//===- lib/Support/YAMLTraits.cpp -----------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #define BUILDING_YAMLIO #include "llvm/Support/YAMLTraits.h" #include "llvm/ADT/Twine.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Format.h" #include "llvm/Support/YAMLParser.h" #include "llvm/Support/raw_ostream.h" #include namespace llvm { namespace yaml { //===----------------------------------------------------------------------===// // IO //===----------------------------------------------------------------------===// IO::IO(void *Context) : Ctxt(Context) { } IO::~IO() { } void *IO::getContext() { return Ctxt; } void IO::setContext(void *Context) { Ctxt = Context; } //===----------------------------------------------------------------------===// // Input //===----------------------------------------------------------------------===// Input::Input(StringRef InputContent, void *Ctxt) : IO(Ctxt), CurrentNode(NULL) { Strm = new Stream(InputContent, SrcMgr); DocIterator = Strm->begin(); } llvm::error_code Input::error() { return EC; } void Input::setDiagHandler(llvm::SourceMgr::DiagHandlerTy Handler, void *Ctxt) { SrcMgr.setDiagHandler(Handler, Ctxt); } bool Input::outputting() { return false; } bool Input::setCurrentDocument() { if ( DocIterator != Strm->end() ) { Node *N = DocIterator->getRoot(); if (llvm::isa(N)) { // Empty files are allowed and ignored ++DocIterator; return setCurrentDocument(); } CurrentNode = this->createHNodes(N); return true; } return false; } void Input::nextDocument() { ++DocIterator; } void Input::beginMapping() { if ( EC ) return; MapHNode *MN = llvm::dyn_cast(CurrentNode); if ( MN ) { MN->ValidKeys.clear(); } } bool Input::preflightKey(const char *Key, bool Required, bool, bool &UseDefault, void *&SaveInfo) { UseDefault = false; if ( EC ) return false; MapHNode *MN = llvm::dyn_cast(CurrentNode); if ( !MN ) { setError(CurrentNode, "not a mapping"); return false; } MN->ValidKeys.push_back(Key); HNode *Value = MN->Mapping[Key]; if ( !Value ) { if ( Required ) setError(CurrentNode, Twine("missing required key '") + Key + "'"); else UseDefault = true; return false; } SaveInfo = CurrentNode; CurrentNode = Value; return true; } void Input::postflightKey(void *saveInfo) { CurrentNode = reinterpret_cast(saveInfo); } void Input::endMapping() { if ( EC ) return; MapHNode *MN = llvm::dyn_cast(CurrentNode); if ( !MN ) return; for (MapHNode::NameToNode::iterator i=MN->Mapping.begin(), End=MN->Mapping.end(); i != End; ++i) { if ( ! MN->isValidKey(i->first) ) { setError(i->second, Twine("unknown key '") + i->first + "'" ); break; } } } unsigned Input::beginSequence() { if ( SequenceHNode *SQ = llvm::dyn_cast(CurrentNode) ) { return SQ->Entries.size(); } return 0; } void Input::endSequence() { } bool Input::preflightElement(unsigned Index, void *&SaveInfo) { if ( EC ) return false; if ( SequenceHNode *SQ = llvm::dyn_cast(CurrentNode) ) { SaveInfo = CurrentNode; CurrentNode = SQ->Entries[Index]; return true; } return false; } void Input::postflightElement(void *SaveInfo) { CurrentNode = reinterpret_cast(SaveInfo); } unsigned Input::beginFlowSequence() { if ( SequenceHNode *SQ = llvm::dyn_cast(CurrentNode) ) { return SQ->Entries.size(); } return 0; } bool Input::preflightFlowElement(unsigned index, void *&SaveInfo) { if ( EC ) return false; if ( SequenceHNode *SQ = llvm::dyn_cast(CurrentNode) ) { SaveInfo = CurrentNode; CurrentNode = SQ->Entries[index]; return true; } return false; } void Input::postflightFlowElement(void *SaveInfo) { CurrentNode = reinterpret_cast(SaveInfo); } void Input::endFlowSequence() { } void Input::beginEnumScalar() { ScalarMatchFound = false; } bool Input::matchEnumScalar(const char *Str, bool) { if ( ScalarMatchFound ) return false; if ( ScalarHNode *SN = llvm::dyn_cast(CurrentNode) ) { if ( SN->value().equals(Str) ) { ScalarMatchFound = true; return true; } } return false; } void Input::endEnumScalar() { if ( !ScalarMatchFound ) { setError(CurrentNode, "unknown enumerated scalar"); } } bool Input::beginBitSetScalar(bool &DoClear) { BitValuesUsed.clear(); if ( SequenceHNode *SQ = llvm::dyn_cast(CurrentNode) ) { BitValuesUsed.insert(BitValuesUsed.begin(), SQ->Entries.size(), false); } else { setError(CurrentNode, "expected sequence of bit values"); } DoClear = true; return true; } bool Input::bitSetMatch(const char *Str, bool) { if ( EC ) return false; if ( SequenceHNode *SQ = llvm::dyn_cast(CurrentNode) ) { unsigned Index = 0; for (std::vector::iterator i=SQ->Entries.begin(), End=SQ->Entries.end(); i != End; ++i) { if ( ScalarHNode *SN = llvm::dyn_cast(*i) ) { if ( SN->value().equals(Str) ) { BitValuesUsed[Index] = true; return true; } } else { setError(CurrentNode, "unexpected scalar in sequence of bit values"); } ++Index; } } else { setError(CurrentNode, "expected sequence of bit values"); } return false; } void Input::endBitSetScalar() { if ( EC ) return; if ( SequenceHNode *SQ = llvm::dyn_cast(CurrentNode) ) { assert(BitValuesUsed.size() == SQ->Entries.size()); for ( unsigned i=0; i < SQ->Entries.size(); ++i ) { if ( !BitValuesUsed[i] ) { setError(SQ->Entries[i], "unknown bit value"); return; } } } } void Input::scalarString(StringRef &S) { if ( ScalarHNode *SN = llvm::dyn_cast(CurrentNode) ) { S = SN->value(); } else { setError(CurrentNode, "unexpected scalar"); } } void Input::setError(HNode *hnode, const Twine &message) { this->setError(hnode->_node, message); } void Input::setError(Node *node, const Twine &message) { Strm->printError(node, message); EC = make_error_code(errc::invalid_argument); } Input::HNode *Input::createHNodes(Node *N) { llvm::SmallString<128> StringStorage; if ( ScalarNode *SN = llvm::dyn_cast(N) ) { StringRef KeyStr = SN->getValue(StringStorage); if ( !StringStorage.empty() ) { // Copy string to permanent storage unsigned Len = StringStorage.size(); char* Buf = Allocator.Allocate(Len); memcpy(Buf, &StringStorage[0], Len); KeyStr = StringRef(Buf, Len); } return new (Allocator) ScalarHNode(N, KeyStr); } else if ( SequenceNode *SQ = llvm::dyn_cast(N) ) { SequenceHNode *SQHNode = new (Allocator) SequenceHNode(N); for (SequenceNode::iterator i=SQ->begin(),End=SQ->end(); i != End; ++i ) { HNode *Entry = this->createHNodes(i); if ( EC ) break; SQHNode->Entries.push_back(Entry); } return SQHNode; } else if ( MappingNode *Map = llvm::dyn_cast(N) ) { MapHNode *mapHNode = new (Allocator) MapHNode(N); for (MappingNode::iterator i=Map->begin(), End=Map->end(); i != End; ++i ) { ScalarNode *KeyScalar = llvm::dyn_cast(i->getKey()); StringStorage.clear(); llvm::StringRef KeyStr = KeyScalar->getValue(StringStorage); if ( !StringStorage.empty() ) { // Copy string to permanent storage unsigned Len = StringStorage.size(); char* Buf = Allocator.Allocate(Len); memcpy(Buf, &StringStorage[0], Len); KeyStr = StringRef(Buf, Len); } HNode *ValueHNode = this->createHNodes(i->getValue()); if ( EC ) break; mapHNode->Mapping[KeyStr] = ValueHNode; } return mapHNode; } else if ( llvm::isa(N) ) { return new (Allocator) EmptyHNode(N); } else { setError(N, "unknown node kind"); return NULL; } } bool Input::MapHNode::isValidKey(StringRef Key) { for (SmallVector::iterator i=ValidKeys.begin(), End=ValidKeys.end(); i != End; ++i) { if ( Key.equals(*i) ) return true; } return false; } void Input::setError(const Twine &Message) { this->setError(CurrentNode, Message); } //===----------------------------------------------------------------------===// // Output //===----------------------------------------------------------------------===// Output::Output(llvm::raw_ostream &yout, void *context) : IO(context), Out(yout), Column(0), ColumnAtFlowStart(0), NeedBitValueComma(false), NeedFlowSequenceComma(false), EnumerationMatchFound(false), NeedsNewLine(false) { } Output::~Output() { } bool Output::outputting() { return true; } void Output::beginMapping() { StateStack.push_back(inMapFirstKey); NeedsNewLine = true; } void Output::endMapping() { StateStack.pop_back(); } bool Output::preflightKey(const char *Key, bool Required, bool SameAsDefault, bool &UseDefault, void *&) { UseDefault = false; if ( Required || !SameAsDefault ) { this->newLineCheck(); this->paddedKey(Key); return true; } return false; } void Output::postflightKey(void*) { if ( StateStack.back() == inMapFirstKey ) { StateStack.pop_back(); StateStack.push_back(inMapOtherKey); } } void Output::beginDocuments() { this->outputUpToEndOfLine("---"); } bool Output::preflightDocument(unsigned index) { if ( index > 0 ) this->outputUpToEndOfLine("\n---"); return true; } void Output::postflightDocument() { } void Output::endDocuments() { output("\n...\n"); } unsigned Output::beginSequence() { StateStack.push_back(inSeq); NeedsNewLine = true; return 0; } void Output::endSequence() { StateStack.pop_back(); } bool Output::preflightElement(unsigned , void *&) { return true; } void Output::postflightElement(void*) { } unsigned Output::beginFlowSequence() { this->newLineCheck(); StateStack.push_back(inFlowSeq); ColumnAtFlowStart = Column; output("[ "); NeedFlowSequenceComma = false; return 0; } void Output::endFlowSequence() { StateStack.pop_back(); this->outputUpToEndOfLine(" ]"); } bool Output::preflightFlowElement(unsigned , void *&) { if ( NeedFlowSequenceComma ) output(", "); if ( Column > 70 ) { output("\n"); for(int i=0; i < ColumnAtFlowStart; ++i) output(" "); Column = ColumnAtFlowStart; output(" "); } return true; } void Output::postflightFlowElement(void*) { NeedFlowSequenceComma = true; } void Output::beginEnumScalar() { EnumerationMatchFound = false; } bool Output::matchEnumScalar(const char *Str, bool Match) { if ( Match && !EnumerationMatchFound ) { this->newLineCheck(); this->outputUpToEndOfLine(Str); EnumerationMatchFound = true; } return false; } void Output::endEnumScalar() { if ( !EnumerationMatchFound ) llvm_unreachable("bad runtime enum value"); } bool Output::beginBitSetScalar(bool &DoClear) { this->newLineCheck(); output("[ "); NeedBitValueComma = false; DoClear = false; return true; } bool Output::bitSetMatch(const char *Str, bool Matches) { if ( Matches ) { if ( NeedBitValueComma ) output(", "); this->output(Str); NeedBitValueComma = true; } return false; } void Output::endBitSetScalar() { this->outputUpToEndOfLine(" ]"); } void Output::scalarString(StringRef &S) { this->newLineCheck(); if (S.find('\n') == StringRef::npos) { // No embedded new-line chars, just print string. this->outputUpToEndOfLine(S); return; } unsigned i = 0; unsigned j = 0; unsigned End = S.size(); output("'"); // Starting single quote. const char *Base = S.data(); while (j < End) { // Escape a single quote by doubling it. if (S[j] == '\'') { output(StringRef(&Base[i], j - i + 1)); output("'"); i = j + 1; } ++j; } output(StringRef(&Base[i], j - i)); this->outputUpToEndOfLine("'"); // Ending single quote. } void Output::setError(const Twine &message) { } void Output::output(StringRef s) { Column += s.size(); Out << s; } void Output::outputUpToEndOfLine(StringRef s) { this->output(s); if ( StateStack.back() != inFlowSeq ) NeedsNewLine = true; } void Output::outputNewLine() { Out << "\n"; Column = 0; } // if seq at top, indent as if map, then add "- " // if seq in middle, use "- " if firstKey, else use " " // void Output::newLineCheck() { if ( ! NeedsNewLine ) return; NeedsNewLine = false; this->outputNewLine(); assert(StateStack.size() > 0); unsigned Indent = StateStack.size() - 1; bool OutputDash = false; if ( StateStack.back() == inSeq ) { OutputDash = true; } else if ( (StateStack.size() > 1) && (StateStack.back() == inMapFirstKey) && (StateStack[StateStack.size()-2] == inSeq) ) { --Indent; OutputDash = true; } for (unsigned i=0; i < Indent; ++i) { output(" "); } if ( OutputDash ) { output("- "); } } void Output::paddedKey(StringRef key) { output(key); output(":"); const char *spaces = " "; if ( key.size() < strlen(spaces) ) output(&spaces[key.size()]); else output(" "); } //===----------------------------------------------------------------------===// // traits for built-in types //===----------------------------------------------------------------------===// template<> struct ScalarTraits { static void output(const bool &Val, void*, llvm::raw_ostream &Out) { Out << ( Val ? "true" : "false"); } static llvm::StringRef input(llvm::StringRef Scalar, void*, bool &Val) { if ( Scalar.equals("true") ) { Val = true; return StringRef(); } else if ( Scalar.equals("false") ) { Val = false; return StringRef(); } return "invalid boolean"; } }; template<> struct ScalarTraits { static void output(const StringRef &Val, void*, llvm::raw_ostream &Out) { Out << Val; } static llvm::StringRef input(llvm::StringRef Scalar, void*, StringRef &Val){ Val = Scalar; return StringRef(); } }; template<> struct ScalarTraits { static void output(const uint8_t &Val, void*, llvm::raw_ostream &Out) { // use temp uin32_t because ostream thinks uint8_t is a character uint32_t Num = Val; Out << Num; } static llvm::StringRef input(llvm::StringRef Scalar, void*, uint8_t &Val) { unsigned long long n; if ( getAsUnsignedInteger(Scalar, 0, n) ) return "invalid number"; if ( n > 0xFF ) return "out of range number"; Val = n; return StringRef(); } }; template<> struct ScalarTraits { static void output(const uint16_t &Val, void*, llvm::raw_ostream &Out) { Out << Val; } static llvm::StringRef input(llvm::StringRef Scalar, void*, uint16_t &Val) { unsigned long long n; if ( getAsUnsignedInteger(Scalar, 0, n) ) return "invalid number"; if ( n > 0xFFFF ) return "out of range number"; Val = n; return StringRef(); } }; template<> struct ScalarTraits { static void output(const uint32_t &Val, void*, llvm::raw_ostream &Out) { Out << Val; } static llvm::StringRef input(llvm::StringRef Scalar, void*, uint32_t &Val) { unsigned long long n; if ( getAsUnsignedInteger(Scalar, 0, n) ) return "invalid number"; if ( n > 0xFFFFFFFFUL ) return "out of range number"; Val = n; return StringRef(); } }; template<> struct ScalarTraits { static void output(const uint64_t &Val, void*, llvm::raw_ostream &Out) { Out << Val; } static llvm::StringRef input(llvm::StringRef Scalar, void*, uint64_t &Val) { unsigned long long N; if ( getAsUnsignedInteger(Scalar, 0, N) ) return "invalid number"; Val = N; return StringRef(); } }; template<> struct ScalarTraits { static void output(const int8_t &Val, void*, llvm::raw_ostream &Out) { // use temp in32_t because ostream thinks int8_t is a character int32_t Num = Val; Out << Num; } static llvm::StringRef input(llvm::StringRef Scalar, void*, int8_t &Val) { long long N; if ( getAsSignedInteger(Scalar, 0, N) ) return "invalid number"; if ( (N > 127) || (N < -128) ) return "out of range number"; Val = N; return StringRef(); } }; template<> struct ScalarTraits { static void output(const int16_t &Val, void*, llvm::raw_ostream &Out) { Out << Val; } static llvm::StringRef input(llvm::StringRef Scalar, void*, int16_t &Val) { long long N; if ( getAsSignedInteger(Scalar, 0, N) ) return "invalid number"; if ( (N > INT16_MAX) || (N < INT16_MIN) ) return "out of range number"; Val = N; return StringRef(); } }; template<> struct ScalarTraits { static void output(const int32_t &Val, void*, llvm::raw_ostream &Out) { Out << Val; } static llvm::StringRef input(llvm::StringRef Scalar, void*, int32_t &Val) { long long N; if ( getAsSignedInteger(Scalar, 0, N) ) return "invalid number"; if ( (N > INT32_MAX) || (N < INT32_MIN) ) return "out of range number"; Val = N; return StringRef(); } }; template<> struct ScalarTraits { static void output(const int64_t &Val, void*, llvm::raw_ostream &Out) { Out << Val; } static llvm::StringRef input(llvm::StringRef Scalar, void*, int64_t &Val) { long long N; if ( getAsSignedInteger(Scalar, 0, N) ) return "invalid number"; Val = N; return StringRef(); } }; template<> struct ScalarTraits { static void output(const double &Val, void*, llvm::raw_ostream &Out) { Out << format("%g", Val); } static llvm::StringRef input(llvm::StringRef Scalar, void*, double &Val) { SmallString<32> buff(Scalar.begin(), Scalar.end()); char *end; Val = strtod(buff.c_str(), &end); if ( *end != '\0' ) return "invalid floating point number"; return StringRef(); } }; template<> struct ScalarTraits { static void output(const float &Val, void*, llvm::raw_ostream &Out) { Out << format("%g", Val); } static llvm::StringRef input(llvm::StringRef Scalar, void*, float &Val) { SmallString<32> buff(Scalar.begin(), Scalar.end()); char *end; Val = strtod(buff.c_str(), &end); if ( *end != '\0' ) return "invalid floating point number"; return StringRef(); } }; template<> struct ScalarTraits { static void output(const Hex8 &Val, void*, llvm::raw_ostream &Out) { uint8_t Num = Val; Out << format("0x%02X", Num); } static llvm::StringRef input(llvm::StringRef Scalar, void*, Hex8 &Val) { unsigned long long n; if ( getAsUnsignedInteger(Scalar, 0, n) ) return "invalid hex8 number"; if ( n > 0xFF ) return "out of range hex8 number"; Val = n; return StringRef(); } }; template<> struct ScalarTraits { static void output(const Hex16 &Val, void*, llvm::raw_ostream &Out) { uint16_t Num = Val; Out << format("0x%04X", Num); } static llvm::StringRef input(llvm::StringRef Scalar, void*, Hex16 &Val) { unsigned long long n; if ( getAsUnsignedInteger(Scalar, 0, n) ) return "invalid hex16 number"; if ( n > 0xFFFF ) return "out of range hex16 number"; Val = n; return StringRef(); } }; template<> struct ScalarTraits { static void output(const Hex32 &Val, void*, llvm::raw_ostream &Out) { uint32_t Num = Val; Out << format("0x%08X", Num); } static llvm::StringRef input(llvm::StringRef Scalar, void*, Hex32 &Val) { unsigned long long n; if ( getAsUnsignedInteger(Scalar, 0, n) ) return "invalid hex32 number"; if ( n > 0xFFFFFFFFUL ) return "out of range hex32 number"; Val = n; return StringRef(); } }; template<> struct ScalarTraits { static void output(const Hex64 &Val, void*, llvm::raw_ostream &Out) { uint64_t Num = Val; Out << format("0x%016llX", Num); } static llvm::StringRef input(llvm::StringRef Scalar, void*, Hex64 &Val) { unsigned long long Num; if ( getAsUnsignedInteger(Scalar, 0, Num) ) return "invalid hex64 number"; Val = Num; return StringRef(); } }; // We want all the ScalarTrait specialized on built-in types // to be instantiated here. template struct ForceUse { ForceUse() : oproc(ScalarTraits::output), iproc(ScalarTraits::input) {} void (*oproc)(const T &, void*, llvm::raw_ostream &); llvm::StringRef (*iproc)(llvm::StringRef, void*, T &); }; static ForceUse Dummy1; static ForceUse Dummy2; static ForceUse Dummy3; static ForceUse Dummy4; static ForceUse Dummy5; static ForceUse Dummy6; static ForceUse Dummy7; static ForceUse Dummy8; static ForceUse Dummy9; static ForceUse Dummy10; static ForceUse Dummy11; static ForceUse Dummy12; static ForceUse Dummy13; static ForceUse Dummy14; static ForceUse Dummy15; static ForceUse Dummy16; } // namespace yaml } // namespace llvm