From 69938a85bdbeef1c5b60aa778e361586bec36fb7 Mon Sep 17 00:00:00 2001 From: Duncan Sands Date: Fri, 8 Jun 2012 13:37:30 +0000 Subject: Revert commit 158073 while waiting for a fix. The issue is that reassociate can move instructions within the instruction list. If the instruction just happens to be the one the basic block iterator is pointing to, and it is moved to a different basic block, then we get into an infinite loop due to the iterator running off the end of the basic block (for some reason this doesn't fire any assertions). Original commit message: Grab-bag of reassociate tweaks. Unify handling of dead instructions and instructions to reoptimize. Exploit this to more systematically eliminate dead instructions (this isn't very useful in practice but is convenient for analysing some testcase I am working on). No need for WeakVH any more: use an AssertingVH instead. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158199 91177308-0d34-0410-b5e6-96231b3b80d8 --- lib/Transforms/Scalar/Reassociate.cpp | 234 ++++++++++++++++++---------------- 1 file changed, 123 insertions(+), 111 deletions(-) (limited to 'lib/Transforms/Scalar/Reassociate.cpp') diff --git a/lib/Transforms/Scalar/Reassociate.cpp b/lib/Transforms/Scalar/Reassociate.cpp index bdf0c99a07..d036c6654c 100644 --- a/lib/Transforms/Scalar/Reassociate.cpp +++ b/lib/Transforms/Scalar/Reassociate.cpp @@ -37,7 +37,6 @@ #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/PostOrderIterator.h" -#include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Statistic.h" @@ -117,7 +116,8 @@ namespace { class Reassociate : public FunctionPass { DenseMap RankMap; DenseMap, unsigned> ValueRankMap; - SetVector > RedoInsts; + SmallVector RedoInsts; + SmallVector DeadInsts; bool MadeChange; public: static char ID; // Pass identification, replacement for typeid @@ -145,7 +145,9 @@ namespace { Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl &Ops); void LinearizeExprTree(BinaryOperator *I, SmallVectorImpl &Ops); Value *RemoveFactorFromExpression(Value *V, Value *Factor); - void OptimizeInst(Instruction *I); + void ReassociateInst(BasicBlock::iterator &BBI); + + void RemoveDeadBinaryOp(Value *V); }; } @@ -165,6 +167,25 @@ static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { return 0; } +void Reassociate::RemoveDeadBinaryOp(Value *V) { + BinaryOperator *Op = dyn_cast(V); + if (!Op) + return; + + ValueRankMap.erase(Op); + DeadInsts.push_back(Op); + + BinaryOperator *LHS = isReassociableOp(Op->getOperand(0), Op->getOpcode()); + BinaryOperator *RHS = isReassociableOp(Op->getOperand(1), Op->getOpcode()); + Op->setOperand(0, UndefValue::get(Op->getType())); + Op->setOperand(1, UndefValue::get(Op->getType())); + + if (LHS) + RemoveDeadBinaryOp(LHS); + if (RHS) + RemoveDeadBinaryOp(RHS); +} + static bool isUnmovableInstruction(Instruction *I) { if (I->getOpcode() == Instruction::PHI || I->getOpcode() == Instruction::LandingPad || @@ -238,14 +259,17 @@ unsigned Reassociate::getRank(Value *V) { /// LowerNegateToMultiply - Replace 0-X with X*-1. /// -static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) { +static BinaryOperator *LowerNegateToMultiply(Instruction *Neg, + DenseMap, unsigned> &ValueRankMap) { Constant *Cst = Constant::getAllOnesValue(Neg->getType()); BinaryOperator *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg); + ValueRankMap.erase(Neg); Res->takeName(Neg); Neg->replaceAllUsesWith(Res); Res->setDebugLoc(Neg->getDebugLoc()); + Neg->eraseFromParent(); return Res; } @@ -430,7 +454,7 @@ void Reassociate::LinearizeExprTree(BinaryOperator *I, BinaryOperator *BO = dyn_cast(Op); if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) { DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO "); - BO = LowerNegateToMultiply(BO); + BO = LowerNegateToMultiply(BO, ValueRankMap); DEBUG(dbgs() << *BO << 'n'); Worklist.push_back(std::make_pair(BO, Weight)); MadeChange = true; @@ -600,7 +624,7 @@ void Reassociate::RewriteExprTree(BinaryOperator *I, // Throw away any left over nodes from the original expression. for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i) - RedoInsts.insert(NodesToRewrite[i]); + RemoveDeadBinaryOp(NodesToRewrite[i]); } /// NegateValue - Insert instructions before the instruction pointed