//===-- ConstantRange.cpp - ConstantRange implementation ------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Represent a range of possible values that may occur when the program is run // for an integral value. This keeps track of a lower and upper bound for the // constant, which MAY wrap around the end of the numeric range. To do this, it // keeps track of a [lower, upper) bound, which specifies an interval just like // STL iterators. When used with boolean values, the following are important // ranges (other integral ranges use min/max values for special range values): // // [F, F) = {} = Empty set // [T, F) = {T} // [F, T) = {F} // [T, T) = {F, T} = Full set // //===----------------------------------------------------------------------===// #include "llvm/Support/ConstantRange.h" #include "llvm/Support/Streams.h" #include using namespace llvm; /// Initialize a full (the default) or empty set for the specified type. /// ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) : Lower(BitWidth, 0), Upper(BitWidth, 0) { if (Full) Lower = Upper = APInt::getMaxValue(BitWidth); else Lower = Upper = APInt::getMinValue(BitWidth); } /// Initialize a range to hold the single specified value. /// ConstantRange::ConstantRange(const APInt & V) : Lower(V), Upper(V + 1) { } ConstantRange::ConstantRange(const APInt &L, const APInt &U) : Lower(L), Upper(U) { assert(L.getBitWidth() == U.getBitWidth() && "ConstantRange with unequal bit widths"); uint32_t BitWidth = L.getBitWidth(); assert((L != U || (L == APInt::getMaxValue(BitWidth) || L == APInt::getMinValue(BitWidth))) && "Lower == Upper, but they aren't min or max value!"); } /// isFullSet - Return true if this set contains all of the elements possible /// for this data-type bool ConstantRange::isFullSet() const { return Lower == Upper && Lower == APInt::getMaxValue(getBitWidth()); } /// isEmptySet - Return true if this set contains no members. /// bool ConstantRange::isEmptySet() const { return Lower == Upper && Lower == APInt::getMinValue(getBitWidth()); } /// isWrappedSet - Return true if this set wraps around the top of the range, /// for example: [100, 8) /// bool ConstantRange::isWrappedSet(bool isSigned) const { if (isSigned) return Lower.sgt(Upper); return Lower.ugt(Upper); } /// getSetSize - Return the number of elements in this set. /// APInt ConstantRange::getSetSize() const { if (isEmptySet()) return APInt(getBitWidth(), 0); if (getBitWidth() == 1) { if (Lower != Upper) // One of T or F in the set... return APInt(2, 1); return APInt(2, 2); // Must be full set... } // Simply subtract the bounds... return Upper - Lower; } /// contains - Return true if the specified value is in the set. /// bool ConstantRange::contains(const APInt &V, bool isSigned) const { if (Lower == Upper) { if (isFullSet()) return true; return false; } if (!isWrappedSet(isSigned)) if (isSigned) return Lower.sle(V) && V.slt(Upper); else return Lower.ule(V) && V.ult(Upper); if (isSigned) return Lower.sle(V) || V.slt(Upper); else return Lower.ule(V) || V.ult(Upper); } /// subtract - Subtract the specified constant from the endpoints of this /// constant range. ConstantRange ConstantRange::subtract(const APInt &Val) const { assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width"); // If the set is empty or full, don't modify the endpoints. if (Lower == Upper) return *this; return ConstantRange(Lower - Val, Upper - Val); } // intersect1Wrapped - This helper function is used to intersect two ranges when // it is known that LHS is wrapped and RHS isn't. // ConstantRange ConstantRange::intersect1Wrapped(const ConstantRange &LHS, const ConstantRange &RHS, bool isSigned) { assert(LHS.isWrappedSet(isSigned) && !RHS.isWrappedSet(isSigned)); // Check to see if we overlap on the Left side of RHS... // bool LT = (isSigned ? RHS.Lower.slt(LHS.Upper) : RHS.Lower.ult(LHS.Upper)); bool GT = (isSigned ? RHS.Upper.sgt(LHS.Lower) : RHS.Upper.ugt(LHS.Lower)); if (LT) { // We do overlap on the left side of RHS, see if we