//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the pass that transforms the ARM machine instructions into // relocatable machine code. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "jit" #include "ARM.h" #include "ARMAddressingModes.h" #include "ARMConstantPoolValue.h" #include "ARMInstrInfo.h" #include "ARMRelocations.h" #include "ARMSubtarget.h" #include "ARMTargetMachine.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/PassManager.h" #include "llvm/CodeGen/JITCodeEmitter.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #ifndef NDEBUG #include #endif using namespace llvm; STATISTIC(NumEmitted, "Number of machine instructions emitted"); namespace { class ARMCodeEmitter : public MachineFunctionPass { ARMJITInfo *JTI; const ARMInstrInfo *II; const TargetData *TD; const ARMSubtarget *Subtarget; TargetMachine &TM; JITCodeEmitter &MCE; MachineModuleInfo *MMI; const std::vector *MCPEs; const std::vector *MJTEs; bool IsPIC; bool IsThumb; void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } static char ID; public: ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce) : MachineFunctionPass(ID), JTI(0), II((const ARMInstrInfo *)tm.getInstrInfo()), TD(tm.getTargetData()), TM(tm), MCE(mce), MCPEs(0), MJTEs(0), IsPIC(TM.getRelocationModel() == Reloc::PIC_), IsThumb(false) {} /// getBinaryCodeForInstr - This function, generated by the /// CodeEmitterGenerator using TableGen, produces the binary encoding for /// machine instructions. unsigned getBinaryCodeForInstr(const MachineInstr &MI) const; bool runOnMachineFunction(MachineFunction &MF); virtual const char *getPassName() const { return "ARM Machine Code Emitter"; } void emitInstruction(const MachineInstr &MI); private: void emitWordLE(unsigned Binary); void emitDWordLE(uint64_t Binary); void emitConstPoolInstruction(const MachineInstr &MI); void emitMOVi32immInstruction(const MachineInstr &MI); void emitMOVi2piecesInstruction(const MachineInstr &MI); void emitLEApcrelJTInstruction(const MachineInstr &MI); void emitPseudoMoveInstruction(const MachineInstr &MI); void addPCLabel(unsigned LabelID); void emitPseudoInstruction(const MachineInstr &MI); unsigned getMachineSoRegOpValue(const MachineInstr &MI, const TargetInstrDesc &TID, const MachineOperand &MO, unsigned OpIdx); unsigned getMachineSoImmOpValue(unsigned SoImm); unsigned getAddrModeSBit(const MachineInstr &MI, const TargetInstrDesc &TID) const; void emitDataProcessingInstruction(const MachineInstr &MI, unsigned ImplicitRd = 0, unsigned ImplicitRn = 0); void emitLoadStoreInstruction(const MachineInstr &MI, unsigned ImplicitRd = 0, unsigned ImplicitRn = 0); void emitMiscLoadStoreInstruction(const MachineInstr &MI, unsigned ImplicitRn = 0); void emitLoadStoreMultipleInstruction(const MachineInstr &MI); void emitMulFrmInstruction(const MachineInstr &MI); void emitExtendInstruction(const MachineInstr &MI); void emitMiscArithInstruction(const MachineInstr &MI); void emitSaturateInstruction(const MachineInstr &MI); void emitBranchInstruction(const MachineInstr &MI); void emitInlineJumpTable(unsigned JTIndex); void emitMiscBranchInstruction(const MachineInstr &MI); void emitVFPArithInstruction(const MachineInstr &MI); void emitVFPConversionInstruction(const MachineInstr &MI); void emitVFPLoadStoreInstruction(const MachineInstr &MI); void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI); void emitNEONLaneInstruction(const MachineInstr &MI); void emitNEONDupInstruction(const MachineInstr &MI); void emitNEON1RegModImmInstruction(const MachineInstr &MI); void emitNEON2RegInstruction(const MachineInstr &MI); void emitNEON3RegInstruction(const MachineInstr &MI); /// getMachineOpValue - Return binary encoding of operand. If the machine /// operand requires relocation, record the relocation and return zero. unsigned getMachineOpValue(const MachineInstr &MI, const MachineOperand &MO) const; unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) const { return getMachineOpValue(MI, MI.getOperand(OpIdx)); } // FIXME: The legacy JIT ARMCodeEmitter doesn't rely on the the // TableGen'erated getBinaryCodeForInstr() function to encode any // operand values, instead querying getMachineOpValue() directly for // each operand it needs to encode. Thus, any of the new encoder // helper functions can simply return 0 as the values the return // are already handled elsewhere. They are placeholders to allow this // encoder to continue to function until the MC encoder is sufficiently // far along that this one can be eliminated entirely. unsigned NEONThumb2DataIPostEncoder(const MachineInstr &MI, unsigned Val) const { return 0; } unsigned NEONThumb2LoadStorePostEncoder(const MachineInstr &MI,unsigned Val) const { return 0; } unsigned NEONThumb2DupPostEncoder(const MachineInstr &MI,unsigned Val) const { return 0; } unsigned VFPThumb2PostEncoder(const MachineInstr&MI, unsigned Val) const { return 0; } unsigned getAdrLabelOpValue(const MachineInstr &MI, unsigned Op) const { return 0; } unsigned getThumbAdrLabelOpValue(const MachineInstr &MI, unsigned Op) const { return 0; } unsigned getThumbBLTargetOpValue(const MachineInstr &MI, unsigned Op) const { return 0; } unsigned getThumbBLXTargetOpValue(const MachineInstr &MI, unsigned Op) const { return 0; } unsigned getThumbBRTargetOpValue(const MachineInstr &MI, unsigned Op) const { return 0; } unsigned getThumbBCCTargetOpValue(const MachineInstr &MI, unsigned Op) const { return 0; } unsigned getThumbCBTargetOpValue(const MachineInstr &MI, unsigned Op) const { return 0; } unsigned getBranchTargetOpValue(const MachineInstr &MI, unsigned Op) const { return 0; } unsigned getUnconditionalBranchTargetOpValue(const MachineInstr &MI, unsigned Op) const { return 0; } unsigned getARMBranchTargetOpValue(const MachineInstr &MI, unsigned Op) const { return 0; } unsigned getCCOutOpValue(const MachineInstr &MI, unsigned Op) const { return 0; } unsigned getSOImmOpValue(const MachineInstr &MI, unsigned Op) const { return 0; } unsigned getT2SOImmOpValue(const MachineInstr &MI, unsigned Op) const { return 0; } unsigned getSORegOpValue(const MachineInstr &MI, unsigned Op) const { return 0; } unsigned getThumbAddrModeRegRegOpValue(const MachineInstr &MI, unsigned Op) const { return 0; } unsigned getT2AddrModeImm12OpValue(const MachineInstr &MI, unsigned Op) const { return 0; } unsigned getT2AddrModeImm8OpValue(const MachineInstr &MI, unsigned Op) const { return 0; } unsigned getT2AddrModeImm8s4OpValue(const MachineInstr &MI, unsigned Op) const { return 0; } unsigned getT2AddrModeImm8OffsetOpValue(const MachineInstr &MI, unsigned Op) const { return 0; } unsigned getT2AddrModeImm12OffsetOpValue(const MachineInstr &MI,unsigned Op) const { return 0; } unsigned getT2AddrModeSORegOpValue(const MachineInstr &MI, unsigned Op) const { return 0; } unsigned getT2SORegOpValue(const MachineInstr &MI, unsigned Op) const { return 