to by BI, @@ -698,7 +722,8 @@ static bool ShouldBreakUpSubtract(Instruction *Sub) { /// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is /// only used by an add, transform this into (X+(0-Y)) to promote better /// reassociation. -static BinaryOperator *BreakUpSubtract(Instruction *Sub) { +static Instruction *BreakUpSubtract(Instruction *Sub, + DenseMap, unsigned> &ValueRankMap) { // Convert a subtract into an add and a neg instruction. This allows sub // instructions to be commuted with other add instructions. // @@ -706,13 +731,15 @@ static BinaryOperator *BreakUpSubtract(Instruction *Sub) { // and set it as the RHS of the add instruction we just made. // Value *NegVal = NegateValue(Sub->getOperand(1), Sub); - BinaryOperator *New = + Instruction *New = BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub); New->takeName(Sub); // Everyone now refers to the add instruction. + ValueRankMap.erase(Sub); Sub->replaceAllUsesWith(New); New->setDebugLoc(Sub->getDebugLoc()); + Sub->eraseFromParent(); DEBUG(dbgs() << "Negated: " << *New << '\n'); return New; @@ -721,16 +748,27 @@ static BinaryOperator *BreakUpSubtract(Instruction *Sub) { /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used /// by one, change this into a multiply by a constant to assist with further /// reassociation. -static BinaryOperator *ConvertShiftToMul(Instruction *Shl) { - Constant *MulCst = ConstantInt::get(Shl->getType(), 1); - MulCst = ConstantExpr::getShl(MulCst, cast(Shl->getOperand(1))); - - BinaryOperator *Mul = - BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl); - Mul->takeName(Shl); - Shl->replaceAllUsesWith(Mul); - Mul->setDebugLoc(Shl->getDebugLoc()); - return Mul; +static Instruction *ConvertShiftToMul(Instruction *Shl, + DenseMap, unsigned> &ValueRankMap) { + // If an operand of this shift is a reassociable multiply, or if the shift + // is used by a reassociable multiply or add, turn into a multiply. + if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) || + (Shl->hasOneUse() && + (isReassociableOp(Shl->use_back(), Instruction::Mul) || + isReassociableOp(Shl->use_back(), Instruction::Add)))) { + Constant *MulCst = ConstantInt::get(Shl->getType(), 1); + MulCst = ConstantExpr::getShl(MulCst, cast(Shl->getOperand(1))); + + Instruction *Mul = + BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl); + ValueRankMap.erase(Shl); + Mul->takeName(Shl); + Shl->replaceAllUsesWith(Mul); + Mul->setDebugLoc(Shl->getDebugLoc()); + Shl->eraseFromParent(); + return Mul; + } + return 0; } /// FindInOperandList - Scan backwards and forwards among values with the same @@ -803,7 +841,7 @@ Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) { // If this was just a single multiply, remove the multiply and return the only // remaining operand. if (Factors.size() == 1) { - RedoInsts.insert(BO); + RemoveDeadBinaryOp(BO); V = Factors[0].Op; } else { RewriteExprTree(BO, Factors); @@ -917,7 +955,7 @@ Value *Reassociate::OptimizeAdd(Instruction *I, // Now that we have inserted a multiply, optimize it. This allows us to // handle cases that require multiple factoring steps, such as this: // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6 - RedoInsts.insert(cast(Mul)); + RedoInsts.push_back(Mul); // If every add operand was a duplicate, return the multiply. if (Ops.empty()) @@ -1044,15 +1082,14 @@ Value *Reassociate::OptimizeAdd(Instruction *I, // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C)) assert(NumAddedValues > 1 && "Each occurrence should contribute a value"); (void)NumAddedValues; - if (Instruction *VI = dyn_cast(V)) - RedoInsts.insert(VI); + RedoInsts.push_back(V); // Create the multiply. - Instruction *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I); + Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I); // Rerun associate on the multiply in case the inner expression turned into // a multiply. We want to make sure that we keep things in canonical form. - RedoInsts.insert(V2); + RedoInsts.push_back(V2); // If every add operand included the factor (e.g. "A*B + A*C"), then the // entire result expression is just the multiply "A*(B+C)". @@ -1186,9 +1223,8 @@ Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder, // Reset the base value of the first factor to the new