//===-- PPCCTRLoops.cpp - Identify and generate CTR loops -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass identifies loops where we can generate the PPC branch instructions // that decrement and test the count register (CTR) (bdnz and friends). // This pass is based on the HexagonHardwareLoops pass. // // The pattern that defines the induction variable can changed depending on // prior optimizations. For example, the IndVarSimplify phase run by 'opt' // normalizes induction variables, and the Loop Strength Reduction pass // run by 'llc' may also make changes to the induction variable. // The pattern detected by this phase is due to running Strength Reduction. // // Criteria for CTR loops: // - Countable loops (w/ ind. var for a trip count) // - Assumes loops are normalized by IndVarSimplify // - Try inner-most loops first // - No nested CTR loops. // - No function calls in loops. // // Note: As with unconverted loops, PPCBranchSelector must be run after this // pass in order to convert long-displacement jumps into jump pairs. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "ctrloops" #include "PPC.h" #include "MCTargetDesc/PPCPredicates.h" #include "PPCTargetMachine.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/IR/Constants.h" #include "llvm/PassSupport.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include using namespace llvm; STATISTIC(NumCTRLoops, "Number of loops converted to CTR loops"); namespace llvm { void initializePPCCTRLoopsPass(PassRegistry&); } namespace { class CountValue; struct PPCCTRLoops : public MachineFunctionPass { MachineLoopInfo *MLI; MachineRegisterInfo *MRI; const TargetInstrInfo *TII; public: static char ID; // Pass identification, replacement for typeid PPCCTRLoops() : MachineFunctionPass(ID) { initializePPCCTRLoopsPass(*PassRegistry::getPassRegistry()); } virtual bool runOnMachineFunction(MachineFunction &MF); const char *getPassName() const { return "PPC CTR Loops"; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); MachineFunctionPass::getAnalysisUsage(AU); } private: /// getCanonicalInductionVariable - Check to see if the loop has a canonical /// induction variable. /// Should be defined in MachineLoop. Based upon version in class Loop. void getCanonicalInductionVariable(MachineLoop *L, SmallVector &IVars, SmallVector &IOps) const; /// getTripCount - Return a loop-invariant LLVM register indicating the /// number of times the loop will be executed. If the trip-count cannot /// be determined, this return null. CountValue *getTripCount(MachineLoop *L, SmallVector &OldInsts) const; /// isInductionOperation - Return true if the instruction matches the /// pattern for an opertion that defines an induction variable. bool isInductionOperation(const MachineInstr *MI, unsigned IVReg) const; /// isInvalidOperation - Return true if the instruction is not valid within /// a CTR loop. bool isInvalidLoopOperation(const MachineInstr *MI) const; /// containsInavlidInstruction - Return true if the loop contains an /// instruction that inhibits using the CTR loop. bool containsInvalidInstruction(MachineLoop *L) const; /// converToCTRLoop - Given a loop, check if we can convert it to a /// CTR loop. If so, then perform the conversion and return true. bool convertToCTRLoop(MachineLoop *L); /// isDead - Return true if the instruction is now dead. bool isDead(const MachineInstr *MI, SmallVector &DeadPhis) const; /// removeIfDead - Remove the instruction if it is now dead. void removeIfDead(MachineInstr *MI); }; char PPCCTRLoops::ID = 0; // CountValue class - Abstraction for a trip count of a loop. A // smaller vesrsion of the MachineOperand class without the concerns // of changing the operand representation. class CountValue { public: enum CountValueType { CV_Register, CV_Immediate }; private: CountValueType Kind; union Values { unsigned RegNum; int64_t ImmVal; Values(unsigned r) : RegNum(r) {} Values(int64_t i) : ImmVal(i) {} } Contents; bool isNegative; public: CountValue(unsigned r, bool neg) : Kind(CV_Register), Contents(r), isNegative(neg) {} explicit CountValue(int64_t i) : Kind(CV_Immediate), Contents(i), isNegative(i < 0) {} CountValueType getType() const { return Kind; } bool isReg() const { return Kind == CV_Register; } bool isImm() const { return Kind == CV_Immediate; } bool isNeg() const { return isNegative; } unsigned getReg() const { assert(isReg() && "Wrong CountValue accessor"); return Contents.RegNum; } void setReg(unsigned Val) { Contents.RegNum = Val; } int64_t getImm() const { assert(isImm() && "Wrong CountValue accessor"); if (isNegative) { return -Contents.ImmVal; } return Contents.ImmVal; } void setImm(int64_t Val) { Contents.ImmVal = Val; } void print(raw_ostream &OS, const TargetMachine *TM = 0) const { if (isReg()) { OS << PrintReg(getReg()); } if (isImm()) { OS << getImm(); } } }; } // end anonymous namespace INITIALIZE_PASS_BEGIN(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops", false, false) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) INITIALIZE_PASS_END(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops", false, false) /// isCompareEquals - Returns true if the instruction is a compare equals /// instruction with an immediate operand. static bool isCompareEqualsImm(const MachineInstr *MI, bool &SignedCmp) { if (MI->getOpcode() == PPC::CMPWI || MI->getOpcode() == PPC::CMPDI) { SignedCmp = true; return true; } else if (MI->getOpcode() == PPC::CMPLWI || MI->getOpcode() == PPC::CMPLDI) { SignedCmp = false; return true; } return false; } /// createPPCCTRLoops - Factory for creating /// the CTR loop phase. FunctionPass *llvm::createPPCCTRLoops() { return new PPCCTRLoops(); } bool PPCCTRLoops::runOnMachineFunction(MachineFunction &MF) { DEBUG(dbgs() << "********* PPC CTR Loops *********\n"); bool Changed = false; // get the loop information MLI = &getAnalysis(); // get the register information MRI = &MF.getRegInfo(); // the target specific instructio info. TII = MF.getTarget().getInstrInfo(); for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); I != E; ++I) { MachineLoop *L = *I; if (!L->getParentLoop()) { Changed |= convertToCTRLoop(L); } } return Changed; } /// getCanonicalInductionVariable - Check to see if the loop has a canonical /// induction variable. We check for a simple recurrence pattern - an /// integer recurrence that decrements by one each time through the loop and /// ends at zero. If so, return the phi node that corresponds to it. /// /// Based upon the similar code in LoopInfo except this code is specific to /// the machine. /// This method assumes that the IndVarSimplify pass has been run by 'opt'. /// void PPCCTRLoops::getCanonicalInductionVariable(MachineLoop *L, SmallVector &IVars, SmallVector &IOps) const { MachineBasicBlock *TopMBB = L->getTopBlock(); MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin(); assert(PI != TopMBB->pred_end() && "Loop must have more than one incoming edge!"); MachineBasicBlock *Backedge = *PI++; if (PI == TopMBB->pred_end()) return; // dead loop MachineBasicBlock *Incoming = *PI++; if (PI != TopMBB->pred_end()) return; // multiple backedges? // make sure there is one incoming and one backedge and determine which // is which. if (L->contains(Incoming)) { if (L->contains(Backedge)) return; std::swap(Incoming, Backedge); } else if (!L->contains(Backedge)) return; // Loop over all of the PHI nodes, looking for a canonical induction variable: // - The PHI node is "reg1 = PHI reg2, BB1, reg3, BB2". // - The recurrence comes from the backedge. // - the definition is an induction operatio.n for (MachineBasicBlock::iterator I = TopMBB->begin(), E = TopMBB->end(); I != E && I->isPHI(); ++I) { MachineInstr *MPhi = &*I; unsigned DefReg = MPhi->getOperand(0).getReg(); for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) { // Check each operand for the value from the backedge. MachineBasicBlock *MBB = MPhi->getOperand(i+1).getMBB(); if (L->contains(MBB)) { // operands comes from the backedge // Check if the definition is an induction operation. MachineInstr *DI = MRI->getVRegDef(MPhi->getOperand(i).getReg()); if (isInductionOperation(DI, DefReg)) { IOps.push_back(DI); IVars.push_back(MPhi); } } } } return; } /// getTripCount - Return a loop-invariant LLVM value indicating the /// number of times the loop will be executed. The trip count can /// be either a register or a constant value. If the trip-count /// cannot be determined, this returns null. /// /// We find the trip count from the phi instruction that defines the /// induction variable. We follow the links to the CMP instruction /// to get the trip count. /// /// Based upon getTripCount in LoopInfo. /// CountValue *PPCCTRLoops::getTripCount(MachineLoop *L, SmallVector &OldInsts) const { MachineBasicBlock *LastMBB = L->getExitingBlock(); // Don't generate a CTR loop if the loop has more than one exit. if (LastMBB == 0) return 0; MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator(); if (LastI->getOpcode() != PPC::BCC) return 0; // We need to make sure that