Age | Commit message (Collapse) | Author |
|
some checks to allow better early out.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154309 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154308 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154307 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
happen.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154305 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
x86 addressing modes. This allows PIE-based TLS offsets to fit directly
into an addressing mode immediate offset, which is the last remaining
code quality issue from PR12380. With this patch, that PR is completely
fixed.
To understand why this patch is correct to match these offsets into
addressing mode immediates, break it down by cases:
1) 32-bit is trivially correct, and unmodified here.
2) 64-bit non-small mode is unchanged and never matches.
3) 64-bit small PIC code which is RIP-relative is handled specially in
the match to try to fit RIP into the base register. If it fails, it
now early exits. This behavior is unchanged by the patch.
4) 64-bit small non-PIC code which is not RIP-relative continues to work
as it did before. The reason these immediates are safe is because the
ABI ensures they fit in small mode. This behavior is unchanged.
5) 64-bit small PIC code which is *not* using RIP-relative addressing.
This is the only case changed by the patch, and the primary place you
see it is in TLS, either the win64 section offset TLS or Linux
local-exec TLS model in a PIC compilation. Here the ABI again ensures
that the immediates fit because we are in small mode, and any other
operations required due to the PIC relocation model have been handled
externally to the Wrapper node (extra loads etc are made around the
wrapper node in ISelLowering).
I've tested this as much as I can comparing it with GCC's output, and
everything appears safe. I discussed this with Anton and it made sense
to him at least at face value. That said, if there are issues with PIC
code after this patch, yell and we can revert it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154304 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154299 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154297 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
when -ffast-math, i.e. don't just always do it if the reciprocal can
be formed exactly. There is already an IR level transform that does
that, and it does it more carefully.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154296 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
width and the input vector widths don't match. No need to check the min and max are in range before calculating the start index. The range check after having the start index is sufficient. Also no need to check for an extract from the beginning differently.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154295 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
optimizations which are valid for position independent code being linked
into a single executable, but not for such code being linked into
a shared library.
I discussed the design of this with Eric Christopher, and the decision
was to support an optional bit rather than a completely separate
relocation model. Fundamentally, this is still PIC relocation, its just
that certain optimizations are only valid under a PIC relocation model
when the resulting code won't be in a shared library. The simplest path
to here is to expose a single bit option in the TargetOptions. If folks
have different/better designs, I'm all ears. =]
I've included the first optimization based upon this: changing TLS
models to the *Exec models when PIE is enabled. This is the LLVM
component of PR12380 and is all of the hard work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154294 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
in TargetLowering. There was already a FIXME about this location being
odd. The interface is simplified as a consequence. This will also make
it easier to change TLS models when compiling with PIE.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154292 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
passed to it. Delete it on error or when we create an interpreter that doesn't need it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154288 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
where a chain outside of the loop block-set ended up in the worklist for
scheduling as part of the contiguous loop. However, asserting the first
block in the chain is in the loop-set isn't a valid check -- we may be
forced to drag a chain into the worklist due to one block in the chain
being part of the loop even though the first block is *not* in the loop.
This occurs when we have been forced to form a chain early due to
un-analyzable branches.
No test case here as I have no idea how to even begin reducing one, and
it will be hopelessly fragile. We have to somehow end up with a loop
header of an inner loop which is a successor of a basic block with an
unanalyzable pair of branch instructions. Ow. Self-host triggers it so
it is unlikely it will regress.
This at least gets block placement back to passing selfhost and the test
suite. There are still a lot of slowdown that I don't like coming out of
block placement, although there are now also a lot of speedups. =[ I'm
seeing swings in both directions up to 10%. I'm going to try to find
time to dig into this and see if we can turn this on for 3.1 as it does
a really good job of cleaning up after some loops that degraded with the
inliner changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154287 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
debugging.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154286 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
GEPs, bit casts, and stores reaching it but no other instructions. These
often show up during the iterative processing of the inliner, SROA, and
DCE. Once we hit this point, we can completely remove the alloca. These
were actually showing up in the final, fully optimized code in a bunch
of inliner tests I've been working on, and notably they show up after
LLVM finishes optimizing away all function calls involved in
hash_combine(a, b).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154285 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
Previously we used three instructions to broadcast an immediate value into a
vector register.
On Sandybridge we continue to load the broadcasted value from the constant pool.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154284 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
An MDNode has a list of MDNodeOperands allocated directly after it as part of
its allocation. Therefore, the Parent of the MDNodeOperands can be found by
walking back through the operands to the beginning of that list. Mark the first
operand's value pointer as being the 'first' operand so that we know where the
beginning of said list is.
This saves a *lot* of space during LTO with -O0 -g flags.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154280 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
value pointer by making the value pointer into a pointer-int pair with 2 bits
available for flags.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154279 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
remove patterns for selecting the intrinsic. Similar was already done for avx1.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154272 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
AddedComplexity to AVX2 vextracti128 patterns to give them priority over the integer versions of vextractf128 patterns.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154268 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154267 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
shuffle node because it could introduce new shuffle nodes that were not
supported efficiently by the target.
