//===-- JITEmitter.cpp - Write machine code to executable memory ----------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a MachineCodeEmitter object that is used by the JIT to // write machine code to memory and remember where relocatable values are. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "jit" #include "JIT.h" #include "llvm/Constant.h" #include "llvm/Module.h" #include "llvm/Type.h" #include "llvm/CodeGen/MachineCodeEmitter.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineRelocation.h" #include "llvm/ExecutionEngine/GenericValue.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetJITInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MutexGuard.h" #include "llvm/ADT/Statistic.h" #include "llvm/System/Memory.h" #include using namespace llvm; namespace { Statistic NumBytes("jit", "Number of bytes of machine code compiled"); Statistic NumRelos("jit", "Number of relocations applied"); JIT *TheJIT = 0; } //===----------------------------------------------------------------------===// // JITMemoryManager code. // namespace { /// MemoryRangeHeader - For a range of memory, this is the header that we put /// on the block of memory. It is carefully crafted to be one word of memory. /// Allocated blocks have just this header, free'd blocks have FreeRangeHeader /// which starts with this. struct FreeRangeHeader; struct MemoryRangeHeader { /// ThisAllocated - This is true if this block is currently allocated. If /// not, this can be converted to a FreeRangeHeader. intptr_t ThisAllocated : 1; /// PrevAllocated - Keep track of whether the block immediately before us is /// allocated. If not, the word immediately before this header is the size /// of the previous block. intptr_t PrevAllocated : 1; /// BlockSize - This is the size in bytes of this memory block, /// including this header. uintptr_t BlockSize : (sizeof(intptr_t)*8 - 2); /// getBlockAfter - Return the memory block immediately after this one. /// MemoryRangeHeader &getBlockAfter() const { return *(MemoryRangeHeader*)((char*)this+BlockSize); } /// getFreeBlockBefore - If the block before this one is free, return it, /// otherwise return null. FreeRangeHeader *getFreeBlockBefore() const { if (PrevAllocated) return 0; intptr_t PrevSize = ((intptr_t *)this)[-1]; return (FreeRangeHeader*)((char*)this-PrevSize); } /// FreeBlock - Turn an allocated block into a free block, adjusting /// bits in the object headers, and adding an end of region memory block. FreeRangeHeader *FreeBlock(FreeRangeHeader *FreeList); /// TrimAllocationToSize - If this allocated block is significantly larger /// than NewSize, split it into two pieces (where the former is NewSize /// bytes, including the header), and add the new block to the free list. FreeRangeHeader *TrimAllocationToSize(FreeRangeHeader *FreeList, uint64_t NewSize); }; /// FreeRangeHeader - For a memory block that isn't already allocated, this /// keeps track of the current block and has a pointer to the next free block. /// Free blocks are kept on a circularly linked list. struct FreeRangeHeader : public MemoryRangeHeader { FreeRangeHeader *Prev; FreeRangeHeader *Next; /// getMinBlockSize - Get the minimum size for a memory block. Blocks /// smaller than this size cannot be created. static unsigned getMinBlockSize() { return sizeof(FreeRangeHeader)+sizeof(intptr_t); } /// SetEndOfBlockSizeMarker - The word at the end of every free block is /// known to be the size of the free block. Set it for this block. void SetEndOfBlockSizeMarker() { void *EndOfBlock = (char*)this + BlockSize; ((intptr_t *)EndOfBlock)[-1] = BlockSize; } FreeRangeHeader *RemoveFromFreeList() { assert(Next->Prev == this && Prev->Next == this && "Freelist broken!"); Next->Prev = Prev; return Prev->Next = Next; } void AddToFreeList(FreeRangeHeader *FreeList) { Next = FreeList; Prev = FreeList->Prev; Prev->Next = this; Next->Prev = this; } /// GrowBlock - The block after this block just got deallocated. Merge it /// into the current block. void GrowBlock(uintptr_t NewSize); /// AllocateBlock - Mark this entire block allocated, updating freelists /// etc. This returns a pointer to the circular free-list. FreeRangeHeader *AllocateBlock(); }; } /// AllocateBlock - Mark this entire block allocated, updating freelists /// etc. This returns a pointer to the circular free-list. FreeRangeHeader *FreeRangeHeader::AllocateBlock() { assert(!ThisAllocated && !getBlockAfter().PrevAllocated && "Cannot allocate an allocated block!"); // Mark this block allocated. ThisAllocated = 1; getBlockAfter().PrevAllocated = 1; // Remove it from the free list. return RemoveFromFreeList(); } /// FreeBlock - Turn an allocated block into a free block, adjusting /// bits in the object headers, and adding an end of region memory block. /// If possible, coallesce this block with neighboring blocks. Return the /// FreeRangeHeader to allocate from. FreeRangeHeader *MemoryRangeHeader::FreeBlock(FreeRangeHeader *FreeList) { MemoryRangeHeader *FollowingBlock = &getBlockAfter(); assert(ThisAllocated && "This block is already allocated!"); assert(FollowingBlock->PrevAllocated && "Flags out of sync!"); FreeRangeHeader *FreeListToReturn = FreeList; // If the block after this one is free, merge it into this block. if (!FollowingBlock->ThisAllocated) { FreeRangeHeader &FollowingFreeBlock = *(FreeRangeHeader *)FollowingBlock; // "FreeList" always needs to be a valid free block. If we're about to // coallesce with it, update our notion of what the free list is. if (&FollowingFreeBlock == FreeList) { FreeList = FollowingFreeBlock.Next; FreeListToReturn = 0; assert(&FollowingFreeBlock != FreeList && "No tombstone block?"); } FollowingFreeBlock.RemoveFromFreeList(); // Include the following block into this one. BlockSize += FollowingFreeBlock.BlockSize; FollowingBlock = &FollowingFreeBlock.getBlockAfter(); // Tell the block after the block we are coallescing that this block is // allocated. FollowingBlock->PrevAllocated = 1; } assert(FollowingBlock->ThisAllocated && "Missed coallescing?"); if (FreeRangeHeader *PrevFreeBlock = getFreeBlockBefore()) { PrevFreeBlock->GrowBlock(PrevFreeBlock->BlockSize + BlockSize); return FreeListToReturn ? FreeListToReturn : PrevFreeBlock; } // Otherwise, mark this block free. FreeRangeHeader &FreeBlock = *(FreeRangeHeader*)this; FollowingBlock->PrevAllocated = 0; FreeBlock.ThisAllocated = 0; // Link this into the linked list of free blocks. FreeBlock.AddToFreeList(FreeList); // Add a marker at the end of the block, indicating the size of this free // block. FreeBlock.SetEndOfBlockSizeMarker(); return FreeListToReturn ? FreeListToReturn : &FreeBlock; } /// GrowBlock - The block after this block just got deallocated. Merge it /// into the current block. void FreeRangeHeader::GrowBlock(uintptr_t NewSize) { assert(NewSize > BlockSize && "Not growing block?"); BlockSize = NewSize; SetEndOfBlockSizeMarker(); getBlockAfter().PrevAllocated = 0; } /// TrimAllocationToSize - If this allocated block is significantly larger /// than NewSize, split it into two pieces (where the former is NewSize /// bytes, including the header), and add the new block to the free list. FreeRangeHeader *MemoryRangeHeader:: TrimAllocationToSize(FreeRangeHeader *FreeList, uint64_t NewSize) { assert(ThisAllocated && getBlockAfter().PrevAllocated && "Cannot deallocate part of an allocated block!"); // Round up size for alignment of header. unsigned HeaderAlign = __alignof(FreeRangeHeader); NewSize = (NewSize+ (HeaderAlign-1)) & ~(HeaderAlign-1); // Size is now the size of the block we will remove from the start of the // current block. assert(NewSize <= BlockSize && "Allocating more space from this block than exists!"); // If splitting this block will cause the remainder to be too small, do not // split the block. if (BlockSize <= NewSize+FreeRangeHeader::getMinBlockSize()) return FreeList; // Otherwise, we splice the required number of bytes out of this block, form // a new block immediately after it, then mark this block allocated. MemoryRangeHeader &FormerNextBlock = getBlockAfter(); // Change the size of this block. BlockSize = NewSize; // Get the new block we just sliced out and turn it into a free block. FreeRangeHeader &NewNextBlock = (FreeRangeHeader &)getBlockAfter(); NewNextBlock.BlockSize = (char*)&FormerNextBlock - (char*)&NewNextBlock; NewNextBlock.ThisAllocated = 0; NewNextBlock.PrevAllocated = 1; NewNextBlock.SetEndOfBlockSizeMarker(); FormerNextBlock.PrevAllocated = 0; NewNextBlock.AddToFreeList(FreeList); return &NewNextBlock; } namespace { /// JITMemoryManager - Manage memory for the JIT code generation in a logical, /// sane way. This splits a large block of MAP_NORESERVE'd memory into two /// sections, one for function stubs, one