this compare is defining the condition // register actually used by the terminating branch. unsigned PredReg = LastI->getOperand(1).getReg(); DEBUG(dbgs() << "Examining loop with first terminator: " << *LastI); unsigned PredCond = LastI->getOperand(0).getImm(); if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) return 0; // Check that the loop has a induction variable. SmallVector IVars, IOps; getCanonicalInductionVariable(L, IVars, IOps); for (unsigned i = 0; i < IVars.size(); ++i) { MachineInstr *IOp = IOps[i]; MachineInstr *IV_Inst = IVars[i]; // Canonical loops will end with a 'cmpwi/cmpdi cr, IV, Imm', // if Imm is 0, get the count from the PHI opnd // if Imm is -M, than M is the count // Otherwise, Imm is the count MachineOperand *IV_Opnd; const MachineOperand *InitialValue; if (!L->contains(IV_Inst->getOperand(2).getMBB())) { InitialValue = &IV_Inst->getOperand(1); IV_Opnd = &IV_Inst->getOperand(3); } else { InitialValue = &IV_Inst->getOperand(3); IV_Opnd = &IV_Inst->getOperand(1); } DEBUG(dbgs() << "Considering:\n"); DEBUG(dbgs() << " induction operation: " << *IOp); DEBUG(dbgs() << " induction variable: " << *IV_Inst); DEBUG(dbgs() << " initial value: " << *InitialValue << "\n"); // Look for the cmp instruction to determine if we // can get a useful trip count. The trip count can // be either a register or an immediate. The location // of the value depends upon the type (reg or imm). for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(IV_Opnd->getReg()), RE = MRI->reg_end(); RI != RE; ++RI) { IV_Opnd = &RI.getOperand(); bool SignedCmp; MachineInstr *MI = IV_Opnd->getParent(); if (L->contains(MI) && isCompareEqualsImm(MI, SignedCmp) && MI->getOperand(0).getReg() == PredReg) { OldInsts.push_back(MI); OldInsts.push_back(IOp); DEBUG(dbgs() << " compare: " << *MI); const MachineOperand &MO = MI->getOperand(2); assert(MO.isImm() && "IV Cmp Operand should be an immediate"); int64_t ImmVal; if (SignedCmp) ImmVal = (short) MO.getImm(); else ImmVal = MO.getImm(); const MachineInstr *IV_DefInstr = MRI->getVRegDef(IV_Opnd->getReg()); assert(L->contains(IV_DefInstr->getParent()) && "IV definition should occurs in loop"); int64_t iv_value = (short) IV_DefInstr->getOperand(2).getImm(); assert(InitialValue->isReg() && "Expecting register for init value"); unsigned InitialValueReg = InitialValue->getReg(); const MachineInstr *DefInstr = MRI->getVRegDef(InitialValueReg); // Here we need to look for an immediate load (an li or lis/ori pair). if (DefInstr && (DefInstr->getOpcode() == PPC::ORI8 || DefInstr->getOpcode() == PPC::ORI)) { int64_t start = (short) DefInstr->getOperand(2).getImm(); const MachineInstr *DefInstr2 = MRI->getVRegDef(DefInstr->getOperand(0).getReg()); if (DefInstr2 && (DefInstr2->getOpcode() == PPC::LIS8 || DefInstr2->getOpcode() == PPC::LIS)) { DEBUG(dbgs() << " initial constant: " << *DefInstr); DEBUG(dbgs() << " initial constant: " << *DefInstr2); start |= int64_t(short(DefInstr2->getOperand(1).getImm())) << 16; int64_t count = ImmVal - start; if ((count % iv_value) != 0) { return 0; } return new CountValue(count/iv_value); } } else if (DefInstr && (DefInstr->getOpcode() == PPC::LI8 || DefInstr->getOpcode() == PPC::LI)) { DEBUG(dbgs() << " initial constant: " << *DefInstr); int64_t count = ImmVal - int64_t(short(DefInstr->getOperand(1).getImm())); if ((count % iv_value) != 0) { return 0; } return new CountValue(count/iv_value); } else if (iv_value == 1 || iv_value == -1) { // We can't determine a constant starting value. if (ImmVal == 0) { return new CountValue(InitialValueReg, iv_value > 0); } // FIXME: handle non-zero end value. } // FIXME: handle non-unit increments (we might not want to introduce division // but we can handle some 2^n cases with shifts). } } } return 0; } /// isInductionOperation - return true if the operation is matches the /// pattern that defines an induction variable: /// addi iv, c /// bool PPCCTRLoops::isInductionOperation(const MachineInstr *MI, unsigned IVReg) const { return ((MI->getOpcode() == PPC::ADDI || MI->getOpcode() == PPC::ADDI8) && MI->getOperand(1).isReg() && // could be a frame index instead MI->getOperand(1).getReg() == IVReg); } /// isInvalidOperation - Return true if the operation is invalid within /// CTR loop. bool PPCCTRLoops::isInvalidLoopOperation(const MachineInstr *MI) const { // call is not allowed because the callee may use a CTR loop if (MI->getDesc().isCall()) { return true; } // check if the instruction defines a CTR loop register // (this will also catch