//===-- MipsSEISelLowering.cpp - MipsSE DAG Lowering Interface --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Subclass of MipsTargetLowering specialized for mips32/64. // //===----------------------------------------------------------------------===// #include "MipsSEISelLowering.h" #include "MipsRegisterInfo.h" #include "MipsTargetMachine.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Target/TargetInstrInfo.h" using namespace llvm; static cl::opt EnableMipsTailCalls("enable-mips-tail-calls", cl::Hidden, cl::desc("MIPS: Enable tail calls."), cl::init(false)); MipsSETargetLowering::MipsSETargetLowering(MipsTargetMachine &TM) : MipsTargetLowering(TM) { // Set up the register classes addRegisterClass(MVT::i32, &Mips::CPURegsRegClass); if (HasMips64) addRegisterClass(MVT::i64, &Mips::CPU64RegsRegClass); if (Subtarget->hasDSP()) { MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8}; for (unsigned i = 0; i < array_lengthof(VecTys); ++i) { addRegisterClass(VecTys[i], &Mips::DSPRegsRegClass); // Expand all builtin opcodes. for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc) setOperationAction(Opc, VecTys[i], Expand); setOperationAction(ISD::LOAD, VecTys[i], Legal); setOperationAction(ISD::STORE, VecTys[i], Legal); setOperationAction(ISD::BITCAST, VecTys[i], Legal); } } if (!TM.Options.UseSoftFloat) { addRegisterClass(MVT::f32, &Mips::FGR32RegClass); // When dealing with single precision only, use libcalls if (!Subtarget->isSingleFloat()) { if (HasMips64) addRegisterClass(MVT::f64, &Mips::FGR64RegClass); else addRegisterClass(MVT::f64, &Mips::AFGR64RegClass); } } setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom); setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom); setOperationAction(ISD::MULHS, MVT::i32, Custom); setOperationAction(ISD::MULHU, MVT::i32, Custom); if (HasMips64) setOperationAction(ISD::MUL, MVT::i64, Custom); setOperationAction(ISD::SDIVREM, MVT::i32, Custom); setOperationAction(ISD::UDIVREM, MVT::i32, Custom); setOperationAction(ISD::SDIVREM, MVT::i64, Custom); setOperationAction(ISD::UDIVREM, MVT::i64, Custom); setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom); setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); setOperationAction(ISD::LOAD, MVT::i32, Custom); setOperationAction(ISD::STORE, MVT::i32, Custom); setTargetDAGCombine(ISD::ADDE); setTargetDAGCombine(ISD::SUBE); computeRegisterProperties(); } const MipsTargetLowering * llvm::createMipsSETargetLowering(MipsTargetMachine &TM) { return new MipsSETargetLowering(TM); } bool MipsSETargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const { MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy; switch (SVT) { case MVT::i64: case MVT::i32: if (Fast) *Fast = true; return true; default: return false; } } SDValue MipsSETargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch(Op.getOpcode()) { case ISD::SMUL_LOHI: return lowerMulDiv(Op, MipsISD::Mult, true, true, DAG); case ISD::UMUL_LOHI: return lowerMulDiv(Op, MipsISD::Multu, true, true, DAG); case ISD::MULHS: return lowerMulDiv(Op, MipsISD::Mult, false, true, DAG); case ISD::MULHU: return lowerMulDiv(Op, MipsISD::Multu, false, true, DAG); case ISD::MUL: return lowerMulDiv(Op, MipsISD::Mult, true, false, DAG); case ISD::SDIVREM: return lowerMulDiv(Op, MipsISD::DivRem, true, true, DAG); case ISD::UDIVREM: return lowerMulDiv(Op, MipsISD::DivRemU, true, true, DAG); } return MipsTargetLowering::LowerOperation(Op, DAG); } // selectMADD - // Transforms a subgraph in CurDAG if the following pattern is found: // (addc multLo, Lo0), (adde multHi, Hi0), // where, // multHi/Lo: product of multiplication // Lo0: initial value of Lo register // Hi0: initial value of Hi register // Return true if pattern matching was successful. static bool selectMADD(SDNode *ADDENode, SelectionDAG *CurDAG) { // ADDENode's second operand must be a flag output of an ADDC node in order // for the matching to be successful. SDNode *ADDCNode = ADDENode->getOperand(2).getNode(); if (ADDCNode->getOpcode() != ISD::ADDC) return false; SDValue MultHi = ADDENode->getOperand(0); SDValue MultLo = ADDCNode->getOperand(0); SDNode *MultNode = MultHi.getNode(); unsigned MultOpc = MultHi.getOpcode(); // MultHi and MultLo must be generated by the same node, if (MultLo.getNode() != MultNode) return false; // and it must be a multiplication. if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI) return