for the functions themselves. We /// have to do this because we may need to emit a function stub while in the /// middle of emitting a function, and we don't know how large the function we /// are emitting is. This never bothers to release the memory, because when /// we are ready to destroy the JIT, the program exits. class JITMemoryManager { std::vector Blocks; // Memory blocks allocated by the JIT FreeRangeHeader *FreeMemoryList; // Circular list of free blocks. // When emitting code into a memory block, this is the block. MemoryRangeHeader *CurBlock; unsigned char *CurStubPtr, *StubBase; unsigned char *GOTBase; // Target Specific reserved memory // Centralize memory block allocation. sys::MemoryBlock getNewMemoryBlock(unsigned size); std::map FunctionBlocks; public: JITMemoryManager(bool useGOT); ~JITMemoryManager(); inline unsigned char *allocateStub(unsigned StubSize, unsigned Alignment); /// startFunctionBody - When a function starts, allocate a block of free /// executable memory, returning a pointer to it and its actual size. unsigned char *startFunctionBody(uintptr_t &ActualSize) { CurBlock = FreeMemoryList; // Allocate the entire memory block. FreeMemoryList = FreeMemoryList->AllocateBlock(); ActualSize = CurBlock->BlockSize-sizeof(MemoryRangeHeader); return (unsigned char *)(CurBlock+1); } /// endFunctionBody - The function F is now allocated, and takes the memory /// in the range [FunctionStart,FunctionEnd). void endFunctionBody(const Function *F, unsigned char *FunctionStart, unsigned char *FunctionEnd) { assert(FunctionEnd > FunctionStart); assert(FunctionStart == (unsigned char *)(CurBlock+1) && "Mismatched function start/end!"); uintptr_t BlockSize = FunctionEnd - (unsigned char *)CurBlock; FunctionBlocks[F] = CurBlock; // Release the memory at the end of this block that isn't needed. FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize); } unsigned char *getGOTBase() const { return GOTBase; } bool isManagingGOT() const { return GOTBase != NULL; } /// deallocateMemForFunction - Deallocate all memory for the specified /// function body. void deallocateMemForFunction(const Function *F) { std::map::iterator I = FunctionBlocks.find(F); if (I == FunctionBlocks.end()) return; // Find the block that is allocated for this function. MemoryRangeHeader *MemRange = I->second; assert(MemRange->ThisAllocated && "Block isn't allocated!"); // Fill the buffer with garbage! DEBUG(memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange))); // Free the memory. FreeMemoryList = MemRange->FreeBlock(FreeMemoryList); // Finally, remove this entry from FunctionBlocks. FunctionBlocks.erase(I); } }; } JITMemoryManager::JITMemoryManager(bool useGOT) { // Allocate a 16M block of memory for functions. sys::MemoryBlock MemBlock = getNewMemoryBlock(16 << 20); unsigned char *MemBase = reinterpret_cast(MemBlock.base()); // Allocate stubs backwards from the base, allocate functions forward // from the base. StubBase = MemBase; CurStubPtr = MemBase + 512*1024; // Use 512k for stubs, working backwards. // We set up the memory chunk with 4 mem regions, like this: // [ START // [ Free #0 ] -> Large space to allocate functions from. // [ Allocated #1 ] -> Tiny space to separate regions. // [ Free #2 ] -> Tiny space so there is always at least 1 free block. // [ Allocated #3 ] -> Tiny space to prevent looking past end of block. // END ] // // The last three blocks are never deallocated or touched. // Add MemoryRangeHeader to the end of the memory region, indicating that // the space after the block of memory is allocated. This is block #3. MemoryRangeHeader *Mem3 = (MemoryRangeHeader*)(MemBase+MemBlock.size())-1; Mem3->ThisAllocated = 1; Mem3->PrevAllocated = 0; Mem3->BlockSize = 0; /// Add a tiny free region so that the free list always has one entry. FreeRangeHeader *Mem2 = (FreeRangeHeader *)(((char*)Mem3)-FreeRangeHeader::getMinBlockSize()); Mem2->ThisAllocated = 0; Mem2->PrevAllocated = 1; Mem2->BlockSize = FreeRangeHeader::getMinBlockSize(); Mem2->SetEndOfBlockSizeMarker(); Mem2->Prev = Mem2; // Mem2 *is* the free list for now. Mem2->Next = Mem2; /// Add a tiny allocated region so that Mem2 is never coallesced away. MemoryRangeHeader *Mem1 = (MemoryRangeHeader*)Mem2-1; Mem1->ThisAllocated = 1; Mem1->PrevAllocated = 0; Mem1->BlockSize = (char*)Mem2 - (char*)Mem1; // Add a FreeRangeHeader to the start of