// $Id$ -*-c++-*- //*************************************************************************** // File: // InstrSelectionSupport.h // // Purpose: // Target-independent instruction selection code. // See SparcInstrSelection.cpp for usage. // // History: // 10/10/01 - Vikram Adve - Created //**************************************************************************/ #include "llvm/CodeGen/InstrSelectionSupport.h" #include "llvm/CodeGen/InstrSelection.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/MachineRegInfo.h" #include "llvm/ConstPoolVals.h" #include "llvm/Instruction.h" #include "llvm/Type.h" #include "llvm/iMemory.h" //*************************** Local Functions ******************************/ inline int64_t GetSignedIntConstantValue(Value* val, bool& isValidConstant) { int64_t intValue = 0; isValidConstant = false; if (val->getValueType() == Value::ConstantVal) { switch(val->getType()->getPrimitiveID()) { case Type::BoolTyID: intValue = ((ConstPoolBool*) val)->getValue()? 1 : 0; isValidConstant = true; break; case Type::SByteTyID: case Type::ShortTyID: case Type::IntTyID: case Type::LongTyID: intValue = ((ConstPoolSInt*) val)->getValue(); isValidConstant = true; break; default: break; } } return intValue; } inline uint64_t GetUnsignedIntConstantValue(Value* val, bool& isValidConstant) { uint64_t intValue = 0; isValidConstant = false; if (val->getValueType() == Value::ConstantVal) { switch(val->getType()->getPrimitiveID()) { case Type::BoolTyID: intValue = ((ConstPoolBool*) val)->getValue()? 1 : 0; isValidConstant = true; break; case Type::UByteTyID: case Type::UShortTyID: case Type::UIntTyID: case Type::ULongTyID: intValue = ((ConstPoolUInt*) val)->getValue(); isValidConstant = true; break; default: break; } } return intValue; } inline int64_t GetConstantValueAsSignedInt(Value* val, bool& isValidConstant) { int64_t intValue = 0; if (val->getType()->isSigned()) { intValue = GetSignedIntConstantValue(val, isValidConstant); } else // non-numeric types will fall here { uint64_t uintValue = GetUnsignedIntConstantValue(val, isValidConstant); if (isValidConstant && uintValue < INT64_MAX) // safe to use signed intValue = (int64_t) uintValue; else isValidConstant = false; } return intValue; } //--------------------------------------------------------------------------- // Function: FoldGetElemChain // // Purpose: // Fold a chain of GetElementPtr instructions into an equivalent // (Pointer, IndexVector) pair. Returns the pointer Value, and // stores the resulting IndexVector in argument chainIdxVec. //--------------------------------------------------------------------------- Value* FoldGetElemChain(const InstructionNode* getElemInstrNode, vector& chainIdxVec) { MemAccessInst* getElemInst = (MemAccessInst*) getElemInstrNode->getInstruction(); // Initialize return values from the incoming instruction Value* ptrVal = getElemInst->getPtrOperand(); chainIdxVec = getElemInst->getIndexVec(); // copies index vector values // Now chase the chain of getElementInstr instructions, if any InstrTreeNode* ptrChild = getElemInstrNode->leftChild(); while (ptrChild->getOpLabel() == Instruction::GetElementPtr || ptrChild->getOpLabel() == GetElemPtrIdx) { // Child is a GetElemPtr instruction getElemInst = (MemAccessInst*) ((InstructionNode*) ptrChild)->getInstruction(); const vector& idxVec = getElemInst->getIndexVec(); // Get the pointer value out of ptrChild and *prepend* its index vector ptrVal = getElemInst->getPtrOperand(); chainIdxVec.insert(chainIdxVec.begin(), idxVec.begin(), idxVec.end()); ptrChild = ptrChild->leftChild(); } return ptrVal; } //------------------------------------------------------------------------ // Function Set2OperandsFromInstr // Function Set3OperandsFromInstr // // For the common case of 2- and 3-operand arithmetic/logical instructions, // set the m/c instr. operands directly from the VM instruction's operands. // Check whether the first or second operand is 0 and can use a dedicated "0" // register. // Check whether the second operand should use an immediate field or register. // (First and third operands are never immediates for such instructions.) // // Arguments: // canDiscardResult: Specifies that the result operand can be discarded // by using the dedicated "0" // // op1position, op2position and resultPosition: Specify in which position // in the machine instruction the 3 operands (arg1, arg2 // and result) should go. // // RETURN VALUE: unsigned int flags, where // flags & 0x01 => operand 1 is constant and needs a register // flags & 0x02 => operand 2 is constant and needs a register //------------------------------------------------------------------------ void Set2OperandsFromInstr(MachineInstr* minstr, InstructionNode* vmInstrNode, const TargetMachine& target, bool