nested CTR loops) for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.isDef() && (MO.getReg() == PPC::CTR || MO.getReg() == PPC::CTR8)) { return true; } } return false; } /// containsInvalidInstruction - Return true if the loop contains /// an instruction that inhibits the use of the CTR loop function. /// bool PPCCTRLoops::containsInvalidInstruction(MachineLoop *L) const { const std::vector Blocks = L->getBlocks(); for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { MachineBasicBlock *MBB = Blocks[i]; for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) { const MachineInstr *MI = &*MII; if (isInvalidLoopOperation(MI)) { return true; } } } return false; } /// isDead returns true if the instruction is dead /// (this was essentially copied from DeadMachineInstructionElim::isDead, but /// with special cases for inline asm, physical registers and instructions with /// side effects removed) bool PPCCTRLoops::isDead(const MachineInstr *MI, SmallVector &DeadPhis) const { // Examine each operand. for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.isDef()) { unsigned Reg = MO.getReg(); if (!MRI->use_nodbg_empty(Reg)) { // This instruction has users, but if the only user is the phi node for the // parent block, and the only use of that phi node is this instruction, then // this instruction is dead: both it (and the phi node) can be removed. MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg); if (llvm::next(I) == MRI->use_end() && I.getOperand().getParent()->isPHI()) { MachineInstr *OnePhi = I.getOperand().getParent(); for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) { const MachineOperand &OPO = OnePhi->getOperand(j); if (OPO.isReg() && OPO.isDef()) { unsigned OPReg = OPO.getReg(); MachineRegisterInfo::use_iterator nextJ; for (MachineRegisterInfo::use_iterator J = MRI->use_begin(OPReg), E = MRI->use_end(); J!=E; J=nextJ) { nextJ = llvm::next(J); MachineOperand& Use = J.getOperand(); MachineInstr *UseMI = Use.getParent(); if (MI != UseMI) { // The phi node has a user that is not MI, bail... return false; } } } } DeadPhis.push_back(OnePhi); } else { // This def has a non-debug use. Don't delete the instruction! return false; } } } } // If there are no defs with uses, the instruction is dead. return true; } void PPCCTRLoops::removeIfDead(MachineInstr *MI) { // This procedure was essentially copied from DeadMachineInstructionElim SmallVector DeadPhis; if (isDead(MI, DeadPhis)) { DEBUG(dbgs() << "CTR looping will remove: " << *MI); // It is possible that some DBG_VALUE instructions refer to this // instruction. Examine each def operand for such references; // if found, mark the DBG_VALUE as undef (but don't delete it). for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || !MO.isDef()) continue; unsigned Reg = MO.getReg(); MachineRegisterInfo::use_iterator nextI; for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg), E = MRI->use_end(); I!=E; I=nextI) { nextI = llvm::next(I); // I is invalidated by the setReg MachineOperand& Use = I.getOperand(); MachineInstr *UseMI = Use.getParent(); if (UseMI==MI) continue; if (Use.isDebug()) // this might also be a instr -> phi -> instr case // which can also be removed. UseMI->getOperand(0).setReg(0U); } } MI->eraseFromParent(); for (unsigned i = 0; i < DeadPhis.size(); ++i) { DeadPhis[i]->eraseFromParent(); } } } /// converToCTRLoop - check if the loop is a candidate for /// converting to a CTR loop. If so, then perform the /// transformation. /// /// This function works on innermost loops first. A loop can /// be converted if it is a counting loop; either a register /// value or an immediate. /// /// The code makes several assumptions about the representation /// of the loop in llvm. bool PPCCTRLoops::convertToCTRLoop(MachineLoop *L) { bool Changed = false; // Process nested loops first. for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) { Changed |= convertToCTRLoop(*I); } // If a nested loop has been converted, then we can't convert this loop. if (Changed) { return Changed; } SmallVector OldInsts; // Are we able to determine the trip count for the loop? CountValue *TripCount = getTripCount(L, OldInsts); if (TripCount == 0) { DEBUG(dbgs() << "failed to get trip count!