs GR32:$dst), (ins GR32:$src1), "inc{l}\t$dst", [(set GR32:$dst, EFLAGS, (X86inc_flag GR32:$src1))], IIC_UNARY_REG>, Requires<[In64BitMode]>; def DEC64_16r : I<0xFF, MRM1r, (outs GR16:$dst), (ins GR16:$src1), "dec{w}\t$dst", [(set GR16:$dst, EFLAGS, (X86dec_flag GR16:$src1))], IIC_UNARY_REG>, OpSize, Requires<[In64BitMode]>; def DEC64_32r : I<0xFF, MRM1r, (outs GR32:$dst), (ins GR32:$src1), "dec{l}\t$dst", [(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src1))], IIC_UNARY_REG>, Requires<[In64BitMode]>; } // isConvertibleToThreeAddress = 1, CodeSize = 2 } // Constraints = "$src1 = $dst" let CodeSize = 2 in { def INC8m : I<0xFE, MRM0m, (outs), (ins i8mem :$dst), "inc{b}\t$dst", [(store (add (loadi8 addr:$dst), 1), addr:$dst), (implicit EFLAGS)], IIC_UNARY_MEM>; def INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst", [(store (add (loadi16 addr:$dst), 1), addr:$dst), (implicit EFLAGS)], IIC_UNARY_MEM>, OpSize, Requires<[In32BitMode]>; def INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst", [(store (add (loadi32 addr:$dst), 1), addr:$dst), (implicit EFLAGS)], IIC_UNARY_MEM>, Requires<[In32BitMode]>; def INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst), "inc{q}\t$dst", [(store (add (loadi64 addr:$dst), 1), addr:$dst), (implicit EFLAGS)], IIC_UNARY_MEM>; // These are duplicates of their 32-bit counterparts. Only needed so X86 knows // how to unfold them. // FIXME: What is this for?? def INC64_16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst", [(store (add (loadi16 addr:$dst), 1), addr:$dst), (implicit EFLAGS)], IIC_UNARY_MEM>, OpSize, Requires<[In64BitMode]>; def INC64_32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst", [(store (add (loadi32 addr:$dst), 1), addr:$dst), (implicit EFLAGS)], IIC_UNARY_MEM>, Requires<[In64BitMode]>; def DEC64_16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst", [(store (add (loadi16 addr:$dst), -1), addr:$dst), (implicit EFLAGS)], IIC_UNARY_MEM>, OpSize, Requires<[In64BitMode]>; def DEC64_32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst", [(store (add (loadi32 addr:$dst), -1), addr:$dst), (implicit EFLAGS)], IIC_UNARY_MEM>, Requires<[In64BitMode]>; } // CodeSize = 2 let Constraints = "$src1 = $dst" in { let CodeSize = 2 in def DEC8r : I<0xFE, MRM1r, (outs GR8 :$dst), (ins GR8 :$src1), "dec{b}\t$dst", [(set GR8:$dst, EFLAGS, (X86dec_flag GR8:$src1))], IIC_UNARY_REG>; let isConvertibleToThreeAddress = 1, CodeSize = 1 in { // Can xform into LEA. def DEC16r : I<0x48, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1), "dec{w}\t$dst", [(set GR16:$dst, EFLAGS, (X86dec_flag GR16:$src1))], IIC_UNARY_REG>, OpSize, Requires<[In32BitMode]>; def DEC32r : I<0x48, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1), "dec{l}\t$dst", [(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src1))], IIC_UNARY_REG>, Requires<[In32BitMode]>; def DEC64r : RI<0xFF, MRM1r, (outs GR64:$dst), (ins GR64:$src1), "dec{q}\t$dst", [(set GR64:$dst, EFLAGS, (X86dec_flag GR64:$src1))], IIC_UNARY_REG>; } // CodeSize = 2 } // Constraints = "$src1 = $dst" let CodeSize = 2 in { def DEC8m : I<0xFE, MRM1m, (outs), (ins i8mem :$dst), "dec{b}\t$dst", [(store (add (loadi8 addr:$dst), -1), addr:$dst), (implicit EFLAGS)], IIC_UNARY_MEM>; def DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst", [(store (add (loadi16 addr:$dst), -1), addr:$dst), (implicit EFLAGS)], IIC_UNARY_MEM>, OpSize, Requires<[In32BitMode]>; def DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst", [(store (add (loadi32 addr:$dst), -1), addr:$dst), (implicit EFLAGS)], IIC_UNARY_MEM>, Requires<[In32BitMode]>; def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst", [(store (add (loadi64 addr:$dst), -1), addr:$dst), (implicit EFLAGS)], IIC_UNARY_MEM>; } // CodeSize = 2 } // Defs = [EFLAGS] /// X86TypeInfo - This is a bunch of information that describes relevant X86 /// information about value types. For example, it can tell you what the /// register class and preferred load to use. class X86TypeInfo { /// VT - This is the value type itself. ValueType VT = vt; /// InstrSuffix - This is the suffix used on instructions with this type. For /// example, i8 -> "b", i16 -> "w", i32 -> "l", i64 -> "q". string InstrSuffix = instrsuffix; /// RegClass - This is the register class associated with this type. For /// example, i8 -> GR8, i16 -> GR16, i32 -> GR32, i64 -> GR64. RegisterClass RegClass = regclass; /// LoadNode - This is the load node associated with this type. For /// example, i8 -> loadi8, i16 -> loadi16, i32 -> loadi32, i64 -> loadi64. PatFrag LoadNode = loadnode; /// MemOperand - This is the memory operand associated with this type. For /// example, i8 -> i8mem, i16 -> i16mem, i32 -> i32mem, i64 -> i64mem. X86MemOperand MemOperand = memoperand; /// ImmEncoding - This is the encoding of an immediate of this type. For /// example, i8 -> Imm8, i16 -> Imm16, i32 -> Imm32. Note that i64 -> Imm32 /// since the immediate fields of i64 instructions is a 32-bit sign extended /// value. ImmType ImmEncoding = immkind; /// ImmOperand - This is the operand kind of an immediate of this type. For /// example, i8 -> i8imm, i16 -> i16imm, i32 -> i32imm. Note that i64 -> /// i64i32imm since the immediate fields of i64 instructions is a 32-bit sign /// extended value. Operand ImmOperand = immoperand; /// ImmOperator - This is the operator that should be used to match an /// immediate of this kind in a pattern (e.g. imm, or i64immSExt32). SDPatternOperator ImmOperator = immoperator; /// Imm8Operand - This is the operand kind to use for an imm8 of this type. /// For example, i8 -> , i16 -> i16i8imm, i32 -> i32i8imm. This is /// only used for instructions that have a sign-extended imm8 field form. Operand Imm8Operand = imm8operand; /// Imm8Operator - This is the operator that should be used to match an 8-bit /// sign extended immediate of this kind in a pattern (e.g. imm16immSExt8). SDPatternOperator Imm8Operator = imm8operator; /// HasOddOpcode - This bit is true if the instruction should have an odd (as /// opposed to even) opcode. Operations on i8 are usually even, operations on /// other datatypes are odd. bit HasOddOpcode = hasOddOpcode; /// HasOpSizePrefix - This bit is set to true if the instruction should have /// the 0x66 operand size prefix. This is set for i16 types. bit HasOpSizePrefix = hasOpSizePrefix; /// HasREX_WPrefix - This bit is set to true if the instruction should have /// the 0x40 REX prefix. This is set for i64 types. bit HasREX_WPrefix = hasREX_WPrefix; } def invalid_node : SDNode<"<>", SDTIntLeaf,[],"<>">; def Xi8 : X86TypeInfo; def Xi16 : X86TypeInfo; def Xi32 : X86TypeInfo; def Xi64 : X86TypeInfo; /// ITy - This instruction base class takes the type info for the instruction. /// Using this, it: /// 1. Concatenates together the instruction mnemonic with the appropriate /// suffix letter, a tab, and the arguments. /// 2. Infers whether the instruction should have a 0x66 prefix byte. /// 3. Infers whether the instruction should have a 0x40 REX_W prefix. /// 4. Infers whether the low bit of the opcode should be 0 (for i8 operations) /// or 1 (for i16,i32,i64 operations). class ITy opcode, Format f, X86TypeInfo typeinfo, dag outs, dag ins, string mnemonic, string args, list pattern, InstrItinClass itin = IIC_BIN_NONMEM> : I<{opcode{7}, opcode{6}, opcode{5}, opcode{4}, opcode{3}, opcode{2}, opcode{1}, typeinfo.HasOddOpcode }, f, outs, ins, !strconcat(mnemonic, "{", typeinfo.InstrSuffix, "}\t", args), pattern, itin> { // Infer instruction prefixes from type info. let hasOpSizePrefix = typeinfo.HasOpSizePrefix; let hasREX_WPrefix = typeinfo.HasREX_WPrefix; } // BinOpRR - Instructions like "add reg, reg, reg". class BinOpRR opcode, string mnemonic, X86TypeInfo typeinfo, dag outlist, list pattern, InstrItinClass itin, Format f = MRMDestReg> : ITy; // BinOpRR_R - Instructions like "add reg, reg, reg", where the pattern has // just a regclass (no eflags) as a result. class BinOpRR_R opcode, string mnemonic, X86TypeInfo typeinfo, SDNode opnode> : BinOpRR; // BinOpRR_F - Instructions like "cmp reg, Reg", where the pattern has // just a EFLAGS as a result. class BinOpRR_F opcode, string mnemonic, X86TypeInfo typeinfo, SDPatternOperator opnode, Format f = MRMDestReg> : BinOpRR; // BinOpRR_RF - Instructions like "add reg, reg, reg", where the pattern has // both a regclass and EFLAGS as a result. class BinOpRR_RF opcode, string mnemonic, X86TypeInfo typeinfo, SDNode opnode> : BinOpRR; // BinOpRR_RFF - Instructions like "adc reg, reg, reg", where the pattern has // both a regclass and EFLAGS as a result, and has EFLAGS as input. class BinOpRR_RFF opcode, string mnemonic, X86TypeInfo typeinfo, SDNode opnode> : BinOpRR; // BinOpRR_Rev - Instructions like "add reg, reg, reg" (reversed encoding). class BinOpRR_Rev opcode, string mnemonic, X86TypeInfo typeinfo> : ITy { // The disassembler should know about this, but not the asmparser. let isCodeGenOnly = 1; let hasSideEffects = 0; } // BinOpRR_F_Rev - Instructions like "cmp reg, reg" (reversed encoding). class BinOpRR_F_Rev opcode, string mnemonic, X86TypeInfo typeinfo> : ITy { // The disassembler should know about this, but not the asmparser. let isCodeGenOnly = 1; let hasSideEffects = 0; } // BinOpRM - Instructions like "add reg, reg, [mem]". class BinOpRM opcode, string mnemonic, X86TypeInfo typeinfo, dag outlist, list pattern> : ITy; // BinOpRM_R - Instructions like "add reg, reg, [mem]". class BinOpRM_R opcode, string mnemonic, X86TypeInfo typeinfo, SDNode opnode> : BinOpRM; // BinOpRM_F - Instructions like "cmp reg, [mem]". class BinOpRM_F opcode, string mnemonic, X86TypeInfo typeinfo, SDPatternOperator opnode> : BinOpRM; // BinOpRM_RF - Instructions like "add reg, reg, [mem]". class BinOpRM_RF opcode, string mnemonic, X86TypeInfo typeinfo, SDNode opnode> : BinOpRM; // BinOpRM_RFF - Instructions like "adc reg, reg, [mem]". class BinOpRM_RFF opcode, string mnemonic, X86TypeInfo typeinfo, SDNode opnode> : BinOpRM; // BinOpRI - Instructions like "add reg, reg, imm". class BinOpRI opcode, string mnemonic, X86TypeInfo typeinfo, Format f, dag outlist, list pattern> : ITy { let ImmT = typeinfo.ImmEncoding; } // BinOpRI_R - Instructions like "add reg, reg, imm". class BinOpRI_R opcode, string mnemonic, X86TypeInfo typeinfo, SDNode opnode, Format f> : BinOpRI; // BinOpRI_F - Instructions like "cmp reg, imm". class BinOpRI_F opcode, string mnemonic, X86TypeInfo typeinfo, SDPatternOperator opnode, Format f> : BinOpRI; // BinOpRI_RF - Instructions like "add reg, reg, imm". class BinOpRI_RF opcode, string mnemonic, X86TypeInfo typeinfo, SDNode opnode, Format f> : BinOpRI; // BinOpRI_RFF - Instructions like "adc reg, reg, imm". class BinOpRI_RFF opcode, string mnemonic, X86TypeInfo typeinfo, SDNode opnode, Format f> : BinOpRI; // BinOpRI8 - Instructions like "add reg, reg, imm8". class BinOpRI8 opcode, string mnemonic, X86TypeInfo typeinfo, Format f, dag outlist, list pattern> : ITy { let ImmT = Imm8; // Always 8-bit immediate. } // BinOpRI8_R - Instructions like "add reg, reg, imm8". class BinOpRI8_R opcode, string mnemonic, X86TypeInfo typeinfo, SDNode opnode, Format f> : BinOpRI8; // BinOpRI8_F - Instructions like "cmp reg, imm8". class BinOpRI8_F opcode, string mnemonic, X86TypeInfo typeinfo, SDNode opnode, Format f> : BinOpRI8; // BinOpRI8_RF - Instructions like "add reg, reg, imm8". class BinOpRI8_RF opcode, string mnemonic, X86TypeInfo typeinfo, SDNode opnode, Format f> : BinOpRI8; // BinOpRI8_RFF - Instructions like "adc reg, reg, imm8". class BinOpRI8_RFF opcode, string mnemonic, X86TypeInfo typeinfo, SDNode opnode, Format f> : BinOpRI8; // BinOpMR - Instructions like "add [mem], reg". class BinOpMR opcode, string mnemonic, X86TypeInfo typeinfo, list pattern> : ITy; // BinOpMR_RMW - Instructions like "add [mem], reg". class BinOpMR_RMW opcode, string mnemonic, X86TypeInfo typeinfo, SDNode opnode> : BinOpMR; // BinOpMR_RMW_FF - Instructions like "adc [mem], reg". class BinOpMR_RMW_FF opcode, string mnemonic, X86TypeInfo typeinfo, SDNode opnode> : BinOpMR; // BinOpMR_F - Instructions like "cmp [mem], reg". class BinOpMR_F opcode, string mnemonic, X86TypeInfo typeinfo, SDNode opnode> : BinOpMR; // BinOpMI - Instructions like "add [mem], imm". class BinOpMI pattern, bits<8> opcode = 0x80> : ITy { let ImmT = typeinfo.ImmEncoding; } // BinOpMI_RMW - Instructions like "add [mem], imm". class BinOpMI_RMW : BinOpMI; // BinOpMI_RMW_FF - Instructions like "adc [mem], imm". class BinOpMI_RMW_FF : BinOpMI; // BinOpMI_F - Instructions like "cmp [mem], imm". class BinOpMI_F opcode = 0x80> : BinOpMI; // BinOpMI8 - Instructions like "add [mem], imm8". class BinOpMI8 pattern> : ITy<0x82, f, typeinfo, (outs), (ins typeinfo.MemOperand:$dst, typeinfo.Imm8Operand:$src), mnemonic, "{$src, $dst|$dst, $src}", pattern, IIC_BIN_MEM> { let ImmT = Imm8; // Always 8-bit immediate. } // BinOpMI8_RMW - Instructions like "add [mem], imm8". class BinOpMI8_RMW : BinOpMI8; // BinOpMI8_RMW_FF - Instructions like "adc [mem], imm8". class BinOpMI8_RMW_FF : BinOpMI8; // BinOpMI8_F - Instructions like "cmp [mem], imm8". class BinOpMI8_F : BinOpMI8; // BinOpAI - Instructions like "add %eax, %eax, imm". class BinOpAI opcode, string mnemonic, X86TypeInfo typeinfo, Register areg, string operands> : ITy { let ImmT = typeinfo.ImmEncoding; let Uses = [areg]; let Defs = [areg]; let hasSideEffects = 0; } /// ArithBinOp_RF - This is an arithmetic binary operator where the pattern is /// defined with "(set GPR:$dst, EFLAGS, (...". /// /// It would be nice to get rid of the second and third argument here, but /// tblgen can't handle dependent type references aggressively enough: PR8330 multiclass ArithBinOp_RF BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4, string mnemonic, Format RegMRM, Format MemMRM, SDNode opnodeflag, SDNode opnode, bit CommutableRR, bit ConvertibleToThreeAddress> { let Defs = [EFLAGS] in { let Constraints = "$src1 = $dst" in { let isCommutable = CommutableRR, isConvertibleToThreeAddress = ConvertibleToThreeAddress in { def NAME#8rr : BinOpRR_RF; def NAME#16rr : BinOpRR_RF; def NAME#32rr : BinOpRR_RF; def NAME#64rr : BinOpRR_RF; } // isCommutable def NAME#8rr_REV : BinOpRR_Rev; def NAME#16rr_REV : BinOpRR_Rev; def NAME#32rr_REV : BinOpRR_Rev; def NAME#64rr_REV : BinOpRR_Rev; def NAME#8rm : BinOpRM_RF; def NAME#16rm : BinOpRM_RF; def NAME#32rm : BinOpRM_RF; def NAME#64rm : BinOpRM_RF; let isConvertibleToThreeAddress = ConvertibleToThreeAddress in { // NOTE: These are order specific, we want the ri8 forms to be listed // first so that they are slightly preferred to the ri forms. def NAME#16ri8 : BinOpRI8_RF<0x82, mnemonic, Xi16, opnodeflag, RegMRM>; def NAME#32ri8 : BinOpRI8_RF<0x82, mnemonic, Xi32, opnodeflag, RegMRM>; def NAME#64ri8 : BinOpRI8_RF<0x82, mnemonic, Xi64, opnodeflag, RegMRM>; def NAME#8ri : BinOpRI_RF<0x80, mnemonic, Xi8 , opnodeflag, RegMRM>; def NAME#16ri : BinOpRI_RF<0x80, mnemonic, Xi16, opnodeflag, RegMRM>; def NAME#32ri : BinOpRI_RF<0x80, mnemonic, Xi32, opnodeflag, RegMRM>; def NAME#64ri32: BinOpRI_RF<0x80, mnemonic, Xi64, opnodeflag, RegMRM>; } } // Constraints = "$src1 = $dst" def NAME#8mr : BinOpMR_RMW; def NAME#16mr : BinOpMR_RMW; def NAME#32mr : BinOpMR_RMW; def NAME#64mr : BinOpMR_RMW; // NOTE: These are order specific, we want the mi8 forms to be listed // first so that they are slightly preferred to the mi forms. def NAME#16mi8 : BinOpMI8_RMW; def NAME#32mi8 : BinOpMI8_RMW; def NAME#64mi8 : BinOpMI8_RMW; def NAME#8mi : BinOpMI_RMW; def NAME#16mi : BinOpMI_RMW; def NAME#32mi : BinOpMI_RMW; def NAME#64mi32 : BinOpMI_RMW; def NAME#8i8 : BinOpAI; def NAME#16i16 : BinOpAI; def NAME#32i32 : BinOpAI; def NAME#64i32 : BinOpAI; } } /// ArithBinOp_RFF - This is an arithmetic binary operator where the pattern is /// defined with "(set GPR:$dst, EFLAGS, (node LHS, RHS, EFLAGS))" like ADC and /// SBB. /// /// It would be nice to get rid of the second and third argument here, but /// tblgen can't handle dependent type references aggressively enough: PR8330 multiclass ArithBinOp_RFF BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4, string mnemonic, Format RegMRM, Format MemMRM, SDNode opnode, bit CommutableRR, bit ConvertibleToThreeAddress> { let Defs = [EFLAGS] in { let Constraints = "$src1 = $dst" in { let isCommutable = CommutableRR, isConvertibleToThreeAddress = ConvertibleToThreeAddress in { def NAME#8rr : BinOpRR_RFF; def NAME#16rr : BinOpRR_RFF; def NAME#32rr : BinOpRR_RFF; def NAME#64rr : BinOpRR_RFF; } // isCommutable def NAME#8rr_REV : BinOpRR_Rev; def NAME#16rr_REV : BinOpRR_Rev; def NAME#32rr_REV : BinOpRR_Rev; def NAME#64rr_REV : BinOpRR_Rev; def NAME#8rm : BinOpRM_RFF; def NAME#16rm : BinOpRM_RFF; def NAME#32rm : BinOpRM_RFF; def NAME#64rm : BinOpRM_RFF; let isConvertibleToThreeAddress = ConvertibleToThreeAddress in { // NOTE: These are order specific, we want the ri8 forms to be listed // first so that they are slightly preferred to the ri forms. def NAME#16ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi16, opnode, RegMRM>; def NAME#32ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi32, opnode, RegMRM>; def NAME#64ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi64, opnode, RegMRM>; def NAME#8ri : BinOpRI_RFF<0x80, mnemonic, Xi8 , opnode, RegMRM>; def NAME#16ri : BinOpRI_RFF<0x80, mnemonic, Xi16, opnode, RegMRM>; def NAME#32ri : BinOpRI_RFF<0x80, mnemonic, Xi32, opnode, RegMRM>; def NAME#64ri32: BinOpRI_RFF<0x80, mnemonic, Xi64, opnode, RegMRM>; } } // Constraints = "$src1 = $dst" def NAME#8mr : BinOpMR_RMW_FF; def NAME#16mr : BinOpMR_RMW_FF; def NAME#32mr : BinOpMR_RMW_FF; def NAME#64mr : BinOpMR_RMW_FF; // NOTE: These are order specific, we want the mi8 forms to be listed // first so that they are slightly preferred to the mi forms. def NAME#16mi8 : BinOpMI8_RMW_FF; def NAME#32mi8 : BinOpMI8_RMW_FF; def NAME#64mi8 : BinOpMI8_RMW_FF; def NAME#8mi : BinOpMI_RMW_FF; def NAME#16mi : BinOpMI_RMW_FF; def NAME#32mi : BinOpMI_RMW_FF; def NAME#64mi32 : BinOpMI_RMW_FF; def NAME#8i8 : BinOpAI; def NAME#16i16 : BinOpAI; def NAME#32i32 : BinOpAI; def NAME#64i32 : BinOpAI; } } /// ArithBinOp_F - This is an arithmetic binary operator where the pattern is /// defined with "(set EFLAGS, (...". It would be really nice to find a way /// to factor this with the other ArithBinOp_*. /// multiclass ArithBinOp_F BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4, string mnemonic, Format RegMRM, Format MemMRM, SDNode opnode, bit CommutableRR, bit ConvertibleToThreeAddress> { let Defs = [EFLAGS] in { let isCommutable = CommutableRR, isConvertibleToThreeAddress = ConvertibleToThreeAddress in { def NAME#8rr : BinOpRR_F; def NAME#16rr : BinOpRR_F; def NAME#32rr : BinOpRR_F; def NAME#64rr : BinOpRR_F; } // isCommutable def NAME#8rr_REV : BinOpRR_F_Rev; def NAME#16rr_REV : BinOpRR_F_Rev; def NAME#32rr_REV : BinOpRR_F_Rev; def NAME#64rr_REV : BinOpRR_F_Rev; def NAME#8rm : BinOpRM_F; def NAME#16rm : BinOpRM_F; def NAME#32rm : BinOpRM_F; def NAME#64rm : BinOpRM_F; let isConvertibleToThreeAddress = ConvertibleToThreeAddress in { // NOTE: These are order specific, we want the ri8 forms to be listed // first so that they are slightly preferred to the ri forms. def NAME#16ri8 : BinOpRI8_F<0x82, mnemonic, Xi16, opnode, RegMRM>; def NAME#32ri8 : BinOpRI8_F<0x82, mnemonic, Xi32, opnode, RegMRM>; def NAME#64ri8 : BinOpRI8_F<0x82, mnemonic, Xi64, opnode, RegMRM>; def NAME#8ri : BinOpRI_F<0x80, mnemonic, Xi8 , opnode, RegMRM>; def NAME#16ri : BinOpRI_F<0x80, mnemonic, Xi16, opnode, RegMRM>; def NAME#32ri : BinOpRI_F<0x80, mnemonic, Xi32, opnode, RegMRM>; def NAME#64ri32: BinOpRI_F<0x80, mnemonic, Xi64, opnode, RegMRM>; } def NAME#8mr : BinOpMR_F; def NAME#16mr : BinOpMR_F; def NAME#32mr : BinOpMR_F; def NAME#64mr : BinOpMR_F; // NOTE: These are order specific, we want the mi8 forms to be listed // first so that they are slightly preferred to the mi forms. def NAME#16mi8 : BinOpMI8_F; def NAME#32mi8 : BinOpMI8_F; def NAME#64mi8 : BinOpMI8_F; def NAME#8mi : BinOpMI_F; def NAME#16mi : BinOpMI_F; def NAME#32mi : BinOpMI_F; def NAME#64mi32 : BinOpMI_F; def NAME#8i8 : BinOpAI; def NAME#16i16 : BinOpAI; def NAME#32i32 : BinOpAI; def NAME#64i32 : BinOpAI; } } defm AND : ArithBinOp_RF<0x20, 0x22, 0x24, "and", MRM4r, MRM4m, X86and_flag, and, 1, 0>; defm OR : ArithBinOp_RF<0x08, 0x0A, 0x0C, "or", MRM1r, MRM1m, X86or_flag, or, 1, 0>; defm XOR : ArithBinOp_RF<0x30, 0x32, 0x34, "xor", MRM6r, MRM6m, X86xor_flag, xor, 1, 0>; defm ADD : ArithBinOp_RF<0x00, 0x02, 0x04, "add", MRM0r, MRM0m, X86add_flag, add, 1, 1>; let isCompare = 1 in { defm SUB : ArithBinOp_RF<0x28, 0x2A, 0x2C, "sub", MRM5r, MRM5m, X86sub_flag, sub, 0, 0>; } // Arithmetic. let Uses = [EFLAGS] in { defm ADC : ArithBinOp_RFF<0x10, 0x12, 0x14, "adc", MRM2r, MRM2m, X86adc_flag, 1, 0>; defm SBB : ArithBinOp_RFF<0x18, 0x1A, 0x1C, "sbb", MRM3r, MRM3m, X86sbb_flag, 0, 0>; } let isCompare = 1 in { defm CMP : ArithBinOp_F<0x38, 0x3A, 0x3C, "cmp", MRM7r, MRM7m, X86cmp, 0, 0>; } //===----------------------------------------------------------------------===// // Semantically, test instructions are similar like AND, except they don't // generate a result. From an encoding perspective, they are very different: // they don't have all the usual imm8 and REV forms, and are encoded into a // different space. def X86testpat : PatFrag<(ops node:$lhs, node:$rhs), (X86cmp (and_su node:$lhs, node:$rhs), 0)>; let isCompare = 1, Defs = [EFLAGS] in { let isCommutable = 1 in { def TEST8rr : BinOpRR_F<0x84, "test", Xi8 , X86testpat, MRMSrcReg>; def TEST16rr : BinOpRR_F<0x84, "test", Xi16, X86testpat, MRMSrcReg>; def TEST32rr : BinOpRR_F<0x84, "test", Xi32, X86testpat, MRMSrcReg>; def TEST64rr : BinOpRR_F<0x84, "test", Xi64, X86testpat, MRMSrcReg>; } // isCommutable def TEST8rm : BinOpRM_F<0x84, "test", Xi8 , X86testpat>; def TEST16rm : BinOpRM_F<0x84, "test", Xi16, X86testpat>; def TEST32rm : BinOpRM_F<0x84, "test", Xi32, X86testpat>; def TEST64rm : BinOpRM_F<0x84, "test", Xi64, X86testpat>; def TEST8ri : BinOpRI_F<0xF6, "test", Xi8 , X86testpat, MRM0r>; def TEST16ri : BinOpRI_F<0xF6, "test", Xi16, X86testpat, MRM0r>; def TEST32ri : BinOpRI_F<0xF6, "test", Xi32, X86testpat, MRM0r>; def TEST64ri32 : BinOpRI_F<0xF6, "test", Xi64, X86testpat, MRM0r>; def TEST8mi : BinOpMI_F<"test", Xi8 , X86testpat, MRM0m, 0xF6>; def TEST16mi : BinOpMI_F<"test", Xi16, X86testpat, MRM0m, 0xF6>; def TEST32mi : BinOpMI_F<"test", Xi32, X86testpat, MRM0m, 0xF6>; def TEST64mi32 : BinOpMI_F<"test", Xi64, X86testpat, MRM0m, 0xF6>; def TEST8i8 : BinOpAI<0xA8, "test", Xi8 , AL, "{$src, %al|AL, $src}">; def TEST16i16 : BinOpAI<0xA8, "test", Xi16, AX, "{$src, %ax|AX, $src}">; def TEST32i32 : BinOpAI<0xA8, "test", Xi32, EAX, "{$src, %eax|EAX, $src}">; def TEST64i32 : BinOpAI<0xA8, "test", Xi64, RAX, "{$src, %rax|RAX, $src}">; // When testing the result of EXTRACT_SUBREG sub_8bit_hi, make sure the // register class is constrained to GR8_NOREX. let isPseudo = 1 in def TEST8ri_NOREX : I<0, Pseudo, (outs), (ins GR8_NOREX:$src, i8imm:$mask), "", [], IIC_BIN_NONMEM>; } //===----------------------------------------------------------------------===// // ANDN Instruction // multiclass bmi_andn { def rr : I<0xF2, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2), !