2. Add a more restrictive shuffle-of-shuffle optimization for cases where the
second shuffle reverses the transformation of the first shuffle.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154266 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
reciprocal if converting to the reciprocal is exact. Do it even if inexact
if -ffast-math. This substantially speeds up ac.f90 from the polyhedron
benchmarks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154265 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
speculate. Without this, loop rotate (among many other places) would
suddenly stop working in the presence of debug info. I found this
looking at loop rotate, and have augmented its tests with a reduction
out of a very hot loop in yacr2 where failing to do this rotation costs
sometimes more than 10% in runtime performance, perturbing numerous
downstream optimizations.
This should have no impact on performance without debug info, but the
change in performance when debug info is enabled can be extreme. As
a consequence (and this how I got to this yak) any profiling of
performance problems should be treated with deep suspicion -- they may
have been wildly innacurate of debug info was enabled for profiling. =/
Just a heads up.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154263 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
but not NSW.
Found by inspection.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154262 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
The tLDRr instruction with the last register operand set to the zero register
prints in assembly as if no register was specified, and the assembler encodes
it as a tLDRi instruction with a zero immediate. With the integrated assembler,
that zero register gets emitted as "r0", so we get "ldr rx, [ry, r0]" which
is broken. Emit the instruction as tLDRi with a zero immediate. I don't
know if there's a good way to write a testcase for this. Suggestions welcome.
Opportunities for follow-up work:
1) The asm printer should complain if a non-optional register operand is set
to the zero register, instead of silently dropping it.
2) The integrated assembler should complain in the same situation, instead of
silently emitting the operand as "r0".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154261 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154249 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
Cygwin-1.7 supports dw2. Some recent mingw distros support one, too.
I have confirmed test-suite/SingleSource/Benchmarks/Shootout-C++/except.cpp can pass on Cygwin.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154247 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
by default.
This is a behaviour configurable in the MCAsmInfo. I've decided to turn
it on by default in (possibly optimistic) hopes that most assemblers are
reasonably sane. If this proves a problem, switching to default seems
reasonable.
I'm not sure if this is the opportune place to test, but it seemed good
to make sure it was tested somewhere.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154235 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154226 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154210 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
After register masks were introdruced to represent the call clobbers, it
is no longer necessary to have duplicate instruction for iOS.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154209 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
which exists for this purpose.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154199 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
disassembler requires a MCSubtargetInfo and a
MCInstrInfo to exist in order to initialize the
instruction printer and disassembler; however,
although the printer and disassembler keep
references to these objects they do not own them.
Previously, the MCSubtargetInfo and MCInstrInfo
objects were just leaked.
I have extended LLVMDisasmContext to own these
objects and delete them when it is destroyed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154192 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
ARM and Thumb2 mode can use cmn instructions to compare against negative
immediates. Thumb1 mode can't.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154183 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
parameter until we have a more sensible API for doing the same thing.
Reviewed by Chandler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154180 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
simplification has been performed. This is a bit less efficient
(requires another ilist walk of the basic blocks) but shouldn't matter
in practice. More importantly, it's just too much work to keep track of
all the various ways the return instructions can be mutated while
simplifying them. This fixes yet another crasher, reported by Daniel
Dunbar.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154179 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
The modifications are a lot more trivial than they appear to be in the diff!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154174 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154171 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
a single source. This is a rewrite of the 256-bit shuffle splitting code based on similar code from legalize types. Fixes PR12413.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154166 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
dead code, including dead return instructions in some cases. Otherwise,
we end up having a bogus poniter to a return instruction that blows up
much further down the road.
It turns out that this pattern is both simpler to code, easier to update
in the face of enhancements to the inliner cleanup, and likely cheaper
given that it won't add dead instructions to the list.
Thanks to John Regehr's numerous test cases for teasing this out.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154157 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
We had special instructions for iOS because r9 is call-clobbered, but
that is represented dynamically by the register mask operands now, so
there is no need for the pseudo-instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154144 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
The load/store optimizer splits LDRD/STRD into two instructions when the
register pairing doesn't work out. For negative offsets in Thumb2, it uses
t2STRi8 to do that. That's fine, except for the case when the offset is in
the range [-4,-1]. In that case, we'll also form a second t2STRi8 with
the original offset plus 4, resulting in a t2STRi8 with a non-negative
offset, which ends up as if it were an STRT, which is completely bogus.
Similarly for loads.
No testcase, unfortunately, as any I've been able to construct is both large
and extremely fragile.
rdar://11193937
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154141 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
'add r2, #-1024' should just use 'sub r2, #1024' rather than erroring out.
Thumb1 aliases for adding a negative immediate to the stack pointer,
also.
rdar://11192734
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154123 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
This enables debuggers to see what are interesting lines for a
breakpoint rather than any line that starts a function.
rdar://9852092
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154120 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
LSR always tries to make the ICmp in the loop latch use the incremented
induction variable. This allows the induction variable to be kept in a
single register.
When the induction variable limit is equal to the stride,
SimplifySetCC() would break LSR's hard work by transforming:
(icmp (add iv, stride), stride) --> (cmp iv, 0)
This forced us to use lea for the IC update, preventing the simpler
incl+cmp.
<rdar://problem/7643606>
<rdar://problem/11184260>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154119 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
testcase slightly less trivial. This fixes rdar://11171718.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154118 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
during instruction selection.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154113 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
some corner cases involving the PC register as an operand for these instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154101 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154100 91177308-0d34-0410-b5e6-96231b3b80d8
|