//===-- SIInstrInfo.td - SI Instruction Infos -------------*- tablegen -*--===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // SI DAG Nodes //===----------------------------------------------------------------------===// // SMRD takes a 64bit memory address and can only add an 32bit offset def SIadd64bit32bit : SDNode<"ISD::ADD", SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>, SDTCisVT<0, i64>, SDTCisVT<2, i32>]> >; // Transformation function, extract the lower 32bit of a 64bit immediate def LO32 : SDNodeXFormgetTargetConstant(N->getZExtValue() & 0xffffffff, MVT::i32); }]>; // Transformation function, extract the upper 32bit of a 64bit immediate def HI32 : SDNodeXFormgetTargetConstant(N->getZExtValue() >> 32, MVT::i32); }]>; def IMM8bitDWORD : ImmLeaf < i32, [{ return (Imm & ~0x3FC) == 0; }], SDNodeXFormgetTargetConstant( N->getZExtValue() >> 2, MVT::i32); }]> >; def IMM12bit : ImmLeaf < i16, [{return isUInt<12>(Imm);}] >; class InlineImm : PatLeaf <(vt imm), [{ return ((const SITargetLowering &)TLI).analyzeImmediate(N) == 0; }]>; //===----------------------------------------------------------------------===// // SI assembler operands //===----------------------------------------------------------------------===// def SIOperand { int ZERO = 0x80; int VCC = 0x6A; } include "SIInstrFormats.td" //===----------------------------------------------------------------------===// // // SI Instruction multiclass helpers. // // Instructions with _32 take 32-bit operands. // Instructions with _64 take 64-bit operands. // // VOP_* instructions can use either a 32-bit or 64-bit encoding. The 32-bit // encoding is the standard encoding, but instruction that make use of // any of the instruction modifiers must use the 64-bit encoding. // // Instructions with _e32 use the 32-bit encoding. // Instructions with _e64 use the 64-bit encoding. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Scalar classes //===----------------------------------------------------------------------===// class SOP1_32 op, string opName, list pattern> : SOP1 < op, (outs SReg_32:$dst), (ins SSrc_32:$src0), opName#" $dst, $src0", pattern >; class SOP1_64 op, string opName, list pattern> : SOP1 < op, (outs SReg_64:$dst), (ins SSrc_64:$src0), opName#" $dst, $src0", pattern >; class SOP2_32 op, string opName, list pattern> : SOP2 < op, (outs SReg_32:$dst), (ins SSrc_32:$src0, SSrc_32:$src1), opName#" $dst, $src0, $src1", pattern >; class SOP2_64 op, string opName, list pattern> : SOP2 < op, (outs SReg_64:$dst), (ins SSrc_64:$src0, SSrc_64:$src1), opName#" $dst, $src0, $src1", pattern >; class SOPC_32 op, string opName, list pattern> : SOPC < op, (outs SCCReg:$dst), (ins SSrc_32:$src0, SSrc_32:$src1), opName#" $dst, $src0, $src1", pattern >; class SOPC_64 op, string opName, list pattern> : SOPC < op, (outs SCCReg:$dst), (ins SSrc_64:$src0, SSrc_64:$src1), opName#" $dst, $src0, $src1", pattern >; class SOPK_32 op, string opName, list pattern> : SOPK < op, (outs SReg_32:$dst), (ins i16imm:$src0), opName#" $dst, $src0", pattern >; class SOPK_64 op, string