0; } unsigned getRotImmOpValue(const MachineInstr &MI, unsigned Op) const { return 0; } unsigned getImmMinusOneOpValue(const MachineInstr &MI, unsigned Op) const { return 0; } unsigned getT2AdrLabelOpValue(const MachineInstr &MI, unsigned Op) const { return 0; } unsigned getAddrMode6AddressOpValue(const MachineInstr &MI, unsigned Op) const { return 0; } unsigned getAddrMode6OneLane32AddressOpValue(const MachineInstr &MI, unsigned Op) const { return 0; } unsigned getAddrMode6DupAddressOpValue(const MachineInstr &MI, unsigned Op) const { return 0; } unsigned getAddrMode6OffsetOpValue(const MachineInstr &MI, unsigned Op) const { return 0; } unsigned getBitfieldInvertedMaskOpValue(const MachineInstr &MI, unsigned Op) const { return 0; } unsigned getMsbOpValue(const MachineInstr &MI, unsigned Op) const { return 0; } uint32_t getLdStmModeOpValue(const MachineInstr &MI, unsigned OpIdx) const {return 0; } uint32_t getLdStSORegOpValue(const MachineInstr &MI, unsigned OpIdx) const { return 0; } unsigned getAddrModeImm12OpValue(const MachineInstr &MI, unsigned Op) const { // {17-13} = reg // {12} = (U)nsigned (add == '1', sub == '0') // {11-0} = imm12 const MachineOperand &MO = MI.getOperand(Op); const MachineOperand &MO1 = MI.getOperand(Op + 1); if (!MO.isReg()) { emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry); return 0; } unsigned Reg = getARMRegisterNumbering(MO.getReg()); int32_t Imm12 = MO1.getImm(); uint32_t Binary; Binary = Imm12 & 0xfff; if (Imm12 >= 0) Binary |= (1 << 12); Binary |= (Reg << 13); return Binary; } unsigned getHiLo16ImmOpValue(const MachineInstr &MI, unsigned Op) const { return 0; } uint32_t getAddrMode2OpValue(const MachineInstr &MI, unsigned OpIdx) const { return 0;} uint32_t getAddrMode2OffsetOpValue(const MachineInstr &MI, unsigned OpIdx) const { return 0;} uint32_t getAddrMode3OffsetOpValue(const MachineInstr &MI, unsigned OpIdx) const { return 0;} uint32_t getAddrMode3OpValue(const MachineInstr &MI, unsigned Op) const { return 0; } uint32_t getAddrModeThumbSPOpValue(const MachineInstr &MI, unsigned Op) const { return 0; } uint32_t getAddrModeSOpValue(const MachineInstr &MI, unsigned Op) const { return 0; } uint32_t getAddrModeISOpValue(const MachineInstr &MI, unsigned Op) const { return 0; } uint32_t getAddrModePCOpValue(const MachineInstr &MI, unsigned Op) const { return 0; } uint32_t getAddrMode5OpValue(const MachineInstr &MI, unsigned Op) const { // {17-13} = reg // {12} = (U)nsigned (add == '1', sub == '0') // {11-0} = imm12 const MachineOperand &MO = MI.getOperand(Op); const MachineOperand &MO1 = MI.getOperand(Op + 1); if (!MO.isReg()) { emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry); return 0; } unsigned Reg = getARMRegisterNumbering(MO.getReg()); int32_t Imm12 = MO1.getImm(); // Special value for #-0 if (Imm12 == INT32_MIN) Imm12 = 0; // Immediate is always encoded as positive. The 'U' bit controls add vs // sub. bool isAdd = true; if (Imm12 < 0) { Imm12 = -Imm12; isAdd = false; } uint32_t Binary = Imm12 & 0xfff; if (isAdd) Binary |= (1 << 12); Binary |= (Reg << 13); return Binary; } unsigned getNEONVcvtImm32OpValue(const MachineInstr &MI, unsigned Op) const { return 0; } unsigned getRegisterListOpValue(const MachineInstr &MI, unsigned Op) const { return 0; } unsigned getShiftRight8Imm(const MachineInstr &MI, unsigned Op) const { return 0; } unsigned getShiftRight16Imm(const MachineInstr &MI, unsigned Op) const { return 0; } unsigned getShiftRight32Imm(const MachineInstr &MI, unsigned Op) const { return 0; } unsigned getShiftRight64Imm(const MachineInstr &MI, unsigned Op) const { return 0; } /// getMovi32Value - Return binary encoding of operand for movw/movt. If the /// machine operand requires relocation, record the relocation and return /// zero. unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO, unsigned Reloc); /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value. /// unsigned getShiftOp(unsigned Imm) const ; /// Routines that handle operands which add machine relocations which are /// fixed up by the relocation stage. void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc, bool MayNeedFarStub, bool Indirect, intptr_t ACPV = 0) const; void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const; void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const; void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const; void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc, intptr_t JTBase = 0) const; }; } char ARMCodeEmitter::ID = 0; /// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM /// code to the specified MCE object. FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM, JITCodeEmitter &JCE) { return new ARMCodeEmitter(TM, JCE); } bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) { assert((MF.getTarget().getRelocationModel() != Reloc::Default || MF.getTarget().getRelocationModel() != Reloc::Static) && "JIT relocation model must be set to static or default!"); JTI = ((ARMTargetMachine &)MF.getTarget()).getJITInfo(); II = ((const ARMTargetMachine &)MF.getTarget()).getInstrInfo(); TD = ((const ARMTargetMachine &)MF.getTarget()).getTargetData(); Subtarget = &TM.getSubtarget(); MCPEs = &MF.getConstantPool()->getConstants(); MJTEs = 0; if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables(); IsPIC = TM.getRelocationModel() == Reloc::PIC_; IsThumb = MF.getInfo()->isThumbFunction(); JTI->Initialize(MF, IsPIC); MMI = &getAnalysis(); MCE.setModuleInfo(MMI); do { DEBUG(errs() << "JITTing function '" << MF.getFunction()->getName() << "'\n"); MCE.startFunction(MF); for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); MBB != E; ++MBB) { MCE.StartMachineBasicBlock(MBB); for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end(); I != E; ++I) emitInstruction(*I); } } while (MCE.finishFunction(MF)); return false; } /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value. /// unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const { switch (ARM_AM::getAM2ShiftOpc(Imm)) { default: llvm_unreachable("Unknown shift opc!"); case ARM_AM::asr: return 2; case ARM_AM::lsl: return 0; case ARM_AM::lsr: return 1; case ARM_AM::ror: case ARM_AM::rrx: return 3; } return 0; } /// getMovi32Value - Return binary encoding of operand for movw/movt. If the /// machine operand requires relocation, record the relocation and return zero. unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI, const MachineOperand &MO, unsigned Reloc) { assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw)) && "Relocation to this function should be for movt or movw"); if (MO.isImm()) return static_cast(MO.getImm()); else if (MO.isGlobal()) emitGlobalAddress(MO.getGlobal(), Reloc, true, false); else if (MO.isSymbol()) emitExternalSymbolAddress(MO.getSymbolName(), Reloc); else if (MO.isMBB()) emitMachineBasicBlock(MO.getMBB(), Reloc); else { #ifndef NDEBUG errs() << MO; #endif