the function body region, indicating // that the space is free. Mark the previous block allocated so we never look // at it. FreeRangeHeader *Mem0 = (FreeRangeHeader*)CurStubPtr; Mem0->ThisAllocated = 0; Mem0->PrevAllocated = 1; Mem0->BlockSize = (char*)Mem1-(char*)Mem0; Mem0->SetEndOfBlockSizeMarker(); Mem0->AddToFreeList(Mem2); // Start out with the freelist pointing to Mem0. FreeMemoryList = Mem0; // Allocate the GOT. GOTBase = NULL; if (useGOT) GOTBase = new unsigned char[sizeof(void*) * 8192]; } JITMemoryManager::~JITMemoryManager() { for (unsigned i = 0, e = Blocks.size(); i != e; ++i) sys::Memory::ReleaseRWX(Blocks[i]); delete[] GOTBase; Blocks.clear(); } unsigned char *JITMemoryManager::allocateStub(unsigned StubSize, unsigned Alignment) { CurStubPtr -= StubSize; CurStubPtr = (unsigned char*)(((intptr_t)CurStubPtr) & ~(intptr_t)(Alignment-1)); if (CurStubPtr < StubBase) { // FIXME: allocate a new block cerr << "JIT ran out of memory for function stubs!\n"; abort(); } return CurStubPtr; } sys::MemoryBlock JITMemoryManager::getNewMemoryBlock(unsigned size) { // Allocate a new block close to the last one. const sys::MemoryBlock *BOld = Blocks.empty() ? 0 : &Blocks.front(); std::string ErrMsg; sys::MemoryBlock B = sys::Memory::AllocateRWX(size, BOld, &ErrMsg); if (B.base() == 0) { cerr << "Allocation failed when allocating new memory in the JIT\n"; cerr << ErrMsg << "\n"; abort(); } Blocks.push_back(B); return B; } //===----------------------------------------------------------------------===// // JIT lazy compilation code. // namespace { class JITResolverState { private: /// FunctionToStubMap - Keep track of the stub created for a particular /// function so that we can reuse them if necessary. std::map FunctionToStubMap; /// StubToFunctionMap - Keep track of the function that each stub /// corresponds to. std::map StubToFunctionMap; public: std::map& getFunctionToStubMap(const MutexGuard& locked) { assert(locked.holds(TheJIT->lock)); return FunctionToStubMap; } std::map& getStubToFunctionMap(const MutexGuard& locked) { assert(locked.holds(TheJIT->lock)); return StubToFunctionMap; } }; /// JITResolver - Keep track of, and resolve, call sites for functions that /// have not yet been compiled. class JITResolver { /// MCE - The MachineCodeEmitter to use to emit stubs with. MachineCodeEmitter &MCE; /// LazyResolverFn - The target lazy resolver function that we actually /// rewrite instructions to use. TargetJITInfo::LazyResolverFn LazyResolverFn; JITResolverState state; /// ExternalFnToStubMap - This is the equivalent of FunctionToStubMap for /// external functions. std::map ExternalFnToStubMap; //map addresses to indexes in the GOT std::map revGOTMap; unsigned nextGOTIndex; public: JITResolver(MachineCodeEmitter &mce) : MCE(mce), nextGOTIndex(0) { LazyResolverFn = TheJIT->getJITInfo().getLazyResolverFunction(JITCompilerFn); } /// getFunctionStub - This returns a pointer to a function stub, creating /// one on demand as needed. void *getFunctionStub(Function *F); /// getExternalFunctionStub - Return a stub for the function at the /// specified address, created lazily on demand. void *getExternalFunctionStub(void *FnAddr); /// AddCallbackAtLocation - If the target is capable of rewriting an /// instruction without the use of a stub, record the location of the use so /// we know which function is being used at the location. void *AddCallbackAtLocation(Function *F, void *Location) { MutexGuard locked(TheJIT->lock); /// Get the target-specific JIT resolver function. state.getStubToFunctionMap(locked)[Location] = F; return (void*)(intptr_t)LazyResolverFn; } /// getGOTIndexForAddress - Return a new or existing index in the GOT for /// and address. This function only manages slots, it does not manage the /// contents of the slots or the memory associated with the GOT. unsigned getGOTIndexForAddr(void* addr); /// JITCompilerFn - This function is called to resolve a stub to a compiled /// address. If the LLVM Function corresponding to the stub has not yet /// been compiled, this function compiles it first. static void *JITCompilerFn(void *Stub); }; } /// getJITResolver - This function returns the one instance of the JIT resolver. /// static JITResolver &getJITResolver(MachineCodeEmitter *MCE = 0) { static JITResolver TheJITResolver(*MCE); return TheJITResolver; } #if (defined(__POWERPC__) || defined (__ppc__) || defined(_POWER)) && \ defined(__APPLE__) extern "C" void sys_icache_invalidate(const void *Addr, size_t len); #endif /// synchronizeICache - On some targets, the JIT emitted code must be /// explicitly refetched to ensure correct execution. static void synchronizeICache(const void *Addr, size_t len) { #if (defined(__POWERPC__) || defined (__ppc__) || defined(_POWER)) && \ defined(__APPLE__) sys_icache_invalidate(Addr, len); #endif } /// getFunctionStub - This returns a pointer to a function stub, creating /// one on demand as needed. void *JITResolver::getFunctionStub(Function *F) { MutexGuard locked(TheJIT->lock); // If we already have a stub for this function, recycle it. void *&Stub = state.getFunctionToStubMap(locked)[F]; if (Stub) return Stub; // Call the lazy resolver function unless we already KNOW it is an external // function, in which case we just skip the lazy resolution step. void *Actual = (void*)(intptr_t)LazyResolverFn; if (F->isExternal() && !F->hasNotBeenReadFromBytecode()) Actual = TheJIT->getPointerToFunction(F); // Otherwise, codegen a new stub. For now, the stub will call the lazy // resolver function. Stub = TheJIT->getJITInfo().emitFunctionStub(Actual, MCE); if (Actual != (void*)(intptr_t)LazyResolverFn) { // If we are getting the stub for an external function, we really want the // address of the stub in the GlobalAddressMap for the JIT, not the address // of the external function. TheJIT->updateGlobalMapping(F, Stub); } // Invalidate the icache if necessary. synchronizeICache(Stub, MCE.getCurrentPCValue()-(intptr_t)Stub); DOUT << "JIT: Stub emitted at [" << Stub << "] for function '" << F->getName() << "'\n"; // Finally, keep track of the stub-to-Function mapping so that the // JITCompilerFn knows which function to compile! state.getStubToFunctionMap(locked)[Stub] = F; return Stub; } /// getExternalFunctionStub - Return a stub for the function at the /// specified address, created lazily on demand. void *JITResolver::getExternalFunctionStub(void *FnAddr) { // If we already have a stub for this function, recycle it. void *&Stub = ExternalFnToStubMap[FnAddr]; if (Stub) return Stub; Stub = TheJIT->getJITInfo().emitFunctionStub(FnAddr, MCE); // Invalidate the icache if necessary. synchronizeICache(Stub, MCE.getCurrentPCValue()-(intptr_t)Stub); DOUT << "JIT: Stub emitted at [" << Stub << "] for external function at '" << FnAddr << "'\n"; return Stub; } unsigned JITResolver::getGOTIndexForAddr(void* addr) { unsigned idx = revGOTMap[addr]; if (!idx) { idx = ++nextGOTIndex; revGOTMap[addr] = idx; DOUT << "Adding GOT entry " << idx << " for addr " << addr << "\n"; // ((void**)MemMgr.getGOTBase())[idx] = addr; } return idx; } /// JITCompilerFn - This function is called when a lazy compilation stub has /// been entered. It looks up which function this stub corresponds to, compiles /// it if necessary, then returns the resultant function pointer. void *JITResolver::JITCompilerFn(void *Stub) { JITResolver &JR = getJITResolver(); MutexGuard locked(TheJIT->lock); // The address given to us for the stub may not be exactly right, it might be // a little bit after the stub. As such, use upper_bound to find it. std::map::iterator I = JR.state.getStubToFunctionMap(locked).upper_bound(Stub); assert(I != JR.state.getStubToFunctionMap(locked).begin() && "This is not a known stub!"); Function *F = (--I)->second; // If disabled, emit a useful error message and abort. if (TheJIT->isLazyCompilationDisabled()) { cerr << "LLVM JIT requested to do lazy compilation of function '" << F->getName() << "' when lazy compiles are disabled!\n"; abort(); } // We might like to remove the stub from the StubToFunction map. // We can't do that! Multiple threads could be stuck, waiting to acquire the // lock above. As soon as the 1st function finishes compiling the function, // the next one will be released, and needs to be able to find the function it // needs to call. //JR.state.getStubToFunctionMap(locked).erase(I); DOUT << "JIT: Lazily resolving function '" << F->getName() << "' In stub ptr = " << Stub << " actual ptr = " << I->first << "\n"; void *Result = TheJIT->getPointerToFunction(F); // We don't need to reuse this stub in the future, as F is now compiled. JR.state.getFunctionToStubMap(locked).erase(F); // FIXME: We could rewrite all references to this stub if we knew them. // What we will do