false; // MultLo amd MultHi must be the first and second output of MultNode // respectively. if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0) return false; // Transform this to a MADD only if ADDENode and ADDCNode are the only users // of the values of MultNode, in which case MultNode will be removed in later // phases. // If there exist users other than ADDENode or ADDCNode, this function returns // here, which will result in MultNode being mapped to a single MULT // instruction node rather than a pair of MULT and MADD instructions being // produced. if (!MultHi.hasOneUse() || !MultLo.hasOneUse()) return false; DebugLoc DL = ADDENode->getDebugLoc(); // Initialize accumulator. SDValue ACCIn = CurDAG->getNode(MipsISD::InsertLOHI, DL, MVT::Untyped, ADDCNode->getOperand(1), ADDENode->getOperand(1)); // create MipsMAdd(u) node MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd; SDValue MAdd = CurDAG->getNode(MultOpc, DL, MVT::Untyped, MultNode->getOperand(0),// Factor 0 MultNode->getOperand(1),// Factor 1 ACCIn); // replace uses of adde and addc here if (!SDValue(ADDCNode, 0).use_empty()) { SDValue LoIdx = CurDAG->getConstant(Mips::sub_lo, MVT::i32); SDValue LoOut = CurDAG->getNode(MipsISD::ExtractLOHI, DL, MVT::i32, MAdd, LoIdx); CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), LoOut); } if (!SDValue(ADDENode, 0).use_empty()) { SDValue HiIdx = CurDAG->getConstant(Mips::sub_hi, MVT::i32); SDValue HiOut = CurDAG->getNode(MipsISD::ExtractLOHI, DL, MVT::i32, MAdd, HiIdx); CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), HiOut); } return true; } // selectMSUB - // Transforms a subgraph in CurDAG if the following pattern is found: // (addc Lo0, multLo), (sube Hi0, multHi), // where, // multHi/Lo: product of multiplication // Lo0: initial value of Lo register // Hi0: initial value of Hi register // Return true if pattern matching was successful. static bool selectMSUB(SDNode *SUBENode, SelectionDAG *CurDAG) { // SUBENode's second operand must be a flag output of an SUBC node in order // for the matching to be successful. SDNode *SUBCNode = SUBENode->getOperand(2).getNode(); if (SUBCNode->getOpcode() != ISD::SUBC) return false; SDValue MultHi = SUBENode->getOperand(1); SDValue MultLo = SUBCNode->getOperand(1); SDNode *MultNode = MultHi.getNode(); unsigned MultOpc = MultHi.getOpcode(); // MultHi and MultLo must be generated by the same node, if (MultLo.getNode() != MultNode) return false; // and it must be a multiplication. if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI) return false; // MultLo amd MultHi must be the first and second output of MultNode // respectively. if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0) return false; // Transform this to a MSUB only if SUBENode and SUBCNode are the only users // of the values of MultNode, in which case MultNode will be removed in later // phases. // If there exist users other than SUBENode or SUBCNode, this function returns // here, which will result in MultNode being mapped to a single MULT // instruction node rather than a pair of MULT and MSUB instructions being // produced. if (!MultHi.hasOneUse() || !MultLo.hasOneUse()) return false; DebugLoc DL = SUBENode->getDebugLoc(); // Initialize accumulator. SDValue ACCIn = CurDAG->getNode(MipsISD::InsertLOHI, DL, MVT::Untyped, SUBCNode->getOperand(0), SUBENode->getOperand(0)); // create MipsSub(u) node MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub; SDValue MSub = CurDAG->getNode(MultOpc, DL, MVT::Glue, MultNode->getOperand(0),// Factor 0 MultNode->getOperand(1),// Factor 1 ACCIn); // replace uses of sube and subc here if (!SDValue(SUBCNode, 0).use_empty()) { SDValue LoIdx = CurDAG->getConstant(Mips::sub_lo, MVT::i32); SDValue LoOut = CurDAG->getNode(MipsISD::ExtractLOHI, DL, MVT::i32, MSub, LoIdx); CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), LoOut); } if (!SDValue(SUBENode, 0).use_empty()) { SDValue HiIdx = CurDAG->getConstant(Mips::sub_hi, MVT::i32); SDValue HiOut = CurDAG->getNode(MipsISD::ExtractLOHI, DL, MVT::i32, MSub, HiIdx); CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), HiOut); } return true; } static SDValue performADDECombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const MipsSubtarget *Subtarget) { if (DCI.isBeforeLegalize()) return SDValue(); if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 && selectMADD(N, &DAG)) return SDValue(N, 0); return SDValue(); } static SDValue performSUBECombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const MipsSubtarget *Subtarget) { if (DCI.isBeforeLegalize()) return SDValue(); if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 && selectMSUB(N, &DAG)) return SDValue(N, 0); return SDValue(); } SDValue MipsSETargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; switch (N->getOpcode()) { case ISD::ADDE: return performADDECombine(N, DAG, DCI, Subtarget); case ISD::SUBE: return performSUBECombine(N, DAG, DCI, Subtarget); default: return MipsTargetLowering::PerformDAGCombine(N, DCI); } } MachineBasicBlock * MipsSETargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *BB) const { switch (MI->getOpcode()) { default: return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB); case Mips::BPOSGE32_PSEUDO: return emitBPOSGE32(MI, BB); } } bool MipsSETargetLowering:: isEligibleForTailCallOptimization(const MipsCC &MipsCCInfo, unsigned NextStackOffset, const MipsFunctionInfo& FI) const { if (!EnableMipsTailCalls) return false; // Return false if either the callee or caller has a byval argument. if (MipsCCInfo.hasByValArg() || FI.hasByvalArg()) return false; // Return true if the callee's argument area is no larger than the // caller's. return NextStackOffset <= FI.getIncomingArgSize(); } void MipsSETargetLowering:: getOpndList(SmallVectorImpl &Ops, std::deque< std::pair > &RegsToPass, bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage, CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const { // T9 should contain the address of the callee function if // -reloction-model=pic or it is an indirect call. if (IsPICCall || !GlobalOrExternal) { unsigned T9Reg = IsN64 ? Mips::T9_64 : Mips::T9; RegsToPass.push_front(std::make_pair(T9Reg, Callee)); } else Ops.push_back(Callee); MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, InternalLinkage, CLI, Callee, Chain); } SDValue MipsSETargetLowering::lowerMulDiv(SDValue Op, unsigned NewOpc, bool HasLo, bool HasHi, SelectionDAG &DAG) const { EVT Ty = Op.getOperand(0).getValueType(); DebugLoc DL = Op.getDebugLoc(); SDValue Mult = DAG.getNode(NewOpc, DL, MVT::Untyped, Op.getOperand(0), Op.getOperand(1)); SDValue Lo, Hi; if (HasLo) Lo = DAG.getNode(MipsISD::ExtractLOHI, DL, Ty, Mult, DAG.getConstant(Mips::sub_lo, MVT::i32)); if (HasHi) Hi = DAG.getNode(MipsISD::ExtractLOHI, DL, Ty, Mult, DAG.getConstant(Mips::sub_hi, MVT::i32)); if (!HasLo || !HasHi) return HasLo ? Lo : Hi; SDValue Vals[] = { Lo, Hi }; return DAG.getMergeValues(Vals, 2, DL); } MachineBasicBlock * MipsSETargetLowering:: emitBPOSGE32(MachineInstr *MI, MachineBasicBlock *BB) const{ // $bb: // bposge32_pseudo $vr0 // => // $bb: // bposge32 $tbb // $fbb: // li $vr2, 0 // b $sink // $tbb: // li $vr1, 1 // $sink: // $vr0 = phi($vr2, $fbb, $vr1, $tbb) MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); const TargetRegisterClass *RC = &Mips::CPURegsRegClass; DebugLoc DL = MI->getDebugLoc(); const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction::iterator It = llvm::next(MachineFunction::iterator(BB)); MachineFunction *F = BB->getParent(); MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *Sink = F->CreateMachineBasicBlock(LLVM_BB); F->insert(It, FBB); F->insert(It, TBB); F->insert(It, Sink); // Transfer the remainder of BB and its successor edges to Sink. Sink->splice(Sink->begin(), BB, llvm::next(MachineBasicBlock::iterator(MI)), BB->end()); Sink->transferSuccessorsAndUpdatePHIs(BB); // Add successors. BB->addSuccessor(FBB); BB->addSuccessor(TBB); FBB->addSuccessor(Sink); TBB->addSuccessor(Sink); // Insert the real bposge32 instruction to $BB. BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB); // Fill $FBB. unsigned VR2 = RegInfo.createVirtualRegister(RC); BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2) .addReg(Mips::ZERO).addImm(0); BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink); // Fill $TBB. unsigned VR1 = RegInfo.createVirtualRegister(RC); BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1) .addReg(Mips::ZERO).addImm(1); // Insert phi function to $Sink. BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI), MI->getOperand(0).getReg()) .addReg(VR2).addMBB(FBB).addReg(VR1).addMBB(TBB); MI->eraseFromParent(); // The pseudo instruction is gone now. return Sink; }