//===- Intervals.cpp - Interval partition Calculation ------------*- C++ -*--=// // // This file contains the declaration of the cfg::IntervalPartition class, which // calculates and represent the interval partition of a method. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/Intervals.h" #include "llvm/Method.h" #include "llvm/BasicBlock.h" #include "llvm/CFG.h" using namespace cfg; //===----------------------------------------------------------------------===// // Interval Implementation //===----------------------------------------------------------------------===// // isLoop - Find out if there is a back edge in this interval... // bool Interval::isLoop() const { // There is a loop in this interval iff one of the predecessors of the header // node lives in the interval. for (BasicBlock::pred_iterator I = pred_begin(HeaderNode), E = pred_end(HeaderNode); I != E; ++I) { if (contains(*I)) return true; } return false; } //===----------------------------------------------------------------------===// // IntervalPartition Implementation //===----------------------------------------------------------------------===// template static inline void deleter(T *Ptr) { delete Ptr; } // Destructor - Free memory IntervalPartition::~IntervalPartition() { for_each(begin(), end(), deleter); } // getNodeHeader - Given a source graph node and the source graph, return the // BasicBlock that is the header node. This is the opposite of // getSourceGraphNode. // inline static BasicBlock *getNodeHeader(BasicBlock *BB) { return BB; } inline static BasicBlock *getNodeHeader(Interval *I) { return I->getHeaderNode(); } // getSourceGraphNode - Given a BasicBlock and the source graph, return the // source graph node that corresponds to the BasicBlock. This is the opposite // of getNodeHeader. // inline static BasicBlock *getSourceGraphNode(Method *, BasicBlock *BB) { return BB; } inline static Interval *getSourceGraphNode(IntervalPartition *IP, BasicBlock *BB) { return IP->getBlockInterval(BB); } // addNodeToInterval - This method exists to assist the generic ProcessNode // with the task of adding a node to the new interval, depending on the // type of the source node. In the case of a CFG source graph (BasicBlock // case), the BasicBlock itself is added to the interval. // inline void IntervalPartition::addNodeToInterval(Interval *Int, BasicBlock *BB){ Int->Nodes.push_back(BB); IntervalMap.insert(make_pair(BB, Int)); } // addNodeToInterval - This method exists to assist the generic ProcessNode // with the task of adding a node to the new interval, depending on the // type of the source node. In the case of a CFG source graph (BasicBlock // case), the BasicBlock itself is added to the interval. In the case of // an IntervalPartition source graph (Interval case), all of the member // BasicBlocks are added to the interval. // inline void IntervalPartition::addNodeToInterval(Interval *Int, Interval *I) { // Add all of the nodes in I as new nodes in Int. copy(I->Nodes.begin(), I->Nodes.end(), back_inserter(Int->Nodes)); // Add mappings for all of the basic blocks in I to the IntervalPartition for (Interval::node_iterator It = I->Nodes.begin(), End = I->Nodes.end(); It != End; ++It) IntervalMap.insert(make_pair(*It, Int)); } // ProcessNode - This method is called by ProcessInterval to add nodes to the // interval being constructed, and it is also called recursively as it walks // the source graph. A node is added to the current interval only if all of // its predecessors are already in the graph. This also takes care of keeping // the successor set of an interval up to date. // // This method is templated because it may operate on two different source // graphs: a basic block graph, or a preexisting interval graph. // template void IntervalPartition::ProcessNode(Interval *Int, NodeTy *Node, OrigContainer *OC) { assert(Int && "Null interval == bad!"); assert(Node && "Null Node == bad!"); BasicBlock *NodeHeader = getNodeHeader(Node); Interval *CurInt = getBlockInterval(NodeHeader); if (CurInt == Int) { // Already in this interval... return; } else if (CurInt != 0) { // In another interval, add as successor if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set Int->Successors.push_back(NodeHeader); } else { // Otherwise, not in interval yet for (typename NodeTy::pred_iterator I = pred_begin(Node), E = pred_end(Node); I != E; ++I) { if (!Int->contains(*I)) { // If pred not in interval, we can't be if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set Int->Successors.push_back(NodeHeader); return; // See you later } } // If we get here, then all of the predecessors of BB are in the interval // already. In this case, we must add BB to the interval! addNodeToInterval(Int, Node); if (Int->isSuccessor(NodeHeader)) { // If we were in the successor list from before... remove from succ list Int->Successors.erase(remove(Int->Successors.begin(), Int->Successors.end(), NodeHeader), Int->Successors.end()); } // Now that we have discovered that Node is in the interval, perhaps some of // its successors are as well? for (typename NodeTy::succ_iterator It = succ_begin(Node), End = succ_end(Node); It != End; ++It) ProcessNode(Int, getSourceGraphNode(OC, *It), OC); } } // ProcessInterval - This method is used during the construction of the // interval graph. It walks through the source graph, recursively creating // an interval per invokation until the entire graph is covered. This uses // the ProcessNode method to add all of the nodes to the interval. // // This method is templated because it may operate on two different source // graphs: a basic block graph, or a preexisting interval graph. // template void IntervalPartition::ProcessInterval(NodeTy *Node, OrigContainer *OC) { BasicBlock *Header = getNodeHeader(Node); if (getBlockInterval(Header)) return; // Interval already constructed? // Create a new interval and add the interval to our current set Interval *Int = new Interval(Header); IntervalList.push_back(Int); IntervalMap.insert(make_pair(Header, Int)); // Check all of our successors to see if they are in the interval... for (typename NodeTy::succ_iterator I = succ_begin(Node), E = succ_end(Node); I != E; ++I) ProcessNode(Int, getSourceGraphNode(OC, *I), OC); // Build all of the successor intervals of this interval now... for(Interval::succ_iterator I = Int->Successors.begin(), E = Int->Successors.end(); I != E; ++I) { ProcessInterval(getSourceGraphNode(OC, *I), OC); } } // updatePredecessors - Interval generation only sets the successor fields of // the interval data structures. After interval generation is complete, // run through all of the intervals and propogate successor info as // predecessor info. // void IntervalPartition::updatePredecessors(cfg::Interval *Int) { BasicBlock *Header = Int->HeaderNode; for (Interval::succ_iterator I = Int->Successors.begin(), E = Int->Successors.end(); I != E; ++I) getBlockInterval(*I)->Predecessors.push_back(Header); } // IntervalPartition ctor - Build the first level interval partition for the // specified method... // IntervalPartition::IntervalPartition(Method *M) { BasicBlock *MethodStart = M->getBasicBlocks().front(); assert(MethodStart && "Cannot operate on prototypes!"); ProcessInterval(MethodStart, M); RootInterval = getBlockInterval(MethodStart); // Now that we know all of the successor information, propogate this to the // predecessors for each block... for(iterator I = begin(), E = end(); I != E; ++I) updatePredecessors(*I); } // IntervalPartition ctor - Build a reduced interval partition from an // existing interval graph. This takes an additional boolean parameter to // distinguish it from a copy constructor. Always pass in false for now. // IntervalPartition::IntervalPartition(IntervalPartition &I, bool) { Interval *MethodStart = I.getRootInterval(); assert(MethodStart && "Cannot operate on empty IntervalPartitions!"); ProcessInterval(MethodStart, &I); RootInterval = getBlockInterval(*MethodStart->Nodes.begin()); // Now that we know all of the successor information, propogate this to the // predecessors for each block... for(iterator I = begin(), E = end(); I != E; ++I) updatePredecessors(*I); }