overlap on the right of // RHS... if (GT) { // Ok, the result overlaps on both the left and right sides. See if the // resultant interval will be smaller if we wrap or not... // if (LHS.getSetSize().ult(RHS.getSetSize())) return LHS; else return RHS; } else { // No overlap on the right, just on the left. return ConstantRange(RHS.Lower, LHS.Upper); } } else { // We don't overlap on the left side of RHS, see if we overlap on the right // of RHS... if (GT) { // Simple overlap... return ConstantRange(LHS.Lower, RHS.Upper); } else { // No overlap... return ConstantRange(LHS.getBitWidth(), false); } } } /// intersectWith - Return the range that results from the intersection of this /// range with another range. /// ConstantRange ConstantRange::intersectWith(const ConstantRange &CR, bool isSigned) const { assert(getBitWidth() == CR.getBitWidth() && "ConstantRange types don't agree!"); // Handle common special cases if (isEmptySet() || CR.isFullSet()) return *this; if (isFullSet() || CR.isEmptySet()) return CR; if (!isWrappedSet(isSigned)) { if (!CR.isWrappedSet(isSigned)) { using namespace APIntOps; APInt L = isSigned ? smax(Lower, CR.Lower) : umax(Lower, CR.Lower); APInt U = isSigned ? smin(Upper, CR.Upper) : umin(Upper, CR.Upper); if (isSigned ? L.slt(U) : L.ult(U)) // If range isn't empty... return ConstantRange(L, U); else return ConstantRange(getBitWidth(), false);// Otherwise, empty set } else return intersect1Wrapped(CR, *this, isSigned); } else { // We know "this" is wrapped... if (!CR.isWrappedSet(isSigned)) return intersect1Wrapped(*this, CR, isSigned); else { // Both ranges are wrapped... using namespace APIntOps; APInt L = isSigned ? smax(Lower, CR.Lower) : umax(Lower, CR.Lower); APInt U = isSigned ? smin(Upper, CR.Upper) : umin(Upper, CR.Upper); return ConstantRange(L, U); } } return *this; } /// unionWith - Return the range that results from the union of this range with /// another range. The resultant range is guaranteed to include the elements of /// both sets, but may contain more. For example, [3, 9) union [12,15) is [3, /// 15), which includes 9, 10, and 11, which were not included in either set /// before. /// ConstantRange ConstantRange::unionWith(const ConstantRange &CR, bool isSigned) const { assert(getBitWidth() == CR.getBitWidth() && "ConstantRange types don't agree!"); assert(0 && "Range union not implemented yet!"); return *this; } /// zeroExtend - Return a new range in the specified integer type, which must /// be strictly larger than the current type. The returned range will /// correspond to the possible range of values as if the source range had been /// zero extended. ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const { unsigned SrcTySize = getBitWidth(); assert(SrcTySize < DstTySize && "Not a value extension"); if (isFullSet()) // Change a source full set into [0, 1 << 8*numbytes) return ConstantRange(APInt(DstTySize,0), APInt(DstTySize,1).shl(SrcTySize)); APInt L = Lower; L.zext(DstTySize); APInt U = Upper; U.zext(DstTySize); return ConstantRange(L, U); } /// truncate - Return a new range in the specified integer type, which must be /// strictly smaller than the current type. The returned range will /// correspond to the possible range of values as if the source range had been /// truncated to the specified type. ConstantRange ConstantRange::truncate(uint32_t DstTySize) const { unsigned SrcTySize = getBitWidth(); assert(SrcTySize > DstTySize && "Not a value truncation"); APInt Size = APInt::getMaxValue(DstTySize).zext(SrcTySize); if (isFullSet() || getSetSize().ugt(Size)) return ConstantRange(DstTySize); APInt L = Lower; L.trunc(DstTySize); APInt U = Upper; U.trunc(DstTySize); return ConstantRange(L, U); } /// print - Print out the bounds to a stream... /// void ConstantRange::print(std::ostream &OS) const { OS << "[" << Lower.toStringSigned(10) << "," << Upper.toStringSigned(10) << " )"; } /// dump - Allow printing from a debugger easily... /// void ConstantRange::dump() const { print(cerr); }