is set the compiled function address to map to the // same GOT entry as the stub so that later clients may update the GOT // if they see it still using the stub address. // Note: this is done so the Resolver doesn't have to manage GOT memory // Do this without allocating map space if the target isn't using a GOT if(JR.revGOTMap.find(Stub) != JR.revGOTMap.end()) JR.revGOTMap[Result] = JR.revGOTMap[Stub]; return Result; } //===----------------------------------------------------------------------===// // JITEmitter code. // namespace { /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is /// used to output functions to memory for execution. class JITEmitter : public MachineCodeEmitter { JITMemoryManager MemMgr; // When outputting a function stub in the context of some other function, we // save BufferBegin/BufferEnd/CurBufferPtr here. unsigned char *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr; /// Relocations - These are the relocations that the function needs, as /// emitted. std::vector Relocations; /// MBBLocations - This vector is a mapping from MBB ID's to their address. /// It is filled in by the StartMachineBasicBlock callback and queried by /// the getMachineBasicBlockAddress callback. std::vector MBBLocations; /// ConstantPool - The constant pool for the current function. /// MachineConstantPool *ConstantPool; /// ConstantPoolBase - A pointer to the first entry in the constant pool. /// void *ConstantPoolBase; /// JumpTable - The jump tables for the current function. /// MachineJumpTableInfo *JumpTable; /// JumpTableBase - A pointer to the first entry in the jump table. /// void *JumpTableBase; public: JITEmitter(JIT &jit) : MemMgr(jit.getJITInfo().needsGOT()) { TheJIT = &jit; if (MemMgr.isManagingGOT()) DOUT << "JIT is managing a GOT\n"; } virtual void startFunction(MachineFunction &F); virtual bool finishFunction(MachineFunction &F); void emitConstantPool(MachineConstantPool *MCP); void initJumpTableInfo(MachineJumpTableInfo *MJTI); void emitJumpTableInfo(MachineJumpTableInfo *MJTI); virtual void startFunctionStub(unsigned StubSize, unsigned Alignment = 1); virtual void* finishFunctionStub(const Function *F); virtual void addRelocation(const MachineRelocation &MR) { Relocations.push_back(MR); } virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) { if (MBBLocations.size() <= (unsigned)MBB->getNumber()) MBBLocations.resize((MBB->getNumber()+1)*2); MBBLocations[MBB->getNumber()] = getCurrentPCValue(); } virtual intptr_t getConstantPoolEntryAddress(unsigned Entry) const; virtual intptr_t getJumpTableEntryAddress(unsigned Entry) const; virtual intptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const { assert(MBBLocations.size() > (unsigned)MBB->getNumber() && MBBLocations[MBB->getNumber()] && "MBB not emitted!"); return MBBLocations[MBB->getNumber()]; } /// deallocateMemForFunction - Deallocate all memory for the specified /// function body. void deallocateMemForFunction(Function *F) { MemMgr.deallocateMemForFunction(F); } private: void *getPointerToGlobal(GlobalValue *GV, void *Reference, bool NoNeedStub); }; } void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference, bool DoesntNeedStub) { if (GlobalVariable *GV = dyn_cast(V)) { /// FIXME: If we straightened things out, this could actually emit the /// global immediately instead of queuing it for codegen later! return TheJIT->getOrEmitGlobalVariable(GV); } // If we have already compiled the function, return a pointer to its body. Function *F = cast(V); void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F); if (ResultPtr) return ResultPtr; if (F->isExternal() && !F->hasNotBeenReadFromBytecode()) { // If this is an external function pointer, we can force the JIT to // 'compile' it, which really just adds it to the map. if (DoesntNeedStub) return TheJIT->getPointerToFunction(F); return getJITResolver(this).getFunctionStub(F); } // Okay, the function has not been compiled yet, if the target callback // mechanism is capable of rewriting the instruction directly, prefer to do // that instead of emitting a stub. if (DoesntNeedStub) return getJITResolver(this).AddCallbackAtLocation(F, Reference); // Otherwise, we have to emit a lazy resolving stub. return getJITResolver(this).getFunctionStub(F); } void JITEmitter::startFunction(MachineFunction &F) { uintptr_t ActualSize; BufferBegin = CurBufferPtr = MemMgr.startFunctionBody(ActualSize); BufferEnd = BufferBegin+ActualSize; // Ensure the constant pool/jump table info is at least 4-byte aligned. emitAlignment(16); emitConstantPool(F.getConstantPool()); initJumpTableInfo(F.getJumpTableInfo()); // About to start emitting the machine code for the function. emitAlignment(std::max(F.getFunction()->getAlignment(), 8U)); TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr); MBBLocations.clear(); } bool JITEmitter::finishFunction(MachineFunction &F) { if (CurBufferPtr == BufferEnd) { // FIXME: Allocate more space, then try again. cerr << "JIT: Ran out of space for generated machine code!