\n"); return false; } // Does the loop contain any invalid instructions? if (containsInvalidInstruction(L)) { return false; } MachineBasicBlock *Preheader = L->getLoopPreheader(); // No preheader means there's not place for the loop instr. if (Preheader == 0) { return false; } MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator(); DebugLoc dl; if (InsertPos != Preheader->end()) dl = InsertPos->getDebugLoc(); MachineBasicBlock *LastMBB = L->getExitingBlock(); // Don't generate CTR loop if the loop has more than one exit. if (LastMBB == 0) { return false; } MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator(); // Determine the loop start. MachineBasicBlock *LoopStart = L->getTopBlock(); if (L->getLoopLatch() != LastMBB) { // When the exit and latch are not the same, use the latch block as the // start. // The loop start address is used only after the 1st iteration, and the loop // latch may contains instrs. that need to be executed after the 1st iter. LoopStart = L->getLoopLatch(); // Make sure the latch is a successor of the exit, otherwise it won't work. if (!LastMBB->isSuccessor(LoopStart)) { return false; } } // Convert the loop to a CTR loop DEBUG(dbgs() << "Change to CTR loop at "; L->dump()); MachineFunction *MF = LastMBB->getParent(); const PPCSubtarget &Subtarget = MF->getTarget().getSubtarget(); bool isPPC64 = Subtarget.isPPC64(); const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; const TargetRegisterClass *RC = isPPC64 ? G8RC : GPRC; unsigned CountReg; if (TripCount->isReg()) { // Create a copy of the loop count register. const TargetRegisterClass *SrcRC = MF->getRegInfo().getRegClass(TripCount->getReg()); CountReg = MF->getRegInfo().createVirtualRegister(RC); unsigned CopyOp = (isPPC64 && SrcRC == GPRC) ? (unsigned) PPC::EXTSW_32_64 : (unsigned) TargetOpcode::COPY; BuildMI(*Preheader, InsertPos, dl, TII->get(CopyOp), CountReg).addReg(TripCount->getReg()); if (TripCount->isNeg()) { unsigned CountReg1 = CountReg; CountReg = MF->getRegInfo().createVirtualRegister(RC); BuildMI(*Preheader, InsertPos, dl, TII->get(isPPC64 ? PPC::NEG8 : PPC::NEG), CountReg).addReg(CountReg1); } } else { assert(TripCount->isImm() && "Expecting immedate vaule for trip count"); // Put the trip count in a register for transfer into the count register. int64_t CountImm = TripCount->getImm(); assert(!TripCount->isNeg() && "Constant trip count must be positive"); CountReg = MF->getRegInfo().createVirtualRegister(RC); if (CountImm > 0xFFFF) { BuildMI(*Preheader, InsertPos, dl, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), CountReg).addImm(CountImm >> 16); unsigned CountReg1 = CountReg; CountReg = MF->getRegInfo().createVirtualRegister(RC); BuildMI(*Preheader, InsertPos, dl, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI), CountReg).addReg(CountReg1).addImm(CountImm & 0xFFFF); } else { BuildMI(*Preheader, InsertPos, dl, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), CountReg).addImm(CountImm); } } // Add the mtctr instruction to the beginning of the loop. BuildMI(*Preheader, InsertPos, dl, TII->get(isPPC64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(CountReg, TripCount->isImm() ? RegState::Kill : 0); // Make sure the loop start always has a reference in the CFG. We need to // create a BlockAddress operand to get this mechanism to work both the // MachineBasicBlock and BasicBlock objects need the flag set. LoopStart->setHasAddressTaken(); // This line is needed to set the hasAddressTaken flag on the BasicBlock // object BlockAddress::get(const_cast(LoopStart->getBasicBlock())); // Replace the loop branch with a bdnz instruction. dl = LastI->getDebugLoc(); const std::vector Blocks = L->getBlocks(); for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { MachineBasicBlock *MBB = Blocks[i]; if (MBB != Preheader) MBB->addLiveIn(isPPC64 ? PPC::CTR8 : PPC::CTR); } // The loop ends with either: // - a conditional branch followed by an unconditional branch, or // - a conditional branch to the loop start. assert(LastI->getOpcode() == PPC::BCC && "loop end must start with a BCC instruction"); // Either the BCC branches to the beginning of the loop, or it // branches out of the loop and there is an unconditional branch // to the start of the loop. MachineBasicBlock *BranchTarget = LastI->getOperand(2).getMBB(); BuildMI(*LastMBB, LastI, dl, TII->get((BranchTarget == LoopStart) ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(BranchTarget); // Conditional branch; just delete it. DEBUG(dbgs() << "Removing old branch: " << *LastI); LastMBB->erase(LastI); delete TripCount; // The induction operation (add) and the comparison (cmpwi) may now be // unneeded. If these are unneeded, then remove them. for (unsigned i = 0; i < OldInsts.size(); ++i) removeIfDead(OldInsts[i]); ++NumCTRLoops; return true; }