llvm_unreachable("Unsupported operand type for movw/movt"); } return 0; } /// getMachineOpValue - Return binary encoding of operand. If the machine /// operand requires relocation, record the relocation and return zero. unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI, const MachineOperand &MO) const { if (MO.isReg()) return getARMRegisterNumbering(MO.getReg()); else if (MO.isImm()) return static_cast(MO.getImm()); else if (MO.isGlobal()) emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false); else if (MO.isSymbol()) emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch); else if (MO.isCPI()) { const TargetInstrDesc &TID = MI.getDesc(); // For VFP load, the immediate offset is multiplied by 4. unsigned Reloc = ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm) ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry; emitConstPoolAddress(MO.getIndex(), Reloc); } else if (MO.isJTI()) emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative); else if (MO.isMBB()) emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch); else llvm_unreachable("Unable to encode MachineOperand!"); return 0; } /// emitGlobalAddress - Emit the specified address to the code stream. /// void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc, bool MayNeedFarStub, bool Indirect, intptr_t ACPV) const { MachineRelocation MR = Indirect ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc, const_cast(GV), ACPV, MayNeedFarStub) : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc, const_cast(GV), ACPV, MayNeedFarStub); MCE.addRelocation(MR); } /// emitExternalSymbolAddress - Arrange for the address of an external symbol to /// be emitted to the current location in the function, and allow it to be PC /// relative. void ARMCodeEmitter:: emitExternalSymbolAddress(const char *ES, unsigned Reloc) const { MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(), Reloc, ES)); } /// emitConstPoolAddress - Arrange for the address of an constant pool /// to be emitted to the current location in the function, and allow it to be PC /// relative. void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const { // Tell JIT emitter we'll resolve the address. MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(), Reloc, CPI, 0, true)); } /// emitJumpTableAddress - Arrange for the address of a jump table to /// be emitted to the current location in the function, and allow it to be PC /// relative. void ARMCodeEmitter:: emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const { MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(), Reloc, JTIndex, 0, true)); } /// emitMachineBasicBlock - Emit the specified address basic block. void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc, intptr_t JTBase) const { MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(), Reloc, BB, JTBase)); } void ARMCodeEmitter::emitWordLE(unsigned Binary) { DEBUG(errs() << " 0x"; errs().write_hex(Binary) << "\n"); MCE.emitWordLE(Binary); } void ARMCodeEmitter::emitDWordLE(uint64_t Binary) { DEBUG(errs() << " 0x"; errs().write_hex(Binary) << "\n"); MCE.emitDWordLE(Binary); } void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) { DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI); MCE.processDebugLoc(MI.getDebugLoc(), true); ++NumEmitted; // Keep track of the # of mi's emitted switch (MI.getDesc().TSFlags & ARMII::FormMask) { default: { llvm_unreachable("Unhandled instruction encoding format!"); break; } case ARMII::MiscFrm: if (MI.getOpcode() == ARM::LEApcrelJT) { // Materialize jumptable address. emitLEApcrelJTInstruction(MI); break; } llvm_unreachable("Unhandled instruction encoding!"); break; case ARMII::Pseudo: emitPseudoInstruction(MI); break; case ARMII::DPFrm: case ARMII::DPSoRegFrm: emitDataProcessingInstruction(MI); break; case ARMII::LdFrm: case ARMII::StFrm: emitLoadStoreInstruction(MI); break; case ARMII::LdMiscFrm: case ARMII::StMiscFrm: emitMiscLoadStoreInstruction(MI); break; case ARMII::LdStMulFrm: emitLoadStoreMultipleInstruction(MI); break; case ARMII::MulFrm: emitMulFrmInstruction(MI); break; case ARMII::ExtFrm: emitExtendInstruction(MI); break; case ARMII::ArithMiscFrm: emitMiscArithInstruction(MI); break; case ARMII::SatFrm: emitSaturateInstruction(MI); break; case ARMII::BrFrm: emitBranchInstruction(MI); break; case ARMII::BrMiscFrm: emitMiscBranchInstruction(MI); break; // VFP instructions. case ARMII::VFPUnaryFrm: case ARMII::VFPBinaryFrm: emitVFPArithInstruction(MI); break; case ARMII::VFPConv1Frm: case ARMII::VFPConv2Frm: case ARMII::VFPConv3Frm: case ARMII::VFPConv4Frm: case ARMII::VFPConv5Frm: emitVFPConversionInstruction(MI); break; case ARMII::VFPLdStFrm: emitVFPLoadStoreInstruction(MI); break; case ARMII::VFPLdStMulFrm: emitVFPLoadStoreMultipleInstruction(MI); break; // NEON instructions. case ARMII::NGetLnFrm: case ARMII::NSetLnFrm: emitNEONLaneInstruction(MI); break; case ARMII::NDupFrm: emitNEONDupInstruction(MI); break; case ARMII::N1RegModImmFrm: emitNEON1RegModImmInstruction(MI); break; case ARMII::N2RegFrm: emitNEON2RegInstruction(MI); break; case ARMII::N3RegFrm: emitNEON3RegInstruction(MI); break; } MCE.processDebugLoc(MI.getDebugLoc(), false); } void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) { unsigned CPI = MI.getOperand(0).getImm(); // CP instruction index. unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index. const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex]; // Remember the CONSTPOOL_ENTRY address for later relocation. JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue()); // Emit constpool island entry. In most cases, the actual values will be // resolved and relocated after code emission. if (MCPE.isMachineConstantPoolEntry()) { ARMConstantPoolValue *ACPV = static_cast(MCPE.Val.MachineCPVal); DEBUG(errs() << " ** ARM constant pool #" << CPI << " @ " << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n'); assert(ACPV->isGlobalValue() && "unsupported constant pool value"); const GlobalValue *GV = ACPV->getGV(); if (GV) { Reloc::Model RelocM = TM.getRelocationModel(); emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry, isa(GV), Subtarget->GVIsIndirectSymbol(GV, RelocM), (intptr_t)ACPV); } else { emitExternalSymbolAddress(ACPV->getSymbol(), ARM::reloc_arm_absolute); } emitWordLE(0); } else { const Constant *CV = MCPE.Val.ConstVal; DEBUG({ errs() << " ** Constant pool #" << CPI << " @ " << (void*)MCE.getCurrentPCValue() << " "; if (const Function *F = dyn_cast(CV)) errs() << F->getName(); else errs() << *CV; errs() << '\n'; }); if (const GlobalValue *GV = dyn_cast(CV)) { emitGlobalAddress(GV, ARM::reloc_arm_absolute, isa(GV), false); emitWordLE(0); } else if (const ConstantInt *CI = dyn_cast(CV)) { uint32_t Val = uint32_t(*CI->getValue().getRawData()); emitWordLE(Val); } else if (const ConstantFP *CFP = dyn_cast(CV)) { if (CFP->getType()->isFloatTy()) emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); else if (CFP->getType()->isDoubleTy()) emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); else { llvm_unreachable("Unable to handle this constantpool entry!"); } } else { llvm_unreachable("Unable to handle this constantpool entry!"); } } } void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) { const MachineOperand &MO0 = MI.getOperand(0); const MachineOperand &MO1 = MI.getOperand(1); // Emit the 'movw' instruction. unsigned Binary = 0x30 << 20; // mov: Insts{27-20} = 0b00110000 unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF; // Set the conditional execution predicate. Binary |= II->getPredicate(&MI) << ARMII::CondShift; // Encode Rd. Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift; // Encode imm16 as imm4:imm12 Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12 Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4 emitWordLE(Binary); unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16; // Emit the 'movt' instruction. Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100 // Set the conditional execution predicate. Binary |= II->getPredicate(&MI) << ARMII::CondShift; // Encode Rd. Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift; // Encode imm16 as imm4:imm1, same as movw above. Binary |= Hi16 & 0xFFF; Binary |= ((Hi16 >> 12) & 0xF) << 16; emitWordLE(Binary); } void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) { const MachineOperand &MO0 = MI.getOperand(0); const MachineOperand &MO1 = MI.getOperand(1); assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) && "Not a valid so_imm value!"); unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm()); unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm()); // Emit the 'mov' instruction. unsigned Binary = 0xd << 21; // mov: Insts{24-21} = 0b1101 // Set the conditional execution predicate. Binary |= II->getPredicate(&MI) << ARMII::CondShift; // Encode Rd. Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift; // Encode so_imm. // Set bit I(25) to identify this is the immediate form of Binary |= 1 << ARMII::I_BitShift; Binary |= getMachineSoImmOpValue(V1); emitWordLE(Binary); // Now the 'orr' instruction. Binary = 0xc << 21; // orr: Insts{24-21} = 0b1100 // Set the conditional execution predicate. Binary |= II->getPredicate(&MI) << ARMII::CondShift; // Encode Rd. Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift; // Encode Rn. Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift; // Encode so_imm. // Set bit I(25) to identify this is the immediate form of Binary |= 1 << ARMII::I_BitShift; Binary |= getMachineSoImmOpValue(V2); emitWordLE(Binary); } void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) { // It's basically add r, pc, (LJTI - $+8) const TargetInstrDesc &TID = MI.getDesc(); // Emit the 'add' instruction. unsigned Binary = 0x4 << 21; // add: Insts{24-21} = 0b0100 // Set the conditional execution predicate Binary |= II->getPredicate(&MI) << ARMII::CondShift; // Encode S bit if MI modifies CPSR. Binary |= getAddrModeSBit(MI, TID); // Encode Rd. Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift; // Encode Rn which is PC. Binary |= getARMRegisterNumbering(ARM::PC) << ARMII::RegRnShift; // Encode the displacement. Binary |= 1 << ARMII::I_BitShift; emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base); emitWordLE(Binary); } void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) { unsigned Opcode = MI.getDesc().Opcode; // Part of binary is determined by TableGn. unsigned Binary = getBinaryCodeForInstr(MI); // Set the conditional execution predicate Binary |= II->getPredicate(&MI) << ARMII::CondShift; // Encode S bit if MI modifies CPSR. if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag) Binary |= 1 << ARMII::S_BitShift; // Encode register def if there is one. Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift; // Encode the shift operation. switch (Opcode) { default: break; case ARM::RRX: // rrx Binary |= 0x6 << 4; break; case ARM::MOVsrl_flag: // lsr #1 Binary |= (0x2 << 4) | (1 << 7); break; case ARM::MOVsra_flag: // asr #1 Binary |= (0x4 << 4) | (1 << 7); break; } // Encode register Rm. Binary |= getMachineOpValue(MI, 1); emitWordLE(Binary); } void ARMCodeEmitter::addPCLabel(unsigned LabelID) { DEBUG(errs() << " ** LPC" << LabelID << " @ " << (void*)MCE.getCurrentPCValue() << '\n'); JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue()); } void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) { unsigned Opcode = MI.getDesc().Opcode; switch (Opcode) { default: llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction"); case ARM::BX_CALL: case ARM::BMOVPCRX_CALL: case ARM::BXr9_CALL: case ARM::BMOVPCRXr9_CALL: { // First emit mov lr, pc unsigned Binary = 0x01a0e00f; Binary |= II->getPredicate(&MI) << ARMII::CondShift; emitWordLE(Binary); // and then emit the branch. emitMiscBranchInstruction(MI); break; } case TargetOpcode::INLINEASM: { // We allow inline assembler nodes with empty bodies - they can // implicitly define registers, which is ok for JIT. if (MI.getOperand(0).getSymbolName()[0]) { report_fatal_error("JIT does not support inline asm!"); } break; } case TargetOpcode::PROLOG_LABEL: case TargetOpcode::EH_LABEL: MCE.emitLabel(MI.getOperand(0).getMCSymbol()); break; case TargetOpcode::IMPLICIT_DEF: case TargetOpcode::KILL: // Do nothing. break; case ARM::CONSTPOOL_ENTRY: emitConstPoolInstruction(MI); break; case ARM::PICADD: { // Remember of the address of the PC label for relocation later. addPCLabel(MI.getOperand(2).getImm()); // PICADD is just an add instruction that implicitly read pc. emitDataProcessingInstruction(MI, 0, ARM::PC); break; } case ARM::PICLDR: case ARM::PICLDRB: case ARM::PICSTR: case ARM::PICSTRB: { // Remember of the address of the PC label for relocation later. addPCLabel(MI.getOperand(2).getImm()); // These are just load / store instructions that implicitly read pc. emitLoadStoreInstruction(MI, 0, ARM::PC); break; } case ARM::PICLDRH: case ARM::PICLDRSH: case ARM::PICLDRSB: case ARM::PICSTRH: { // Remember of the address of the PC label for relocation later. addPCLabel(MI.getOperand(2).getImm()); // These are just load / store instructions that implicitly read pc. emitMiscLoadStoreInstruction(MI, ARM::PC); break; } case ARM::MOVi32imm: // Two instructions to materialize a constant. if (Subtarget->hasV6T2Ops()) emitMOVi32immInstruction(MI); else emitMOVi2piecesInstruction(MI); break; case ARM::LEApcrelJT: // Materialize jumptable address. emitLEApcrelJTInstruction(MI); break; case ARM::RRX: case ARM::MOVsrl_flag: case ARM::MOVsra_flag: emitPseudoMoveInstruction(MI); break; } } unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI, const TargetInstrDesc &TID, const MachineOperand &MO, unsigned OpIdx) { unsigned Binary = getMachineOpValue(MI, MO); const MachineOperand &MO1 = MI.getOperand(OpIdx + 1); const MachineOperand &MO2 = MI.getOperand(OpIdx + 2); ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm()); // Encode the shift opcode. unsigned SBits = 0; unsigned Rs = MO1.getReg(); if (Rs) { // Set shift operand (bit[7:4]). // LSL - 0001 // LSR - 0011 // ASR - 0101 // ROR - 0111 // RRX - 0110 and bit[11:8] clear. switch (SOpc) { default: llvm_unreachable("Unknown shift opc!"); case ARM_AM::lsl: SBits = 0x1; break; case ARM_AM::lsr: SBits = 0x3; break; case ARM_AM::asr: SBits = 0x5; break; case ARM_AM::ror: SBits = 0x7; break; case ARM_AM::rrx: SBits = 0x6; break; } } else { // Set shift operand (bit[6:4]). // LSL - 000 // LSR - 010 // ASR - 100 // ROR - 110 switch (SOpc) { default: llvm_unreachable("Unknown shift opc!"); case ARM_AM::lsl: SBits = 0x0; break; case ARM_AM::lsr: SBits = 0x2; break; case ARM_AM::asr: SBits = 0x4; break; case ARM_AM::ror: SBits = 0x6; break; } } Binary |= SBits << 4; if (SOpc == ARM_AM::rrx) return Binary; // Encode the shift operation Rs or shift_imm (except rrx). if (Rs) { // Encode Rs bit[11:8]. assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0); return Binary | (getARMRegisterNumbering(Rs) << ARMII::RegRsShift); } // Encode shift_imm bit[11:7]. return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7; } unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) { int SoImmVal = ARM_AM::getSOImmVal(SoImm); assert(SoImmVal != -1 && "Not a valid so_imm value!"); // Encode rotate_imm. unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1) << ARMII::SoRotImmShift; // Encode immed_8. Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal); return Binary; } unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI, const TargetInstrDesc &TID) const { for (unsigned i = MI.getNumOperands(), e = TID.getNumOperands(); i >= e; --i){ const MachineOperand &MO = MI.getOperand(i-1); if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) return 1 << ARMII::S_BitShift; } return 0; } void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI, unsigned ImplicitRd, unsigned ImplicitRn) { const TargetInstrDesc &TID = MI.getDesc(); // Part of binary is determined by TableGn. unsigned Binary = getBinaryCodeForInstr(MI); // Set the conditional execution predicate Binary |= II->getPredicate(&MI) << ARMII::CondShift; // Encode S bit if MI modifies CPSR. Binary |= getAddrModeSBit(MI, TID); // Encode register def if there is one. unsigned NumDefs = TID.getNumDefs(); unsigned OpIdx = 0; if (NumDefs) Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift; else if (ImplicitRd) // Special handling for implicit use (e.g. PC). Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift); if (TID.Opcode == ARM::MOVi16) { // Get immediate from MI. unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx), ARM::reloc_arm_movw); // Encode imm which is the same as in emitMOVi32immInstruction(). Binary |= Lo16 & 0xFFF; Binary |= ((Lo16 >> 12) & 0xF) << 16; emitWordLE(Binary); return; } else if(TID.Opcode == ARM::MOVTi16) { unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx), ARM::reloc_arm_movt) >> 16); Binary |= Hi16 & 0xFFF; Binary |= ((Hi16 >> 12) & 0xF) << 16; emitWordLE(Binary); return; } else if ((TID.Opcode == ARM::BFC) || (TID.Opcode == ARM::BFI)) { uint32_t v = ~MI.getOperand(2).getImm(); int32_t lsb = CountTrailingZeros_32(v); int32_t msb = (32 - CountLeadingZeros_32(v)) - 1; // Instr{20-16} = msb, Instr{11-7} = lsb Binary |= (msb & 0x1F) << 16; Binary |= (lsb & 0x1F) << 7; emitWordLE(Binary); return; } else if ((TID.Opcode == ARM::UBFX) || (TID.Opcode == ARM::SBFX)) { // Encode Rn in Instr{0-3} Binary |= getMachineOpValue(MI, OpIdx++); uint32_t lsb = MI.getOperand(OpIdx++).getImm(); uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1; // Instr{20-16} = widthm1, Instr{11-7} = lsb Binary |= (widthm1 & 0x1F) << 16; Binary |= (lsb & 0x1F) << 7; emitWordLE(Binary); return; } // If this is a two-address operand, skip it. e.g. MOVCCr operand 1. if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) ++OpIdx; // Encode first non-shifter register operand if there is one. bool isUnary = TID.TSFlags & ARMII::UnaryDP; if (!isUnary) { if (ImplicitRn) // Special handling for implicit use (e.g. PC). Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift); else { Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift; ++OpIdx; } } // Encode shifter operand. const MachineOperand &MO = MI.getOperand(OpIdx); if ((TID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) { // Encode SoReg. emitWordLE(Binary | getMachineSoRegOpValue(MI, TID, MO, OpIdx)); return; } if (MO.isReg()) { // Encode register Rm. emitWordLE(Binary | getARMRegisterNumbering(MO.getReg())); return; } // Encode so_imm. Binary |= getMachineSoImmOpValue((unsigned)MO.getImm()); emitWordLE(Binary); } void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI, unsigned ImplicitRd, unsigned ImplicitRn) { const TargetInstrDesc &TID = MI.getDesc(); unsigned Form = TID.TSFlags & ARMII::FormMask; bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0; // Part of binary is determined by TableGn. unsigned Binary = getBinaryCodeForInstr(MI); // If this is an LDRi12, STRi12 or LDRcp, nothing more needs be done. if (MI.getOpcode() == ARM::LDRi12 || MI.getOpcode() == ARM::LDRcp || MI.getOpcode() == ARM::STRi12) { emitWordLE(Binary); return; } // Set the conditional execution predicate Binary |= II->getPredicate(&MI) << ARMII::CondShift; unsigned OpIdx = 0; // Operand 0 of a pre- and post-indexed store is the address base // writeback. Skip it. bool Skipped = false; if (IsPrePost && Form == ARMII::StFrm) { ++OpIdx; Skipped = true; } // Set first operand if (ImplicitRd) // Special handling for implicit use (e.g. PC). Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift); else Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift; // Set second operand if (ImplicitRn) // Special handling for implicit use (e.g. PC). Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift); else Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift; // If this is a two-address operand, skip it. e.g. LDR_PRE. if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) ++OpIdx; const MachineOperand &MO2 = MI.getOperand(OpIdx); unsigned AM2Opc = (ImplicitRn == ARM::PC) ? 0 : MI.getOperand(OpIdx+1).getImm(); // Set bit U(23) according to sign of immed value (positive or negative). Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) << ARMII::U_BitShift); if (!MO2.getReg()) { // is immediate if (ARM_AM::getAM2Offset(AM2Opc)) // Set the value of offset_12 field Binary |= ARM_AM::getAM2Offset(AM2Opc); emitWordLE(Binary); return; } // Set bit I(25), because this is not in immediate encoding. Binary |= 1 << ARMII::I_BitShift; assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg())); // Set bit[3:0] to the corresponding Rm register Binary |= getARMRegisterNumbering(MO2.getReg()); // If this instr is in scaled register offset/index instruction, set // shift_immed(bit[11:7]) and shift(bit[6:5]) fields. if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) { Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift; // shift Binary |= ShImm << ARMII::ShiftShift; // shift_immed } emitWordLE(Binary); } void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI, unsigned ImplicitRn) { const TargetInstrDesc &TID = MI.getDesc(); unsigned Form = TID.TSFlags & ARMII::FormMask; bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0; // Part of binary is determined by TableGn. unsigned Binary = getBinaryCodeForInstr(MI); // Set the conditional execution predicate Binary |= II->getPredicate(&MI) << ARMII::CondShift; unsigned OpIdx = 0; // Operand 0 of a pre- and post-indexed store is the address base // writeback. Skip it. bool Skipped = false; if (IsPrePost && Form == ARMII::StMiscFrm) { ++OpIdx; Skipped = true; } // Set first operand Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift; // Skip LDRD and STRD's second operand. if (TID.Opcode == ARM::LDRD || TID.Opcode == ARM::STRD) ++OpIdx; // Set second operand if (ImplicitRn) // Special handling for implicit use (e.g. PC). Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift); else Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift; // If this is a two-address operand, skip it. e.g. LDRH_POST. if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) ++OpIdx; const MachineOperand &MO2 = MI.getOperand(OpIdx); unsigned AM3Opc = (ImplicitRn == ARM::PC) ? 0 : MI.getOperand(OpIdx+1).getImm(); // Set bit U(23) according to sign of immed value (positive or negative) Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) << ARMII::U_BitShift); // If this instr is in register offset/index encoding, set bit[3:0] // to the corresponding Rm register. if (MO2.getReg()) { Binary |= getARMRegisterNumbering(MO2.getReg()); emitWordLE(Binary); return; } // This instr is in immediate offset/index encoding, set bit 22 to 1. Binary |= 1 << ARMII::AM3_I_BitShift; if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) { // Set operands Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift; // immedH Binary |= (ImmOffs & 0xF); // immedL } emitWordLE(Binary); } static unsigned getAddrModeUPBits(unsigned Mode) { unsigned Binary = 0; // Set addressing mode by modifying bits U(23) and P(24) // IA - Increment after - bit U = 1 and bit P = 0 // IB - Increment before - bit U = 1 and bit P = 1 // DA - Decrement after - bit U = 0 and bit P = 0 // DB - Decrement before - bit U = 0 and bit P = 1 switch (Mode) { default: llvm_unreachable("Unknown addressing sub-mode!"); case ARM_AM::da: break; case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break; case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break; case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break; } return Binary; } void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) { const TargetInstrDesc &TID = MI.getDesc(); bool IsUpdating = (TID.TSFlags & ARMII::IndexModeMask) != 0; // Part of binary is determined by TableGn. unsigned Binary = getBinaryCodeForInstr(MI); // Set the conditional execution predicate Binary |= II->getPredicate(&MI) << ARMII::CondShift; // Skip operand 0 of an instruction with base register update. unsigned OpIdx = 0; if (IsUpdating) ++OpIdx; // Set base address operand Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift; // Set addressing mode by modifying bits U(23) and P(24) ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode()); Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode)); // Set bit W(21) if (IsUpdating) Binary |= 0x1 << ARMII::W_BitShift; // Set registers for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI.getOperand(i); if (!MO.isReg() || MO.isImplicit()) break; unsigned RegNum = getARMRegisterNumbering(MO.getReg()); assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) && RegNum < 16); Binary |= 0x1 << RegNum; } emitWordLE(Binary); } void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) { const TargetInstrDesc &TID = MI.getDesc(); // Part of binary is determined by TableGn. unsigned Binary = getBinaryCodeForInstr(MI); // Set the conditional execution predicate Binary |= II->getPredicate(&MI) << ARMII::CondShift; // Encode S bit if MI modifies CPSR. Binary |= getAddrModeSBit(MI, TID); // 32x32->64bit operations have two destination registers. The number // of register definitions will tell us if that's what we're dealing with. unsigned OpIdx = 0; if (TID.getNumDefs() == 2) Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift; // Encode Rd Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift; // Encode Rm Binary |= getMachineOpValue(MI, OpIdx++); // Encode Rs Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift; // Many multiple instructions (e.g. MLA) have three src operands. Encode // it as Rn (for multiply, that's in the same offset as RdLo. if (TID.getNumOperands() > OpIdx && !TID.OpInfo[OpIdx].isPredicate() && !TID.OpInfo[OpIdx].isOptionalDef()) Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift; emitWordLE(Binary); } void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) { const TargetInstrDesc &TID = MI.getDesc(); // Part of binary is determined by TableGn. unsigned Binary = getBinaryCodeForInstr(MI); // Set the conditional execution predicate Binary |= II->getPredicate(&MI) << ARMII::CondShift; unsigned OpIdx = 0; // Encode Rd Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift; const MachineOperand &MO1 = MI.getOperand(OpIdx++); const MachineOperand &MO2 = MI.getOperand(OpIdx); if (MO2.isReg()) { // Two register operand form. // Encode Rn. Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift; // Encode Rm. Binary |= getMachineOpValue(MI, MO2); ++OpIdx; } else { Binary |= getMachineOpValue(MI, MO1); } // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand. if (MI.getOperand(OpIdx).isImm() && !TID.OpInfo[OpIdx].isPredicate() && !TID.OpInfo[OpIdx].isOptionalDef()) Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift; emitWordLE(Binary); } void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) { const TargetInstrDesc &TID = MI.getDesc(); // Part of binary is determined by TableGn. unsigned Binary = getBinaryCodeForInstr(MI); // Set the conditional execution predicate Binary |= II->getPredicate(&MI) << ARMII::CondShift; // PKH instructions are finished at this point if (TID.Opcode == ARM::PKHBT || TID.Opcode == ARM::PKHTB) { emitWordLE(Binary); return; } unsigned OpIdx = 0; // Encode Rd Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift; const MachineOperand &MO = MI.getOperand(OpIdx++); if (OpIdx == TID.getNumOperands() || TID.OpInfo[OpIdx].isPredicate() || TID.OpInfo[OpIdx].isOptionalDef()) { // Encode Rm and it's done. Binary |= getMachineOpValue(MI, MO); emitWordLE(Binary); return; } // Encode Rn. Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift; // Encode Rm. Binary |= getMachineOpValue(MI, OpIdx++); // Encode shift_imm. unsigned ShiftAmt = MI.getOperand(OpIdx).getImm(); if (TID.Opcode == ARM::PKHTB) { assert(ShiftAmt != 0 && "PKHTB shift_imm is 0!"); if (ShiftAmt == 32) ShiftAmt = 0; } assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!"); Binary |= ShiftAmt << ARMII::ShiftShift; emitWordLE(Binary); } void ARMCodeEmitter::emitSaturateInstruction(const MachineInstr &MI) { const TargetInstrDesc &TID = MI.getDesc(); // Part of binary is determined by TableGen. unsigned Binary = getBinaryCodeForInstr(MI); // Set the conditional execution predicate Binary |= II->getPredicate(&MI) << ARMII::CondShift; // Encode Rd Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift; // Encode saturate bit position. unsigned Pos = MI.getOperand(1).getImm(); if (TID.Opcode == ARM::SSAT || TID.Opcode == ARM::SSAT16) Pos -= 1; assert((Pos < 16 || (Pos < 32 && TID.Opcode != ARM::SSAT16 && TID.Opcode != ARM::USAT16)) && "saturate bit position out of range"); Binary |= Pos << 16; // Encode Rm Binary |= getMachineOpValue(MI, 2); // Encode shift_imm. if (TID.getNumOperands() == 4) { unsigned ShiftOp = MI.getOperand(3).getImm(); ARM_AM::ShiftOpc Opc = ARM_AM::getSORegShOp(ShiftOp); if (Opc == ARM_AM::asr) Binary |= (1 << 6); unsigned ShiftAmt = MI.getOperand(3).getImm(); if (ShiftAmt == 32 && Opc == ARM_AM::asr) ShiftAmt = 0; assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!"); Binary |= ShiftAmt << ARMII::ShiftShift; } emitWordLE(Binary); } void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) { const TargetInstrDesc &TID = MI.getDesc(); if (TID.Opcode == ARM::TPsoft) { llvm_unreachable("ARM::TPsoft FIXME"); // FIXME } // Part of binary is determined by TableGn. unsigned Binary = getBinaryCodeForInstr(MI); // Set the conditional execution predicate Binary |= II->getPredicate(&MI) << ARMII::CondShift; // Set signed_immed_24 field Binary |= getMachineOpValue(MI, 0); emitWordLE(Binary); } void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) { // Remember the base address of the inline jump table. uintptr_t JTBase = MCE.getCurrentPCValue(); JTI->addJumpTableBaseAddr(JTIndex, JTBase); DEBUG(errs() << " ** Jump Table #" << JTIndex << " @ " << (void*)JTBase << '\n'); // Now emit the jump table entries. const std::vector &MBBs = (*MJTEs)[JTIndex].MBBs; for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { if (IsPIC) // DestBB address - JT base. emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase); else // Absolute DestBB address. emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute); emitWordLE(0); } } void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) { const TargetInstrDesc &TID = MI.getDesc(); // Handle jump tables. if (TID.Opcode == ARM::BR_JTr || TID.Opcode == ARM::BR_JTadd) { // First emit a ldr pc, [] instruction. emitDataProcessingInstruction(MI, ARM::PC); // Then emit the inline jump table. unsigned JTIndex = (TID.Opcode == ARM::BR_JTr) ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex(); emitInlineJumpTable(JTIndex); return; } else if (TID.Opcode == ARM::BR_JTm) { // First emit a ldr pc, [] instruction. emitLoadStoreInstruction(MI, ARM::PC); // Then emit the inline jump table. emitInlineJumpTable(MI.getOperand(3).getIndex()); return; } // Part of binary is determined by TableGn. unsigned Binary = getBinaryCodeForInstr(MI); // Set the conditional execution predicate Binary |= II->getPredicate(&MI) << ARMII::CondShift; if (TID.Opcode == ARM::BX_RET || TID.Opcode == ARM::MOVPCLR) // The return register is LR. Binary |= getARMRegisterNumbering(ARM::LR); else // otherwise, set the return register Binary |= getMachineOpValue(MI, 0); emitWordLE(Binary); } static unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) { unsigned RegD = MI.getOperand(OpIdx).getReg(); unsigned Binary = 0; bool isSPVFP = ARM::SPRRegisterClass->contains(RegD); RegD = getARMRegisterNumbering(RegD); if (!isSPVFP) Binary |= RegD << ARMII::RegRdShift; else { Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift; Binary |= (RegD & 0x01) << ARMII::D_BitShift; } return Binary; } static unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) { unsigned RegN = MI.getOperand(OpIdx).getReg(); unsigned Binary = 0; bool isSPVFP = ARM::SPRRegisterClass->contains(RegN); RegN = getARMRegisterNumbering(RegN); if (!isSPVFP) Binary |= RegN << ARMII::RegRnShift; else { Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift; Binary |= (RegN & 0x01) << ARMII::N_BitShift; } return Binary; } static unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) { unsigned RegM = MI.getOperand(OpIdx).getReg(); unsigned Binary = 0; bool isSPVFP = ARM::SPRRegisterClass->contains(RegM); RegM = getARMRegisterNumbering(RegM); if (!isSPVFP) Binary |= RegM; else { Binary |= ((RegM & 0x1E) >> 1); Binary |= (RegM & 0x01) << ARMII::M_BitShift; } return Binary; } void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) { const TargetInstrDesc &TID = MI.getDesc(); // Part of binary is determined by TableGn. unsigned Binary = getBinaryCodeForInstr(MI); // Set the conditional execution predicate Binary |= II->getPredicate(&MI) << ARMII::CondShift; unsigned OpIdx = 0; assert((Binary & ARMII::D_BitShift) == 0 && (Binary & ARMII::N_BitShift) == 0 && (Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!"); // Encode Dd / Sd. Binary |= encodeVFPRd(MI, OpIdx++); // If this is a two-address operand, skip it, e.g. FMACD. if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) ++OpIdx; // Encode Dn / Sn. if ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm) Binary |= encodeVFPRn(MI, OpIdx++); if (OpIdx == TID.getNumOperands() || TID.OpInfo[OpIdx].isPredicate() || TID.OpInfo[OpIdx].isOptionalDef()) { // FCMPEZD etc. has only one operand. emitWordLE(Binary); return; } // Encode Dm / Sm. Binary |= encodeVFPRm(MI, OpIdx); emitWordLE(Binary); } void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) { const TargetInstrDesc &TID = MI.getDesc(); unsigned Form = TID.TSFlags & ARMII::FormMask; // Part of binary is determined by TableGn. unsigned Binary = getBinaryCodeForInstr(MI); // Set the conditional execution predicate Binary |= II->getPredicate(&MI) << ARMII::CondShift; switch (Form) { default: break; case ARMII::VFPConv1Frm: case ARMII::VFPConv2Frm: case ARMII::VFPConv3Frm: // Encode Dd / Sd. Binary |= encodeVFPRd(MI, 0); break; case ARMII::VFPConv4Frm: // Encode Dn / Sn. Binary |= encodeVFPRn(MI, 0); break; case ARMII::VFPConv5Frm: // Encode Dm / Sm. Binary |= encodeVFPRm(MI, 0); break; } switch (Form) { default: break; case ARMII::VFPConv1Frm: // Encode Dm / Sm. Binary |= encodeVFPRm(MI, 1); break; case ARMII::VFPConv2Frm: case ARMII::VFPConv3Frm: // Encode Dn / Sn. Binary |= encodeVFPRn(MI, 1); break; case ARMII::VFPConv4Frm: case ARMII::VFPConv5Frm: // Encode Dd / Sd. Binary |= encodeVFPRd(MI, 1); break; } if (Form == ARMII::VFPConv5Frm) // Encode Dn / Sn. Binary |= encodeVFPRn(MI, 2); else if (Form == ARMII::VFPConv3Frm) // Encode Dm / Sm. Binary |= encodeVFPRm(MI, 2); emitWordLE(Binary); } void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) { // Part of binary is determined by TableGn. unsigned Binary = getBinaryCodeForInstr(MI); // Set the conditional execution predicate Binary |= II->getPredicate(&MI) << ARMII::CondShift; unsigned OpIdx = 0; // Encode Dd / Sd. Binary |= encodeVFPRd(MI, OpIdx++); // Encode address base. const MachineOperand &Base = MI.getOperand(OpIdx++); Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift; // If there is a non-zero immediate offset, encode it. if (Base.isReg()) { const MachineOperand &Offset = MI.getOperand(OpIdx); if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) { if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add) Binary |= 1 << ARMII::U_BitShift; Binary |= ImmOffs; emitWordLE(Binary); return; } } // If immediate offset is omitted, default to +0. Binary |= 1 << ARMII::U_BitShift; emitWordLE(Binary); } void ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) { const TargetInstrDesc &TID = MI.getDesc(); bool IsUpdating = (TID.TSFlags & ARMII::IndexModeMask) != 0; // Part of binary is determined by TableGn. unsigned Binary = getBinaryCodeForInstr(MI); // Set the conditional execution predicate Binary |= II->getPredicate(&MI) << ARMII::CondShift; // Skip operand 0 of an instruction with base register update. unsigned OpIdx = 0; if (IsUpdating) ++OpIdx; // Set base address operand Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift; // Set addressing mode by modifying bits U(23) and P(24) ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode()); Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode)); // Set bit W(21) if (IsUpdating) Binary |= 0x1 << ARMII::W_BitShift; // First register is encoded in Dd. Binary |= encodeVFPRd(MI, OpIdx+2); // Count the number of registers. unsigned NumRegs = 1; for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI.getOperand(i); if (!MO.isReg() || MO.isImplicit()) break; ++NumRegs; } // Bit 8 will be set if is consecutive 64-bit registers (e.g., D0) // Otherwise, it will be 0, in the case of 32-bit registers. if(Binary & 0x100) Binary |= NumRegs * 2; else Binary |= NumRegs; emitWordLE(Binary); } static unsigned encodeNEONRd(const MachineInstr &MI, unsigned OpIdx) { unsigned RegD = MI.getOperand(OpIdx).getReg(); unsigned Binary = 0; RegD = getARMRegisterNumbering(RegD); Binary |= (RegD & 0xf) << ARMII::RegRdShift; Binary |= ((RegD >> 4) & 1) << ARMII::D_BitShift; return Binary; } static unsigned encodeNEONRn(const MachineInstr &MI, unsigned OpIdx) { unsigned RegN = MI.getOperand(OpIdx).getReg(); unsigned Binary = 0; RegN = getARMRegisterNumbering(RegN); Binary |= (RegN & 0xf) << ARMII::RegRnShift; Binary |= ((RegN >> 4) & 1) << ARMII::N_BitShift; return Binary; } static unsigned encodeNEONRm(const MachineInstr &MI, unsigned OpIdx) { unsigned RegM = MI.getOperand(OpIdx).getReg(); unsigned Binary = 0; RegM = getARMRegisterNumbering(RegM); Binary |= (RegM & 0xf); Binary |= ((RegM >> 4) & 1) << ARMII::M_BitShift; return Binary; } /// convertNEONDataProcToThumb - Convert the ARM mode encoding for a NEON /// data-processing instruction to the corresponding Thumb encoding. static unsigned convertNEONDataProcToThumb(unsigned Binary) { assert((Binary & 0xfe000000) == 0xf2000000 && "not an ARM NEON data-processing instruction"); unsigned UBit = (Binary >> 24) & 1; return 0xef000000 | (UBit << 28) | (Binary & 0xffffff); } void ARMCodeEmitter::emitNEONLaneInstruction(const MachineInstr &MI) { unsigned Binary = getBinaryCodeForInstr(MI); unsigned RegTOpIdx, RegNOpIdx, LnOpIdx; const TargetInstrDesc &TID = MI.getDesc(); if ((TID.TSFlags & ARMII::FormMask) == ARMII::NGetLnFrm) { RegTOpIdx = 0; RegNOpIdx = 1; LnOpIdx = 2; } else { // ARMII::NSetLnFrm RegTOpIdx = 2; RegNOpIdx = 0; LnOpIdx = 3; } // Set the conditional execution predicate Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift; unsigned RegT = MI.getOperand(RegTOpIdx).getReg(); RegT = getARMRegisterNumbering(RegT); Binary |= (RegT << ARMII::RegRdShift); Binary |= encodeNEONRn(MI, RegNOpIdx); unsigned LaneShift; if ((Binary & (1 << 22)) != 0) LaneShift = 0; // 8-bit elements else if ((Binary & (1 << 5)) != 0) LaneShift = 1; // 16-bit elements else LaneShift = 2; // 32-bit elements unsigned Lane = MI.getOperand(LnOpIdx).getImm() << LaneShift; unsigned Opc1 = Lane >> 2; unsigned Opc2 = Lane & 3; assert((Opc1 & 3) == 0 && "out-of-range lane number operand"); Binary |= (Opc1 << 21); Binary |= (Opc2 << 5); emitWordLE(Binary); } void ARMCodeEmitter::emitNEONDupInstruction(const MachineInstr &MI) { unsigned Binary = getBinaryCodeForInstr(MI); // Set the conditional execution predicate Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift; unsigned RegT = MI.getOperand(1).getReg(); RegT = getARMRegisterNumbering(RegT); Binary |= (RegT << ARMII::RegRdShift); Binary |= encodeNEONRn(MI, 0); emitWordLE(Binary); } void ARMCodeEmitter::emitNEON1RegModImmInstruction(const MachineInstr &MI) { unsigned Binary = getBinaryCodeForInstr(MI); // Destination register is encoded in Dd. Binary |= encodeNEONRd(MI, 0); // Immediate fields: Op, Cmode, I, Imm3, Imm4 unsigned Imm = MI.getOperand(1).getImm(); unsigned Op = (Imm >> 12) & 1; unsigned Cmode = (Imm >> 8) & 0xf; unsigned I = (Imm >> 7) & 1; unsigned Imm3 = (Imm >> 4) & 0x7; unsigned Imm4 = Imm & 0xf; Binary |= (I << 24) | (Imm3 << 16) | (Cmode << 8) | (Op << 5) | Imm4; if (IsThumb) Binary = convertNEONDataProcToThumb(Binary); emitWordLE(Binary); } void ARMCodeEmitter::emitNEON2RegInstruction(const MachineInstr &MI) { const TargetInstrDesc &TID = MI.getDesc(); unsigned Binary = getBinaryCodeForInstr(MI); // Destination register is encoded in Dd; source register in Dm. unsigned OpIdx = 0; Binary |= encodeNEONRd(MI, OpIdx++); if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) ++OpIdx; Binary |= encodeNEONRm(MI, OpIdx); if (IsThumb) Binary = convertNEONDataProcToThumb(Binary); // FIXME: This does not handle VDUPfdf or VDUPfqf. emitWordLE(Binary); } void ARMCodeEmitter::emitNEON3RegInstruction(const MachineInstr &MI) { const TargetInstrDesc &TID = MI.getDesc(); unsigned Binary = getBinaryCodeForInstr(MI); // Destination register is encoded in Dd; source registers in Dn and Dm. unsigned OpIdx = 0; Binary |= encodeNEONRd(MI, OpIdx++); if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) ++OpIdx; Binary |= encodeNEONRn(MI, OpIdx++); if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) ++OpIdx; Binary |= encodeNEONRm(MI, OpIdx); if (IsThumb) Binary = convertNEONDataProcToThumb(Binary); // FIXME: This does not handle VMOVDneon or VMOVQ. emitWordLE(Binary); } #include "ARMGenCodeEmitter.inc"