\n"; abort(); } emitJumpTableInfo(F.getJumpTableInfo()); // FnStart is the start of the text, not the start of the constant pool and // other per-function data. unsigned char *FnStart = (unsigned char *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction()); unsigned char *FnEnd = CurBufferPtr; MemMgr.endFunctionBody(F.getFunction(), BufferBegin, FnEnd); NumBytes += FnEnd-FnStart; if (!Relocations.empty()) { NumRelos += Relocations.size(); // Resolve the relocations to concrete pointers. for (unsigned i = 0, e = Relocations.size(); i != e; ++i) { MachineRelocation &MR = Relocations[i]; void *ResultPtr; if (MR.isString()) { ResultPtr = TheJIT->getPointerToNamedFunction(MR.getString()); // If the target REALLY wants a stub for this function, emit it now. if (!MR.doesntNeedFunctionStub()) ResultPtr = getJITResolver(this).getExternalFunctionStub(ResultPtr); } else if (MR.isGlobalValue()) { ResultPtr = getPointerToGlobal(MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset(), MR.doesntNeedFunctionStub()); } else if (MR.isBasicBlock()) { ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock()); } else if (MR.isConstantPoolIndex()){ ResultPtr=(void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex()); } else { assert(MR.isJumpTableIndex()); ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex()); } MR.setResultPointer(ResultPtr); // if we are managing the GOT and the relocation wants an index, // give it one if (MemMgr.isManagingGOT() && MR.isGOTRelative()) { unsigned idx = getJITResolver(this).getGOTIndexForAddr(ResultPtr); MR.setGOTIndex(idx); if (((void**)MemMgr.getGOTBase())[idx] != ResultPtr) { DOUT << "GOT was out of date for " << ResultPtr << " pointing at " << ((void**)MemMgr.getGOTBase())[idx] << "\n"; ((void**)MemMgr.getGOTBase())[idx] = ResultPtr; } } } TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0], Relocations.size(), MemMgr.getGOTBase()); } // Update the GOT entry for F to point to the new code. if(MemMgr.isManagingGOT()) { unsigned idx = getJITResolver(this).getGOTIndexForAddr((void*)BufferBegin); if (((void**)MemMgr.getGOTBase())[idx] != (void*)BufferBegin) { DOUT << "GOT was out of date for " << (void*)BufferBegin << " pointing at " << ((void**)MemMgr.getGOTBase())[idx] << "\n"; ((void**)MemMgr.getGOTBase())[idx] = (void*)BufferBegin; } } // Invalidate the icache if necessary. synchronizeICache(FnStart, FnEnd-FnStart); DOUT << "JIT: Finished CodeGen of [" << (void*)FnStart << "] Function: " << F.getFunction()->getName() << ": " << (FnEnd-FnStart) << " bytes of text, " << Relocations.size() << " relocations\n"; Relocations.clear(); return false; } void JITEmitter::emitConstantPool(MachineConstantPool *MCP) { const std::vector &Constants = MCP->getConstants(); if (Constants.empty()) return; MachineConstantPoolEntry CPE = Constants.back(); unsigned Size = CPE.Offset; const Type *Ty = CPE.isMachineConstantPoolEntry() ? CPE.Val.MachineCPVal->getType() : CPE.Val.ConstVal->getType(); Size += TheJIT->getTargetData()->getTypeSize(Ty); ConstantPoolBase = allocateSpace(Size, 1 << MCP->getConstantPoolAlignment()); ConstantPool = MCP; if (ConstantPoolBase == 0) return; // Buffer overflow. // Initialize the memory for all of the constant pool entries. for (unsigned i = 0, e = Constants.size(); i != e; ++i) { void *CAddr = (char*)ConstantPoolBase+Constants[i].Offset; if (Constants[i].isMachineConstantPoolEntry()) { // FIXME: add support to lower machine constant pool values into bytes! cerr << "Initialize memory with machine specific constant pool entry" << " has not been implemented!