canDiscardResult, int op1Position, int resultPosition) { Set3OperandsFromInstr(minstr, vmInstrNode, target, canDiscardResult, op1Position, /*op2Position*/ -1, resultPosition); } #undef REVERT_TO_EXPLICIT_CONSTANT_CHECKS #ifdef REVERT_TO_EXPLICIT_CONSTANT_CHECKS unsigned Set3OperandsFromInstrJUNK(MachineInstr* minstr, InstructionNode* vmInstrNode, const TargetMachine& target, bool canDiscardResult, int op1Position, int op2Position, int resultPosition) { assert(op1Position >= 0); assert(resultPosition >= 0); unsigned returnFlags = 0x0; // Check if operand 1 is 0. If so, try to use a hardwired 0 register. Value* op1Value = vmInstrNode->leftChild()->getValue(); bool isValidConstant; int64_t intValue = GetConstantValueAsSignedInt(op1Value, isValidConstant); if (isValidConstant && intValue == 0 && target.zeroRegNum >= 0) minstr->SetMachineOperand(op1Position, /*regNum*/ target.zeroRegNum); else { if (isa(op1Value)) { // value is constant and must be loaded from constant pool returnFlags = returnFlags | (1 << op1Position); } minstr->SetMachineOperand(op1Position, MachineOperand::MO_VirtualRegister, op1Value); } // Check if operand 2 (if any) fits in the immed. field of the instruction, // or if it is 0 and can use a dedicated machine register if (op2Position >= 0) { Value* op2Value = vmInstrNode->rightChild()->getValue(); int64_t immedValue; unsigned int machineRegNum; MachineOperand::MachineOperandType op2type = ChooseRegOrImmed(op2Value, minstr->getOpCode(), target, /*canUseImmed*/ true, machineRegNum, immedValue); if (op2type == MachineOperand::MO_MachineRegister) minstr->SetMachineOperand(op2Position, machineRegNum); else if (op2type == MachineOperand::MO_VirtualRegister) { if (isa(op2Value)) { // value is constant and must be loaded from constant pool returnFlags = returnFlags | (1 << op2Position); } minstr->SetMachineOperand(op2Position, op2type, op2Value); } else { assert(op2type != MO_CCRegister); minstr->SetMachineOperand(op2Position, op2type, immedValue); } } // If operand 3 (result) can be discarded, use a dead register if one exists if (canDiscardResult && target.zeroRegNum >= 0) minstr->SetMachineOperand(resultPosition, target.zeroRegNum); else minstr->SetMachineOperand(resultPosition, MachineOperand::MO_VirtualRegister, vmInstrNode->getValue()); return returnFlags; } #endif void Set3OperandsFromInstr(MachineInstr* minstr, InstructionNode* vmInstrNode, const TargetMachine& target, bool canDiscardResult, int op1Position, int op2Position, int resultPosition) { assert(op1Position >= 0); assert(resultPosition >= 0); // operand 1 minstr->SetMachineOperand(op1Position, MachineOperand::MO_VirtualRegister, vmInstrNode->leftChild()->getValue()); // operand 2 (if any) if (op2Position >= 0) minstr->SetMachineOperand(op2Position, MachineOperand::MO_VirtualRegister, vmInstrNode->rightChild()->getValue()); // result operand: if it can be discarded, use a dead register if one exists if (canDiscardResult && target.getRegInfo().getZeroRegNum() >= 0) minstr->SetMachineOperand(resultPosition, target.getRegInfo().getZeroRegNum()); else minstr->SetMachineOperand(resultPosition, MachineOperand::MO_VirtualRegister, vmInstrNode->getValue()); } MachineOperand::MachineOperandType ChooseRegOrImmed(Value* val, MachineOpCode opCode, const TargetMachine& target, bool canUseImmed, unsigned int& getMachineRegNum, int64_t& getImmedValue) { MachineOperand::MachineOperandType opType = MachineOperand::MO_VirtualRegister; getMachineRegNum = 0; getImmedValue = 0; // Check for the common case first: argument is not constant // ConstPoolVal *CPV = dyn_cast(val); if (!CPV) return opType; if (CPV->getType() == Type::BoolTy) { ConstPoolBool *CPB = (ConstPoolBool*)CPV; if (!CPB->getValue() && target.getRegInfo().getZeroRegNum() >= 0) { getMachineRegNum = target.getRegInfo().getZeroRegNum(); return MachineOperand::MO_MachineRegister; } getImmedValue = 1; return MachineOperand::MO_SignExtendedImmed; } if (!CPV->getType()->isIntegral()) return opType; // Now get the constant value and check if it fits in the IMMED field. // Take advantage of the fact that the max unsigned value will rarely // fit into any IMMED field and ignore that case (i.e., cast smaller // unsigned constants to signed). // int64_t intValue; if (CPV->getType()->isSigned()) { intValue = ((ConstPoolSInt*)CPV)->getValue(); } else { uint64_t V = ((ConstPoolUInt*)CPV)->getValue(); if (V >= INT64_MAX) return opType; intValue = (int64_t)V; } if (intValue == 0 && target.getRegInfo().getZeroRegNum() >= 0) { opType = MachineOperand::MO_MachineRegister; getMachineRegNum = target.getRegInfo().getZeroRegNum(); } else if (canUseImmed && target.getInstrInfo().constantFitsInImmedField(opCode, intValue)) { opType = MachineOperand::MO_SignExtendedImmed; getImmedValue = intValue; } return opType; }