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(set RC:$dst, EFLAGS, (X86and_flag (not RC:$src1), RC:$src2))], IIC_BIN_NONMEM>; def rm : I<0xF2, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2), !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(set RC:$dst, EFLAGS, (X86and_flag (not RC:$src1), (ld_frag addr:$src2)))], IIC_BIN_MEM>; } let Predicates = [HasBMI], Defs = [EFLAGS] in { defm ANDN32 : bmi_andn<"andn{l}", GR32, i32mem, loadi32>, T8, VEX_4V; defm ANDN64 : bmi_andn<"andn{q}", GR64, i64mem, loadi64>, T8, VEX_4V, VEX_W; } let Predicates = [HasBMI] in { def : Pat<(and (not GR32:$src1), GR32:$src2), (ANDN32rr GR32:$src1, GR32:$src2)>; def : Pat<(and (not GR64:$src1), GR64:$src2), (ANDN64rr GR64:$src1, GR64:$src2)>; def : Pat<(and (not GR32:$src1), (loadi32 addr:$src2)), (ANDN32rm GR32:$src1, addr:$src2)>; def : Pat<(and (not GR64:$src1), (loadi64 addr:$src2)), (ANDN64rm GR64:$src1, addr:$src2)>; } //===----------------------------------------------------------------------===// // MULX Instruction // multiclass bmi_mulx { let neverHasSideEffects = 1 in { let isCommutable = 1 in def rr : I<0xF6, MRMSrcReg, (outs RC:$dst1, RC:$dst2), (ins RC:$src), !strconcat(mnemonic, "\t{$src, $dst2, $dst1|$dst1, $dst2, $src}"), [], IIC_MUL8>, T8XD, VEX_4V; let mayLoad = 1 in def rm : I<0xF6, MRMSrcMem, (outs RC:$dst1, RC:$dst2), (ins x86memop:$src), !strconcat(mnemonic, "\t{$src, $dst2, $dst1|$dst1, $dst2, $src}"), [], IIC_MUL8>, T8XD, VEX_4V; } } let Predicates = [HasBMI2] in { let Uses = [EDX] in defm MULX32 : bmi_mulx<"mulx{l}", GR32, i32mem>; let Uses = [RDX] in defm MULX64 : bmi_mulx<"mulx{q}", GR64, i64mem>, VEX_W; } //===----------------------------------------------------------------------===// // ADCX Instruction // let hasSideEffects = 0, Predicates = [HasADX], Defs = [EFLAGS] in { def ADCX32rr : I<0xF6, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src), "adcx{l}\t{$src, $dst|$dst, $src}", [], IIC_BIN_NONMEM>, T8, OpSize; def ADCX64rr : I<0xF6, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src), "adcx{q}\t{$src, $dst|$dst, $src}", [], IIC_BIN_NONMEM>, T8, OpSize, REX_W, Requires<[In64BitMode]>; let mayLoad = 1 in { def ADCX32rm : I<0xF6, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), "adcx{l}\t{$src, $dst|$dst, $src}", [], IIC_BIN_MEM>, T8, OpSize; def ADCX64rm : I<0xF6, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src), "adcx{q}\t{$src, $dst|$dst, $src}", [], IIC_BIN_MEM>, T8, OpSize, REX_W, Requires<[In64BitMode]>; } } //===----------------------------------------------------------------------===// // ADOX Instruction // let hasSideEffects = 0, Predicates = [HasADX], Defs = [EFLAGS] in { def ADOX32rr : I<0xF6, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src), "adox{l}\t{$src, $dst|$dst, $src}", [], IIC_BIN_NONMEM>, T8XS; def ADOX64rr : I<0xF6, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src), "adox{q}\t{$src, $dst|$dst, $src}", [], IIC_BIN_NONMEM>, T8XS, REX_W, Requires<[In64BitMode]>; let mayLoad = 1 in { def ADOX32rm : I<0xF6, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), "adox{l}\t{$src, $dst|$dst, $src}", [], IIC_BIN_MEM>, T8XS; def ADOX64rm : I<0xF6, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src), "adox{q}\t{$src, $dst|$dst, $src}", [], IIC_BIN_MEM>, T8XS, REX_W, Requires<[In64BitMode]>; } }