opName, list pattern> : SOPK < op, (outs SReg_64:$dst), (ins i16imm:$src0), opName#" $dst, $src0", pattern >; multiclass SMRD_Helper op, string asm, RegisterClass dstClass> { def _IMM : SMRD < op, 1, (outs dstClass:$dst), (ins SReg_64:$sbase, i32imm:$offset), asm#" $dst, $sbase, $offset", [] >; def _SGPR : SMRD < op, 0, (outs dstClass:$dst), (ins SReg_64:$sbase, SReg_32:$soff), asm#" $dst, $sbase, $soff", [] >; } //===----------------------------------------------------------------------===// // Vector ALU classes //===----------------------------------------------------------------------===// class VOP { string OpName = opName; } multiclass VOP1_Helper op, RegisterClass drc, RegisterClass src, string opName, list pattern> { def _e32 : VOP1 < op, (outs drc:$dst), (ins src:$src0), opName#"_e32 $dst, $src0", pattern >, VOP ; def _e64 : VOP3 < {1, 1, op{6}, op{5}, op{4}, op{3}, op{2}, op{1}, op{0}}, (outs drc:$dst), (ins src:$src0, i32imm:$abs, i32imm:$clamp, i32imm:$omod, i32imm:$neg), opName#"_e64 $dst, $src0, $abs, $clamp, $omod, $neg", [] >, VOP { let SRC1 = SIOperand.ZERO; let SRC2 = SIOperand.ZERO; } } multiclass VOP1_32 op, string opName, list pattern> : VOP1_Helper ; multiclass VOP1_64 op, string opName, list pattern> : VOP1_Helper ; multiclass VOP2_Helper op, RegisterClass vrc, RegisterClass arc, string opName, list pattern> { def _e32 : VOP2 < op, (outs vrc:$dst), (ins arc:$src0, vrc:$src1), opName#"_e32 $dst, $src0, $src1", pattern >, VOP ; def _e64 : VOP3 < {1, 0, 0, op{5}, op{4}, op{3}, op{2}, op{1}, op{0}}, (outs vrc:$dst), (ins arc:$src0, arc:$src1, i32imm:$abs, i32imm:$clamp, i32imm:$omod, i32imm:$neg), opName#"_e64 $dst, $src0, $src1, $abs, $clamp, $omod, $neg", [] >, VOP { let SRC2 = SIOperand.ZERO; } } multiclass VOP2_32 op, string opName, list pattern> : VOP2_Helper ; multiclass VOP2_64 op, string opName, list pattern> : VOP2_Helper ; multiclass VOP2b_32 op, string opName, list pattern> { def _e32 : VOP2 < op, (outs VReg_32:$dst), (ins VSrc_32:$src0, VReg_32:$src1), opName#"_e32 $dst, $src0, $src1", pattern >, VOP ; def _e64 : VOP3b < {1, 0, 0, op{5}, op{4}, op{3}, op{2}, op{1}, op{0}}, (outs VReg_32:$dst), (ins VSrc_32:$src0, VSrc_32:$src1, i32imm:$abs, i32imm:$clamp, i32imm:$omod, i32imm:$neg), opName#"_e64 $dst, $src0, $src1, $abs, $clamp, $omod, $neg", [] >, VOP { let SRC2 = SIOperand.ZERO; /* the VOP2 variant puts the carry out into VCC, the VOP3 variant can write it into any SGPR. We currently don't use the carry out, so for now hardcode it to VCC as well */ let SDST = SIOperand.VCC; } } multiclass VOPC_Helper op, RegisterClass vrc, RegisterClass arc, string opName, ValueType vt, PatLeaf cond> { def _e32 : VOPC < op, (ins arc:$src0, vrc:$src1), opName#"_e32 $dst, $src0, $src1", [] >, VOP ; def _e64 : VOP3 < {0, op{7}, op{6}, op{5}, op{4}, op{3}, op{2}, op{1}, op{0}}, (outs SReg_64:$dst), (ins arc:$src0, arc:$src1, InstFlag:$abs, InstFlag:$clamp, InstFlag:$omod, InstFlag:$neg), opName#"_e64 $dst, $src0, $src1, $abs, $clamp, $omod, $neg", !if(!eq(!cast(cond), "COND_NULL"), [], [(set SReg_64:$dst, (i1 (setcc (vt arc:$src0), arc:$src1, cond)))] ) >, VOP { let SRC2 = SIOperand.ZERO; } } multiclass VOPC_32 op, string opName, ValueType vt = untyped, PatLeaf cond = COND_NULL> : VOPC_Helper ; multiclass VOPC_64 op, string opName, ValueType vt = untyped, PatLeaf cond = COND_NULL> : VOPC_Helper ; class VOP3_32 op, string opName, list pattern> : VOP3 < op, (outs VReg_32:$dst), (ins VSrc_32:$src0, VSrc_32:$src1, VSrc_32:$src2, i32imm:$abs, i32imm:$clamp, i32imm:$omod, i32imm:$neg), opName#" $dst, $src0, $src1, $src2, $abs, $clamp, $omod, $neg", pattern >, VOP ; class VOP3_64 op, string opName, list pattern> : VOP3 < op, (outs VReg_64:$dst), (ins VSrc_64:$src0, VSrc_64:$src1, VSrc_64:$src2, i32imm:$abs, i32imm:$clamp, i32imm:$omod, i32imm:$neg), opName#" $dst, $src0, $src1, $src2, $abs, $clamp, $omod, $neg", pattern >, VOP ; //===----------------------------------------------------------------------===// // Vector I/O classes //===----------------------------------------------------------------------===// class MTBUF_Store_Helper op, string asm, RegisterClass regClass> : MTBUF < op, (outs), (ins regClass:$vdata, i16imm:$offset, i1imm:$offen, i1imm:$idxen, i1imm:$glc, i1imm:$addr64, i8imm:$dfmt, i8imm:$nfmt, VReg_32:$vaddr, SReg_128:$srsrc, i1imm:$slc, i1imm:$tfe, SSrc_32:$soffset), asm#" $vdata, $offset, $offen, $idxen, $glc, $addr64, $dfmt," #" $nfmt, $vaddr, $srsrc, $slc, $tfe, $soffset", []> { let mayStore = 1; let mayLoad = 0; } class MUBUF_Load_Helper op, string asm, RegisterClass regClass> : MUBUF < op, (outs regClass:$dst), (ins i16imm:$offset, i1imm:$offen, i1imm:$idxen, i1imm:$glc, i1imm:$addr64, i1imm:$lds, VReg_32:$vaddr, SReg_128:$srsrc, i1imm:$slc, i1imm:$tfe, SSrc_32:$soffset), asm#" $dst, $offset, $offen, $idxen, $glc, $addr64, " #"$lds, $vaddr, $srsrc, $slc, $tfe, $soffset", []> { let mayLoad = 1; let mayStore = 0; } class MTBUF_Load_Helper op, string asm, RegisterClass regClass> : MTBUF < op, (outs regClass:$dst), (ins i16imm:$offset, i1imm:$offen, i1imm:$idxen, i1imm:$glc, i1imm:$addr64, i8imm:$dfmt, i8imm:$nfmt, VReg_32:$vaddr, SReg_128:$srsrc, i1imm:$slc, i1imm:$tfe, SSrc_32:$soffset), asm#" $dst, $offset, $offen, $idxen, $glc, $addr64, $dfmt," #" $nfmt, $vaddr, $srsrc, $slc, $tfe, $soffset", []> { let mayLoad = 1; let mayStore = 0; } class MIMG_Load_Helper op, string asm> : MIMG < op, (outs VReg_128:$vdata), (ins i32imm:$dmask, i1imm:$unorm, i1imm:$glc, i1imm:$da, i1imm:$r128, i1imm:$tfe, i1imm:$lwe, i1imm:$slc, VReg_32:$vaddr, SReg_256:$srsrc, SReg_128:$ssamp), asm#" $vdata, $dmask, $unorm, $glc, $da, $r128," #" $tfe, $lwe, $slc, $vaddr, $srsrc, $ssamp", []> { let mayLoad = 1; let mayStore = 0; } //===----------------------------------------------------------------------===// // Vector instruction mappings //===----------------------------------------------------------------------===// // Maps an opcode in e32 form to its e64 equivalent def getVOPe64 : InstrMapping { let FilterClass = "VOP"; let RowFields = ["OpName"]; let ColFields = ["Size"]; let KeyCol = ["4"]; let ValueCols = [["8"]]; } include "SIInstructions.td"