//===-- llvm/CallingConvLower.cpp - Calling Convention lowering -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Hexagon_CCState class, used for lowering and // implementing calling conventions. Adapted from the machine independent // version of the class (CCState) but this handles calls to varargs functions // //===----------------------------------------------------------------------===// #include "HexagonCallingConvLower.h" #include "Hexagon.h" #include "llvm/DataLayout.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" using namespace llvm; Hexagon_CCState::Hexagon_CCState(CallingConv::ID CC, bool isVarArg, const TargetMachine &tm, SmallVector &locs, LLVMContext &c) : CallingConv(CC), IsVarArg(isVarArg), TM(tm), TRI(*TM.getRegisterInfo()), Locs(locs), Context(c) { // No stack is used. StackOffset = 0; UsedRegs.resize((TRI.getNumRegs()+31)/32); } // HandleByVal - Allocate a stack slot large enough to pass an argument by // value. The size and alignment information of the argument is encoded in its // parameter attribute. void Hexagon_CCState::HandleByVal(unsigned ValNo, EVT ValVT, EVT LocVT, CCValAssign::LocInfo LocInfo, int MinSize, int MinAlign, ISD::ArgFlagsTy ArgFlags) { unsigned Align = ArgFlags.getByValAlign(); unsigned Size = ArgFlags.getByValSize(); if (MinSize > (int)Size) Size = MinSize; if (MinAlign > (int)Align) Align = MinAlign; unsigned Offset = AllocateStack(Size, Align); addLoc(CCValAssign::getMem(ValNo, ValVT.getSimpleVT(), Offset, LocVT.getSimpleVT(), LocInfo)); } /// MarkAllocated - Mark a register and all of its aliases as allocated. void Hexagon_CCState::MarkAllocated(unsigned Reg) { for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI) UsedRegs[*AI/32] |= 1 << (*AI&31); } /// AnalyzeFormalArguments - Analyze an ISD::FORMAL_ARGUMENTS node, /// incorporating info about the formals into this state. void Hexagon_CCState::AnalyzeFormalArguments(const SmallVectorImpl &Ins, Hexagon_CCAssignFn Fn, unsigned SretValueInRegs) { unsigned NumArgs = Ins.size(); unsigned i = 0; // If the function returns a small struct in registers, skip // over the first (dummy) argument. if (SretValueInRegs != 0) { ++i; } for (; i != NumArgs; ++i) { EVT ArgVT = Ins[i].VT; ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this, 0, 0, false)) { dbgs() << "Formal argument #" << i << " has unhandled type " << ArgVT.getEVTString() << "\n"; abort(); } } } /// AnalyzeReturn - Analyze the returned values of an ISD::RET node, /// incorporating info about the result values into this state. void Hexagon_CCState::AnalyzeReturn(const SmallVectorImpl &Outs, Hexagon_CCAssignFn Fn, unsigned SretValueInRegs) { // For Hexagon, Return small structures in registers. if (SretValueInRegs != 0) { if (SretValueInRegs <= 32) { unsigned Reg = Hexagon::R0; addLoc(CCValAssign::getReg(0, MVT::i32, Reg, MVT::i32, CCValAssign::Full)); return; } if (SretValueInRegs <= 64) { unsigned Reg = Hexagon::D0; addLoc(CCValAssign::getReg(0, MVT::i64, Reg, MVT::i64, CCValAssign::Full)); return; } } // Determine which register each value should be copied into. for (unsigned i = 0, e = Outs.size(); i != e; ++i) { EVT VT = Outs[i].VT; ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this, -1, -1, false)){ dbgs() << "Return operand #" << i << " has unhandled type " << VT.getEVTString() << "\n"; abort(); } } } /// AnalyzeCallOperands - Analyze an ISD::CALL node, incorporating info /// about the passed values into this state. void Hexagon_CCState::AnalyzeCallOperands(const SmallVectorImpl &Outs, Hexagon_CCAssignFn Fn, int NonVarArgsParams, unsigned SretValueSize) { unsigned NumOps = Outs.size(); unsigned i = 0; // If the called function returns a small struct in registers, skip // the first actual parameter. We do not want to pass a pointer to // the stack location. if (SretValueSize != 0) { ++i; } for (; i != NumOps; ++i) { EVT ArgVT = Outs[i].VT; ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this, NonVarArgsParams, i+1, false)) { dbgs() << "Call operand #" << i << " has unhandled type " << ArgVT.getEVTString() << "\n"; abort(); } } } /// AnalyzeCallOperands - Same as above except it takes vectors of types /// and argument flags. void Hexagon_CCState::AnalyzeCallOperands(SmallVectorImpl &ArgVTs, SmallVectorImpl &Flags, Hexagon_CCAssignFn Fn) { unsigned NumOps = ArgVTs.size(); for (unsigned i = 0; i != NumOps; ++i) { EVT ArgVT = ArgVTs[i]; ISD::ArgFlagsTy ArgFlags = Flags[i]; if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this, -1, -1, false)) { dbgs() << "Call operand #" << i << " has unhandled type " << ArgVT.getEVTString() << "\n"; abort(); } } } /// AnalyzeCallResult - Analyze the return values of an ISD::CALL node, /// incorporating info about the passed values into this state. void Hexagon_CCState::AnalyzeCallResult(const SmallVectorImpl &Ins, Hexagon_CCAssignFn Fn, unsigned SretValueInRegs) { for (unsigned i = 0, e = Ins.size(); i != e; ++i) { EVT VT = Ins[i].VT; ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); if (Fn(i, VT, VT, CCValAssign::Full, Flags, *this, -1, -1, false)) { dbgs() << "Call result #" << i << " has unhandled type " << VT.getEVTString() << "\n"; abort(); } } } /// AnalyzeCallResult - Same as above except it's specialized for calls which /// produce a single value. void Hexagon_CCState::AnalyzeCallResult(EVT VT, Hexagon_CCAssignFn Fn) { if (Fn(0, VT, VT, CCValAssign::Full, ISD::ArgFlagsTy(), *this, -1, -1, false)) { dbgs() << "Call result has unhandled type " << VT.getEVTString() << "\n"; abort(); } }