\n"; abort(); } TheJIT->InitializeMemory(Constants[i].Val.ConstVal, CAddr); } } void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) { const std::vector &JT = MJTI->getJumpTables(); if (JT.empty()) return; unsigned NumEntries = 0; for (unsigned i = 0, e = JT.size(); i != e; ++i) NumEntries += JT[i].MBBs.size(); unsigned EntrySize = MJTI->getEntrySize(); // Just allocate space for all the jump tables now. We will fix up the actual // MBB entries in the tables after we emit the code for each block, since then // we will know the final locations of the MBBs in memory. JumpTable = MJTI; JumpTableBase = allocateSpace(NumEntries * EntrySize, MJTI->getAlignment()); } void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) { const std::vector &JT = MJTI->getJumpTables(); if (JT.empty() || JumpTableBase == 0) return; assert(MJTI->getEntrySize() == sizeof(void*) && "Cross JIT'ing?"); // For each jump table, map each target in the jump table to the address of // an emitted MachineBasicBlock. intptr_t *SlotPtr = (intptr_t*)JumpTableBase; for (unsigned i = 0, e = JT.size(); i != e; ++i) { const std::vector &MBBs = JT[i].MBBs; // Store the address of the basic block for this jump table slot in the // memory we allocated for the jump table in 'initJumpTableInfo' for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]); } } void JITEmitter::startFunctionStub(unsigned StubSize, unsigned Alignment) { SavedBufferBegin = BufferBegin; SavedBufferEnd = BufferEnd; SavedCurBufferPtr = CurBufferPtr; BufferBegin = CurBufferPtr = MemMgr.allocateStub(StubSize, Alignment); BufferEnd = BufferBegin+StubSize+1; } void *JITEmitter::finishFunctionStub(const Function *F) { NumBytes += getCurrentPCOffset(); std::swap(SavedBufferBegin, BufferBegin); BufferEnd = SavedBufferEnd; CurBufferPtr = SavedCurBufferPtr; return SavedBufferBegin; } // getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry // in the constant pool that was last emitted with the 'emitConstantPool' // method. // intptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const { assert(ConstantNum < ConstantPool->getConstants().size() && "Invalid ConstantPoolIndex!"); return (intptr_t)ConstantPoolBase + ConstantPool->getConstants()[ConstantNum].Offset; } // getJumpTableEntryAddress - Return the address of the JumpTable with index // 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo' // intptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const { const std::vector &JT = JumpTable->getJumpTables(); assert(Index < JT.size() && "Invalid jump table index!"); unsigned Offset = 0; unsigned EntrySize = JumpTable->getEntrySize(); for (unsigned i = 0; i < Index; ++i) Offset += JT[i].MBBs.size() * EntrySize; return (intptr_t)((char *)JumpTableBase + Offset); } //===----------------------------------------------------------------------===// // Public interface to this file //===----------------------------------------------------------------------===// MachineCodeEmitter *JIT::createEmitter(JIT &jit) { return new JITEmitter(jit); } // getPointerToNamedFunction - This function is used as a global wrapper to // JIT::getPointerToNamedFunction for the purpose of resolving symbols when // bugpoint is debugging the JIT. In that scenario, we are loading an .so and // need to resolve function(s) that are being mis-codegenerated, so we need to // resolve their addresses at runtime, and this is the way to do it. extern "C" { void *getPointerToNamedFunction(const char *Name) { if (Function *F = TheJIT->FindFunctionNamed(Name)) return TheJIT->getPointerToFunction(F); return TheJIT->getPointerToNamedFunction(Name); } } // getPointerToFunctionOrStub - If the specified function has been // code-gen'd, return a pointer to the function. If not, compile it, or use // a stub to implement lazy compilation if available. // void *JIT::getPointerToFunctionOrStub(Function *F) { // If we have already code generated the function, just return the address. if (void *Addr = getPointerToGlobalIfAvailable(F)) return Addr; // Get a stub if the target supports it return getJITResolver(MCE).getFunctionStub(F); } /// freeMachineCodeForFunction - release machine code memory for given Function. /// void JIT::freeMachineCodeForFunction(Function *F) { // Delete translation for this from the ExecutionEngine, so it will get // retranslated next time it is used. updateGlobalMapping(F, 0); // Free the actual memory for the function body and related stuff. assert(dynamic_cast(MCE) && "Unexpected MCE?"); dynamic_cast(MCE)->deallocateMemForFunction(F); }