expression tree. // We'll remove all the factors with the same power in a second pass. - Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct); - if (Instruction *MI = dyn_cast(M)) - RedoInsts.insert(MI); + Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct); + RedoInsts.push_back(Factors[LastIdx].Base); LastIdx = Idx; } @@ -1246,6 +1282,7 @@ Value *Reassociate::OptimizeExpression(BinaryOperator *I, SmallVectorImpl &Ops) { // Now that we have the linearized expression tree, try to optimize it. // Start by folding any constants that we found. + bool IterateOptimization = false; if (Ops.size() == 1) return Ops[0].Op; unsigned Opcode = I->getOpcode(); @@ -1311,126 +1348,98 @@ Value *Reassociate::OptimizeExpression(BinaryOperator *I, break; } - if (Ops.size() != NumOps) + if (IterateOptimization || Ops.size() != NumOps) return OptimizeExpression(I, Ops); return 0; } -/// OptimizeInst - Inspect and optimize the given instruction, possibly erasing -/// it. -void Reassociate::OptimizeInst(Instruction *I) { - // Reassociation can expose instructions as dead. Erasing them, removing uses, - // can free up their operands for reassociation. - if (isInstructionTriviallyDead(I)) { - SmallVector Ops(I->op_begin(), I->op_end()); - // Erase the dead instruction. - ValueRankMap.erase(I); - I->eraseFromParent(); - // Optimize its operands. - for (unsigned i = 0, e = Ops.size(); i != e; ++i) - if (Instruction *Op = dyn_cast(Ops[i])) { - // If this is a node in an expression tree, climb to the expression root - // and add that since that's where optimization actually happens. - unsigned Opcode = Op->getOpcode(); - while (Op->hasOneUse() && Op->use_back()->getOpcode() == Opcode) - Op = Op->use_back(); - RedoInsts.insert(Op); - } - return; - } - - // Only consider operations that we understand. - if (!isa(I)) - return; - - if (I->getOpcode() == Instruction::Shl && - isa(I->getOperand(1))) - // If an operand of this shift is a reassociable multiply, or if the shift - // is used by a reassociable multiply or add, turn into a multiply. - if (isReassociableOp(I->getOperand(0), Instruction::Mul) || - (I->hasOneUse() && - (isReassociableOp(I->use_back(), Instruction::Mul) || - isReassociableOp(I->use_back(), Instruction::Add)))) { - Instruction *NI = ConvertShiftToMul(I); - ValueRankMap.erase(I); - I->eraseFromParent(); +/// ReassociateInst - Inspect and reassociate the instruction at the +/// given position, post-incrementing the position. +void Reassociate::ReassociateInst(BasicBlock::iterator &BBI) { + Instruction *BI = BBI++; + if (BI->getOpcode() == Instruction::Shl && + isa(BI->getOperand(1))) + if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) { MadeChange = true; - I = NI; + BI = NI; } // Floating point binary operators are not associative, but we can still // commute (some) of them, to canonicalize the order of their operands. // This can potentially expose more CSE opportunities, and makes writing // other transformations simpler. - if ((I->getType()->isFloatingPointTy() || I->getType()->isVectorTy())) { + if (isa(BI) && + (BI->getType()->isFloatingPointTy() || BI->getType()->isVectorTy())) { // FAdd and FMul can be commuted. - if (I->getOpcode() != Instruction::FMul && - I->getOpcode() != Instruction::FAdd) + if (BI->getOpcode() != Instruction::FMul && + BI->getOpcode() != Instruction::FAdd) return; - Value *LHS = I->getOperand(0); - Value *RHS = I->getOperand(1); + Value *LHS = BI->getOperand(0); + Value *RHS = BI->getOperand(1); unsigned LHSRank = getRank(LHS); unsigned RHSRank = getRank(RHS); // Sort the operands by rank. if (RHSRank < LHSRank) { - I->setOperand(0, RHS); - I->setOperand(1, LHS); + BI->setOperand(0, RHS); + BI->setOperand(1, LHS); } return; } + // Do not reassociate operations that we do not understand. + if (!isa(BI)) + return; + // Do not reassociate boolean (i1) expressions. We want to preserve the // original order of evaluation for short-circuited comparisons that // SimplifyCFG has folded to AND/OR expressions. If the expression // is not further optimized, it is likely to be transformed back to a // short-circuited form for code gen, and the source order may have been // optimized for the most likely conditions. - if (I->getType()->isIntegerTy(1)) + if (BI->getType()->isIntegerTy(1)) return; // If this is a subtract instruction which is not already in negate form, // see if we can convert it to X+-Y. - if (I->getOpcode() == Instruction::Sub) { - if (ShouldBreakUpSubtract(I)) { - Instruction *NI = BreakUpSubtract(I); - ValueRankMap.erase(I); - I->eraseFromParent(); + if (BI->getOpcode() == Instruction::Sub) { + if (ShouldBreakUpSubtract(BI)) { + BI = BreakUpSubtract(BI, ValueRankMap); + // Reset the BBI iterator in case BreakUpSubtract changed the + // instruction it points to. + BBI = BI; + ++BBI; MadeChange = true; - I = NI; - } else if (BinaryOperator::isNeg(I)) { + } else if (BinaryOperator::isNeg(BI)) { // Otherwise, this is a negation. See if the operand is a multiply tree // and if this is not an inner node of a multiply tree. - if (isReassociableOp(I->getOperand(1), Instruction::Mul) && - (!I->hasOneUse() || - !isReassociableOp(I->use_back(), Instruction::Mul))) { - Instruction *NI = LowerNegateToMultiply(I); - ValueRankMap.erase(I); - I->eraseFromParent(); + if (isReassociableOp(BI->getOperand(1), Instruction::Mul) && + (!BI->hasOneUse() || + !isReassociableOp(BI->use_back(), Instruction::Mul))) { + BI = LowerNegateToMultiply(BI, ValueRankMap); MadeChange = true; - I = NI; } } } - // If this instruction is an associative binary operator, process it. - if (!I->isAssociative()) return; - BinaryOperator *BO = cast(I); + // If this instruction is a commutative binary operator, process it. + if (!BI->isAssociative()) return; + BinaryOperator *I = cast(BI); // If this is an interior node of a reassociable tree, ignore it until we // get to the root of the tree, to avoid N^2 analysis. - if (BO->hasOneUse() && BO->use_back()->getOpcode() == BO->getOpcode()) + if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode())) return; // If this is an add tree that is used by a sub instruction, ignore it // until we process the subtract. - if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add && - cast(BO->use_back())->getOpcode() == Instruction::Sub) + if (I->hasOneUse() && I->getOpcode() == Instruction::Add && + cast(I->use_back())->getOpcode() == Instruction::Sub) return; - ReassociateExpression(BO); + ReassociateExpression(I); } Value *Reassociate::ReassociateExpression(BinaryOperator *I) { @@ -1459,7 +1468,7 @@ Value *Reassociate::ReassociateExpression(BinaryOperator *I) { I->replaceAllUsesWith(V); if (Instruction *VI = dyn_cast(V)) VI->setDebugLoc(I->getDebugLoc()); - RedoInsts.insert(I); + RemoveDeadBinaryOp(I); ++NumAnnihil; return V; } @@ -1484,7 +1493,7 @@ Value *Reassociate::ReassociateExpression(BinaryOperator *I) { I->replaceAllUsesWith(Ops[0].Op); if (Instruction *OI = dyn_cast(Ops[0].Op)) OI->setDebugLoc(I->getDebugLoc()); - RedoInsts.insert(I); + RemoveDeadBinaryOp(I); return Ops[0].Op; } @@ -1495,27 +1504,30 @@ Value *Reassociate::ReassociateExpression(BinaryOperator *I) { } bool Reassociate::runOnFunction(Function &F) { - // Calculate the rank map for F + // Recalculate the rank map for F BuildRankMap(F); MadeChange = false; - for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) - for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; ) { - // Optimize the current instruction, possibly erasing it. If this creates - // new instructions that need optimizing then optimize all such too before - // moving on to the next instruction. - RedoInsts.insert(AssertingVH(II)); - while (!RedoInsts.empty()) { - Instruction *I = RedoInsts.pop_back_val(); - if ((Instruction*)II == I) - ++II; - OptimizeInst(I); - } + for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) + for (BasicBlock::iterator BBI = FI->begin(); BBI != FI->end(); ) + ReassociateInst(BBI); + + // Now that we're done, revisit any instructions which are likely to + // have secondary reassociation opportunities. + while (!RedoInsts.empty()) + if (Value *V = RedoInsts.pop_back_val()) { + BasicBlock::iterator BBI = cast(V); + ReassociateInst(BBI); } // We are done with the rank map. RankMap.clear(); ValueRankMap.clear(); + // Now that we're done, delete any instructions which are no longer used. + while (!DeadInsts.empty()) + if (Value *V = DeadInsts.pop_back_val()) + RecursivelyDeleteTriviallyDeadInstructions(V); + return MadeChange; } -- cgit v1.2.3-18-g5258